metal-organic compounds
Tris(propionitrile-κN)[1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane-κ3N1,N4,N7]copper(II) bis(perchlorate) dihydrate
aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: zhangzhong@mailbox.gxnu.edu.cn
In the title compound, [Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2O, the CuII atom lies on a threefold rotation axis and is coordinated in a distorted N6 octahedral environment by three tertiary from the tridentate chelating azamacrocyclic ligand and three propionitrile molecules. Intermolecular non-classical C—H⋯N hydrogen bonding interlinks the [Cu(C3H5N)3(C12H18N6)]2+ cations into a two-dimensional supramolecular sheet extending along the ab plane. The crystal packing also exhibits weak C—H⋯O interactions.
Related literature
For transition metal complexes with cyanoalkylated triazamacrocycles, see: Tei et al. (2003). For transition metal complexes with cyanoalkylated tetraazamacrocycles, see: Aneetha et al. (1999); Freeman et al. (1984); Kang et al. (2002a); Kong et al. (2000). For the reactivity of the pendant nitrile group attached to the azamacrocycle, see: Freeman et al. (1984); Kang et al. (2002b, 2005, 2008); Siegfried et al. (2005); Tei et al. (2003); Zhang et al. (2006). For the synthesis of the triazamacrocyclic derivative 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane, see: Tei et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810003211/rk2185sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810003211/rk2185Isup2.hkl
The triazamacrocyclic derivative 1,4,7–tris(cyanomethyl)–1,4,7–triazacyclononane was prepared according to a published method (Tei et al., 1998).
To the propionitrile solution (20 ml) of the triazamacrocyclic ligand (49 mg, 0.2 mmol), Cu(ClO4)2.6H2O (74 mg, 0.2 mmol) was added. The resulting mixture was stirred under reflux for 4 h and then cooled to ambient temperature. Blue single crystals of title compound suitable for X–ray
were obtained by slow diffusion of diethyl ether into the complex solution. (yield 51 mg, 72%). Elemental analysis found: C 35.52; H 5.39; N 17.69%; calculated for C21H37Cl2CuN9O10: C 35.31; H 5.28; N 17.75%.All H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.96–0.97Å and O—H = 0.85Å, and with Uiso(H) = 1.2Ueq(C and O) or 1.5Ueq(methyl C). OW2 lies on a threefold rotation axis, so its hydrogen atoms are disordered with site occupancy factor of 0.33. OW1 and OW3 are disordered on special positions with threefold roto–inversion symmetry and each of them has 0.17 occupancy in the asymmetric unit.
The coordination chemistry of the azamacrocycles with nitrile pendant arms has been studied extensively. Usually, these azamacrocycle derivatives only chelate the metal through tertiary
and the pendant nitrile groups do not involve in the coordination (Aneetha et al., 1999; Freeman et al., 1984; Kang et al., 2002a; Kong et al., 2000; Tei et al., 2003). However, the reactivity of the nitrile group in these complexes towards nucleophilic reagents, such as water, and provides a convenient route to the synthesis of a variety of N–functionalized azamacrocycles (Freeman et al., 1984; Kang et al., 2002b, 2005, 2008; Siegfried et al., 2005; Tei et al., 2003; Zhang et al., 2006). In order to obtain further knowledge about the reactivity of the nitrile groups attached to the triazamacrocycle, a title compound of CuII with 1,4,7–tris(cyanomethyl)–1,4,7–triazacyclononane has been prepared and structurally characterized.As shown in Fig. 1, the distorted octahedral CuII center in the title compound is located on a threefold rotation axis and is ligated by three N donors of the tridentate azamacrocycle backbone and other three from coordinated propionitrile molecules. The Cu—N(macrocycle) length (2.089 (3)Å) is slightly longer than that of the Cu—N(propionitrile) (2.030 (3)Å), while the bond angles subtended by cis–pairs of donor atoms at CuII range from 84.13 (13)° to 96.12 (11)°. In the ab–plane, each [Cu(C12H18N6)(C3H5N)3]2+ cation are linked with six neighbouring cations by means of C—H···N hydrogen bonding (Table 1) to form an extended two–dimensional supramolecular network, as depicted in Fig. 2. Perchlorate counter–anions are embedded in the two–dimensional supramolecular cationic layer via weak interactions.
For transition metal complexes with cyanoalkylated triazamacrocycles, see: Tei et al. (2003). For transition metal complexes with cyanoalkylated tetraazamacrocycles, see: Aneetha et al. (1999); Freeman et al. (1984); Kang et al. (2002a); Kong et al. (2000). For the reactivity of the pendant nitrile group attached to the azamacrocycle, see: Freeman et al. (1984); Kang et al. (2002b, 2005, 2008); Siegfried et al. (2005); Tei et al. (2003); Zhang et al. (2006). For the synthesis of the triazamacrocyclic derivative 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane, see: Tei et al. (1998).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2O | Dx = 1.336 Mg m−3 |
Mr = 710.05 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 1799 reflections |
Hall symbol: -R 3 | θ = 2.4–20.9° |
a = 9.962 (2) Å | µ = 0.83 mm−1 |
c = 61.623 (18) Å | T = 298 K |
V = 5296 (2) Å3 | Plate, blue |
Z = 6 | 0.34 × 0.32 × 0.14 mm |
F(000) = 2214 |
Bruker SMART APEXII CCD diffractometer | 2327 independent reflections |
Radiation source: fine–focus sealed tube | 1837 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
φ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −12→12 |
Tmin = 0.760, Tmax = 0.887 | k = −7→12 |
9484 measured reflections | l = −75→64 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0959P)2 + 1.480P] where P = (Fo2 + 2Fc2)/3 |
2327 reflections | (Δ/σ)max < 0.001 |
132 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
[Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2O | Z = 6 |
Mr = 710.05 | Mo Kα radiation |
Trigonal, R3 | µ = 0.83 mm−1 |
a = 9.962 (2) Å | T = 298 K |
c = 61.623 (18) Å | 0.34 × 0.32 × 0.14 mm |
V = 5296 (2) Å3 |
Bruker SMART APEXII CCD diffractometer | 2327 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 1837 reflections with I > 2σ(I) |
Tmin = 0.760, Tmax = 0.887 | Rint = 0.044 |
9484 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.26 e Å−3 |
2327 reflections | Δρmin = −0.44 e Å−3 |
132 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.8592 (4) | 0.4740 (4) | 0.02573 (6) | 0.0412 (8) | |
H1A | 0.9682 | 0.5407 | 0.0224 | 0.049* | |
H1B | 0.8078 | 0.4188 | 0.0126 | 0.049* | |
C2 | 0.7901 (4) | 0.5749 (4) | 0.03281 (5) | 0.0336 (7) | |
H2A | 0.8615 | 0.6547 | 0.0427 | 0.040* | |
H2B | 0.7778 | 0.6258 | 0.0202 | 0.040* | |
C3 | 0.5888 (4) | 0.5827 (4) | 0.05172 (5) | 0.0379 (8) | |
H3A | 0.6568 | 0.6427 | 0.0635 | 0.045* | |
H3B | 0.4873 | 0.5155 | 0.0580 | 0.045* | |
C4 | 0.5751 (4) | 0.6906 (4) | 0.03705 (5) | 0.0360 (7) | |
C5 | 0.4092 (4) | 0.2743 (4) | 0.09939 (5) | 0.0394 (8) | |
C6 | 0.3004 (4) | 0.2578 (4) | 0.11629 (5) | 0.0389 (8) | |
H6A | 0.1959 | 0.2111 | 0.1105 | 0.047* | |
H6B | 0.3281 | 0.3578 | 0.1225 | 0.047* | |
C7 | 0.3123 (5) | 0.1525 (4) | 0.13332 (5) | 0.0404 (8) | |
H7A | 0.3651 | 0.1029 | 0.1272 | 0.061* | |
H7B | 0.2101 | 0.0751 | 0.1378 | 0.061* | |
H7C | 0.3691 | 0.2133 | 0.1456 | 0.061* | |
Cl1 | 1.0000 | 1.0000 | 0.07171 (2) | 0.0373 (3) | |
Cl2 | 0.3333 | 0.6667 | 0.09665 (2) | 0.0383 (3) | |
Cu1 | 0.6667 | 0.3333 | 0.063982 (10) | 0.0316 (2) | |
N1 | 0.6443 (3) | 0.4868 (3) | 0.04321 (4) | 0.0335 (6) | |
N2 | 0.5838 (3) | 0.7880 (3) | 0.02473 (4) | 0.0385 (7) | |
N3 | 0.4964 (4) | 0.3039 (3) | 0.08486 (5) | 0.0423 (7) | |
O1 | 0.3333 | 0.6667 | 0.1667 | 0.0247 (10) | |
H1C | 0.3300 | 0.6081 | 0.1769 | 0.037* | 0.16667 |
H1D | 0.3867 | 0.7608 | 0.1706 | 0.037* | 0.16667 |
O2 | 0.6667 | 0.3333 | 0.14060 (6) | 0.0353 (8) | |
H2C | 0.6152 | 0.3741 | 0.1454 | 0.042* | 0.33333 |
H2D | 0.6160 | 0.2696 | 0.1305 | 0.042* | 0.33333 |
O3 | 1.0000 | 1.0000 | 0.0000 | 0.0544 (16) | |
H3D | 1.0241 | 1.0481 | 0.0120 | 0.065* | 0.16667 |
H3C | 0.9020 | 0.9506 | −0.0014 | 0.082* | 0.16667 |
O11 | 0.8501 (3) | 0.9383 (3) | 0.06411 (4) | 0.0473 (7) | |
O12 | 1.0000 | 1.0000 | 0.09409 (6) | 0.0442 (10) | |
O21 | 0.3333 | 0.6667 | 0.07487 (7) | 0.0413 (10) | |
O22 | 0.3579 (3) | 0.8074 (3) | 0.10312 (4) | 0.0379 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0410 (19) | 0.0400 (19) | 0.0380 (17) | 0.0170 (16) | 0.0013 (14) | −0.0008 (14) |
C2 | 0.0297 (15) | 0.0339 (16) | 0.0334 (15) | 0.0131 (13) | 0.0009 (12) | −0.0114 (13) |
C3 | 0.0303 (16) | 0.0250 (15) | 0.0417 (17) | 0.0014 (13) | 0.0066 (13) | 0.0010 (13) |
C4 | 0.0364 (17) | 0.0447 (18) | 0.0314 (15) | 0.0238 (15) | 0.0036 (13) | −0.0041 (14) |
C5 | 0.0386 (19) | 0.0444 (19) | 0.0345 (16) | 0.0203 (16) | −0.0006 (14) | 0.0139 (14) |
C6 | 0.0439 (19) | 0.0317 (17) | 0.0335 (16) | 0.0132 (15) | 0.0138 (14) | 0.0150 (13) |
C7 | 0.056 (2) | 0.0431 (19) | 0.0344 (16) | 0.0335 (18) | 0.0156 (15) | 0.0193 (15) |
Cl1 | 0.0360 (5) | 0.0360 (5) | 0.0400 (7) | 0.0180 (2) | 0.000 | 0.000 |
Cl2 | 0.0363 (5) | 0.0363 (5) | 0.0421 (7) | 0.0182 (2) | 0.000 | 0.000 |
Cu1 | 0.0322 (3) | 0.0322 (3) | 0.0304 (4) | 0.01610 (14) | 0.000 | 0.000 |
N1 | 0.0323 (14) | 0.0296 (13) | 0.0363 (14) | 0.0138 (11) | 0.0006 (11) | 0.0048 (10) |
N2 | 0.0368 (15) | 0.0411 (16) | 0.0304 (13) | 0.0142 (13) | 0.0070 (11) | 0.0034 (12) |
N3 | 0.0474 (17) | 0.0317 (15) | 0.0431 (15) | 0.0163 (13) | 0.0109 (14) | 0.0150 (12) |
O1 | 0.0253 (15) | 0.0253 (15) | 0.023 (2) | 0.0126 (7) | 0.000 | 0.000 |
O2 | 0.0318 (12) | 0.0318 (12) | 0.042 (2) | 0.0159 (6) | 0.000 | 0.000 |
O3 | 0.054 (2) | 0.054 (2) | 0.054 (4) | 0.0272 (12) | 0.000 | 0.000 |
O11 | 0.0335 (13) | 0.0445 (14) | 0.0399 (13) | 0.0015 (11) | 0.0118 (10) | −0.0034 (11) |
O12 | 0.0503 (16) | 0.0503 (16) | 0.032 (2) | 0.0252 (8) | 0.000 | 0.000 |
O21 | 0.0424 (15) | 0.0424 (15) | 0.039 (2) | 0.0212 (7) | 0.000 | 0.000 |
O22 | 0.0341 (12) | 0.0427 (13) | 0.0341 (11) | 0.0172 (11) | −0.0008 (9) | 0.0054 (10) |
C1—C2 | 1.538 (5) | Cl1—O11ii | 1.382 (3) |
C1—N1i | 1.543 (4) | Cl1—O11 | 1.382 (3) |
C1—H1A | 0.9700 | Cl1—O11iii | 1.382 (3) |
C1—H1B | 0.9700 | Cl2—O21 | 1.342 (4) |
C2—N1 | 1.420 (4) | Cl2—O22 | 1.357 (3) |
C2—H2A | 0.9700 | Cl2—O22iv | 1.357 (3) |
C2—H2B | 0.9700 | Cl2—O22v | 1.357 (3) |
C3—N1 | 1.422 (5) | Cu1—N3vi | 2.030 (3) |
C3—C4 | 1.462 (5) | Cu1—N3i | 2.030 (3) |
C3—H3A | 0.9700 | Cu1—N3 | 2.030 (3) |
C3—H3B | 0.9700 | Cu1—N1vi | 2.089 (3) |
C4—N2 | 1.200 (5) | Cu1—N1i | 2.089 (3) |
C5—N3 | 1.178 (5) | Cu1—N1 | 2.089 (3) |
C5—C6 | 1.452 (5) | N1—C1vi | 1.543 (4) |
C6—C7 | 1.529 (4) | O1—H1C | 0.8500 |
C6—H6A | 0.9700 | O1—H1D | 0.8500 |
C6—H6B | 0.9700 | O2—H2C | 0.8500 |
C7—H7A | 0.9600 | O2—H2D | 0.8500 |
C7—H7B | 0.9600 | O3—H3D | 0.8500 |
C7—H7C | 0.9600 | O3—H3C | 0.8500 |
Cl1—O12 | 1.379 (4) | ||
C2—C1—N1i | 112.9 (3) | O12—Cl1—O11iii | 109.83 (11) |
C2—C1—H1A | 109.0 | O11ii—Cl1—O11iii | 109.11 (11) |
N1i—C1—H1A | 109.0 | O11—Cl1—O11iii | 109.11 (11) |
C2—C1—H1B | 109.0 | O21—Cl2—O22 | 107.08 (11) |
N1i—C1—H1B | 109.0 | O21—Cl2—O22iv | 107.08 (11) |
H1A—C1—H1B | 107.8 | O22—Cl2—O22iv | 111.75 (10) |
N1—C2—C1 | 112.2 (3) | O21—Cl2—O22v | 107.08 (11) |
N1—C2—H2A | 109.2 | O22—Cl2—O22v | 111.75 (10) |
C1—C2—H2A | 109.2 | O22iv—Cl2—O22v | 111.75 (10) |
N1—C2—H2B | 109.2 | N3vi—Cu1—N3i | 84.13 (13) |
C1—C2—H2B | 109.2 | N3vi—Cu1—N3 | 84.13 (13) |
H2A—C2—H2B | 107.9 | N3i—Cu1—N3 | 84.13 (13) |
N1—C3—C4 | 118.5 (3) | N3vi—Cu1—N1vi | 96.12 (11) |
N1—C3—H3A | 107.7 | N3i—Cu1—N1vi | 177.46 (11) |
C4—C3—H3A | 107.7 | N3—Cu1—N1vi | 93.37 (12) |
N1—C3—H3B | 107.7 | N3vi—Cu1—N1i | 93.37 (12) |
C4—C3—H3B | 107.7 | N3i—Cu1—N1i | 96.12 (11) |
H3A—C3—H3B | 107.1 | N3—Cu1—N1i | 177.46 (11) |
N2—C4—C3 | 171.7 (4) | N1vi—Cu1—N1i | 86.40 (11) |
N3—C5—C6 | 171.5 (4) | N3vi—Cu1—N1 | 177.46 (11) |
C5—C6—C7 | 105.1 (3) | N3i—Cu1—N1 | 93.37 (12) |
C5—C6—H6A | 110.7 | N3—Cu1—N1 | 96.12 (11) |
C7—C6—H6A | 110.7 | N1vi—Cu1—N1 | 86.40 (11) |
C5—C6—H6B | 110.7 | N1i—Cu1—N1 | 86.40 (11) |
C7—C6—H6B | 110.7 | C2—N1—C3 | 111.9 (2) |
H6A—C6—H6B | 108.8 | C2—N1—C1vi | 107.5 (2) |
C6—C7—H7A | 109.5 | C3—N1—C1vi | 105.8 (3) |
C6—C7—H7B | 109.5 | C2—N1—Cu1 | 106.2 (2) |
H7A—C7—H7B | 109.5 | C3—N1—Cu1 | 119.0 (2) |
C6—C7—H7C | 109.5 | C1vi—N1—Cu1 | 105.87 (19) |
H7A—C7—H7C | 109.5 | C5—N3—Cu1 | 167.5 (3) |
H7B—C7—H7C | 109.5 | H1C—O1—H1D | 109.4 |
O12—Cl1—O11ii | 109.83 (11) | H2C—O2—H2D | 109.5 |
O12—Cl1—O11 | 109.83 (11) | H3D—O3—H3C | 109.5 |
O11ii—Cl1—O11 | 109.11 (11) | ||
N1i—C1—C2—N1 | −43.3 (4) | N3—Cu1—N1—C3 | 28.2 (2) |
C1—C2—N1—C3 | 173.9 (3) | N1vi—Cu1—N1—C3 | 121.2 (3) |
C1—C2—N1—C1vi | −70.5 (4) | N1i—Cu1—N1—C3 | −152.2 (3) |
C1—C2—N1—Cu1 | 42.5 (3) | N3i—Cu1—N1—C1vi | −175.0 (2) |
C4—C3—N1—C2 | 54.9 (4) | N3—Cu1—N1—C1vi | −90.6 (2) |
C4—C3—N1—C1vi | −61.8 (3) | N1vi—Cu1—N1—C1vi | 2.44 (19) |
C4—C3—N1—Cu1 | 179.4 (2) | N1i—Cu1—N1—C1vi | 89.05 (15) |
N3i—Cu1—N1—C2 | 71.0 (2) | N3vi—Cu1—N3—C5 | 10.1 (14) |
N3—Cu1—N1—C2 | 155.4 (2) | N3i—Cu1—N3—C5 | −74.6 (13) |
N1vi—Cu1—N1—C2 | −111.58 (15) | N1vi—Cu1—N3—C5 | 105.9 (14) |
N1i—Cu1—N1—C2 | −25.0 (2) | N1—Cu1—N3—C5 | −167.3 (14) |
N3i—Cu1—N1—C3 | −56.3 (2) |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+2, x−y+1, z; (iii) −x+y+1, −x+2, z; (iv) −y+1, x−y+1, z; (v) −x+y, −x+1, z; (vi) −y+1, x−y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···N2ii | 0.97 | 2.49 | 3.371 (5) | 151 |
C3—H3A···O11 | 0.97 | 2.59 | 3.269 (4) | 127 |
C6—H6A···O12vii | 0.97 | 2.27 | 3.120 (4) | 146 |
Symmetry codes: (ii) −y+2, x−y+1, z; (vii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2O |
Mr | 710.05 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 298 |
a, c (Å) | 9.962 (2), 61.623 (18) |
V (Å3) | 5296 (2) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.34 × 0.32 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.760, 0.887 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9484, 2327, 1837 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.144, 0.99 |
No. of reflections | 2327 |
No. of parameters | 132 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.44 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···N2i | 0.97 | 2.49 | 3.371 (5) | 151 |
C3—H3A···O11 | 0.97 | 2.59 | 3.269 (4) | 127 |
C6—H6A···O12ii | 0.97 | 2.27 | 3.120 (4) | 146 |
Symmetry codes: (i) −y+2, x−y+1, z; (ii) x−1, y−1, z. |
Acknowledgements
The authors are grateful for financial support from the Guangxi Science Foundation (grant No. 0832023) and the Scientific Research Foundation of Guangxi Normal University.
References
Aneetha, H., Lai, Y. H., Lin, S. C., Panneerselvam, K., Lu, T. H. & Chung, C. S. (1999). J. Chem. Soc. Dalton Trans. pp. 2885–2892. Web of Science CSD CrossRef Google Scholar
Bruker (1998). SADABS. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Freeman, G. M., Barefield, E. K. & Derveer, D. G. V. (1984). Inorg. Chem. 23, 3092–3103. CSD CrossRef CAS Web of Science Google Scholar
Kang, S.-G., Kim, N. & Jeong, J. H. (2008). Inorg. Chim. Acta, 361, 349–354. Web of Science CSD CrossRef CAS Google Scholar
Kang, S.-G., Kweon, J. K. & Jeong, J. H. (2005). Bull. Korean Chem. Soc. 26, 1861–1864. CAS Google Scholar
Kang, S.-G., Ryu, K. & Kim, J. (2002a). Bull. Korean Chem. Soc. 23, 81–85. Web of Science CrossRef CAS Google Scholar
Kang, S.-G., Song, J. & Jeong, J. H. (2002b). Bull. Korean Chem. Soc. 23, 824–828. CAS Google Scholar
Kong, D. Y., Meng, L. H., Ding, J., Xie, Y. Y. & Huang, X. Y. (2000). Polyhedron, 19, 217–223. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siegfried, L., Comparone, A., Neuburger, M. & Kaden, T. A. (2005). Dalton Trans. pp. 30–36. Web of Science CSD CrossRef Google Scholar
Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). Dalton Trans. pp. 304–310. Web of Science CSD CrossRef Google Scholar
Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634. Web of Science CSD CrossRef Google Scholar
Zhang, Z., He, Y., Zhao, Q., Xu, W., Li, Y. Z. & Wang, Z. L. (2006). Inorg. Chem. Commun. 9, 269–272. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of the azamacrocycles with nitrile pendant arms has been studied extensively. Usually, these azamacrocycle derivatives only chelate the metal through tertiary amines and the pendant nitrile groups do not involve in the coordination (Aneetha et al., 1999; Freeman et al., 1984; Kang et al., 2002a; Kong et al., 2000; Tei et al., 2003). However, the reactivity of the nitrile group in these complexes towards nucleophilic reagents, such as water, alcohols and amines, provides a convenient route to the synthesis of a variety of N–functionalized azamacrocycles (Freeman et al., 1984; Kang et al., 2002b, 2005, 2008; Siegfried et al., 2005; Tei et al., 2003; Zhang et al., 2006). In order to obtain further knowledge about the reactivity of the nitrile groups attached to the triazamacrocycle, a title compound of CuII with 1,4,7–tris(cyanomethyl)–1,4,7–triazacyclononane has been prepared and structurally characterized.
As shown in Fig. 1, the distorted octahedral CuII center in the title compound is located on a threefold rotation axis and is ligated by three N donors of the tridentate azamacrocycle backbone and other three from coordinated propionitrile molecules. The Cu—N(macrocycle) length (2.089 (3)Å) is slightly longer than that of the Cu—N(propionitrile) (2.030 (3)Å), while the bond angles subtended by cis–pairs of donor atoms at CuII range from 84.13 (13)° to 96.12 (11)°. In the ab–plane, each [Cu(C12H18N6)(C3H5N)3]2+ cation are linked with six neighbouring cations by means of C—H···N hydrogen bonding (Table 1) to form an extended two–dimensional supramolecular network, as depicted in Fig. 2. Perchlorate counter–anions are embedded in the two–dimensional supramolecular cationic layer via weak interactions.