metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(propio­nitrile-κN)[1,4,7-tris­­(cyano­meth­yl)-1,4,7-tri­aza­cyclo­nonane-κ3N1,N4,N7]copper(II) bis­­(perchlorate) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: zhangzhong@mailbox.gxnu.edu.cn

(Received 16 December 2009; accepted 26 January 2010; online 30 January 2010)

In the title compound, [Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2O, the CuII atom lies on a threefold rotation axis and is coordinated in a distorted N6 octa­hedral environment by three tertiary amines from the tridentate chelating aza­macrocyclic ligand and three propionitrile mol­ecules. Inter­molecular non-classical C—H⋯N hydrogen bonding inter­links the [Cu(C3H5N)3(C12H18N6)]2+ cations into a two-dimensional supra­molecular sheet extending along the ab plane. The crystal packing also exhibits weak C—H⋯O inter­actions.

Related literature

For transition metal complexes with cyano­alkyl­ated triaza­macrocycles, see: Tei et al. (2003[Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). Dalton Trans. pp. 304-310.]). For transition metal complexes with cyano­alkyl­ated tetra­azamacrocycles, see: Aneetha et al. (1999[Aneetha, H., Lai, Y. H., Lin, S. C., Panneerselvam, K., Lu, T. H. & Chung, C. S. (1999). J. Chem. Soc. Dalton Trans. pp. 2885-2892.]); Freeman et al. (1984[Freeman, G. M., Barefield, E. K. & Derveer, D. G. V. (1984). Inorg. Chem. 23, 3092-3103.]); Kang et al. (2002a[Kang, S.-G., Ryu, K. & Kim, J. (2002a). Bull. Korean Chem. Soc. 23, 81-85.]); Kong et al. (2000[Kong, D. Y., Meng, L. H., Ding, J., Xie, Y. Y. & Huang, X. Y. (2000). Polyhedron, 19, 217-223.]). For the reactivity of the pendant nitrile group attached to the aza­macrocycle, see: Freeman et al. (1984[Freeman, G. M., Barefield, E. K. & Derveer, D. G. V. (1984). Inorg. Chem. 23, 3092-3103.]); Kang et al. (2002b[Kang, S.-G., Song, J. & Jeong, J. H. (2002b). Bull. Korean Chem. Soc. 23, 824-828.], 2005[Kang, S.-G., Kweon, J. K. & Jeong, J. H. (2005). Bull. Korean Chem. Soc. 26, 1861-1864.], 2008[Kang, S.-G., Kim, N. & Jeong, J. H. (2008). Inorg. Chim. Acta, 361, 349-354.]); Siegfried et al. (2005[Siegfried, L., Comparone, A., Neuburger, M. & Kaden, T. A. (2005). Dalton Trans. pp. 30-36.]); Tei et al. (2003[Tei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). Dalton Trans. pp. 304-310.]); Zhang et al. (2006[Zhang, Z., He, Y., Zhao, Q., Xu, W., Li, Y. Z. & Wang, Z. L. (2006). Inorg. Chem. Commun. 9, 269-272.]). For the synthesis of the triaza­macrocyclic derivative 1,4,7-tris­(cyano­meth­yl)-1,4,7-triaza­cyclo­nonane, see: Tei et al. (1998[Tei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633-2634.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2O

  • Mr = 710.05

  • Trigonal, [R \overline 3]

  • a = 9.962 (2) Å

  • c = 61.623 (18) Å

  • V = 5296 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 298 K

  • 0.34 × 0.32 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.887

  • 9484 measured reflections

  • 2327 independent reflections

  • 1837 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.144

  • S = 0.99

  • 2327 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N2i 0.97 2.49 3.371 (5) 151
C3—H3A⋯O11 0.97 2.59 3.269 (4) 127
C6—H6A⋯O12ii 0.97 2.27 3.120 (4) 146
Symmetry codes: (i) -y+2, x-y+1, z; (ii) x-1, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of the azamacrocycles with nitrile pendant arms has been studied extensively. Usually, these azamacrocycle derivatives only chelate the metal through tertiary amines and the pendant nitrile groups do not involve in the coordination (Aneetha et al., 1999; Freeman et al., 1984; Kang et al., 2002a; Kong et al., 2000; Tei et al., 2003). However, the reactivity of the nitrile group in these complexes towards nucleophilic reagents, such as water, alcohols and amines, provides a convenient route to the synthesis of a variety of N–functionalized azamacrocycles (Freeman et al., 1984; Kang et al., 2002b, 2005, 2008; Siegfried et al., 2005; Tei et al., 2003; Zhang et al., 2006). In order to obtain further knowledge about the reactivity of the nitrile groups attached to the triazamacrocycle, a title compound of CuII with 1,4,7–tris(cyanomethyl)–1,4,7–triazacyclononane has been prepared and structurally characterized.

As shown in Fig. 1, the distorted octahedral CuII center in the title compound is located on a threefold rotation axis and is ligated by three N donors of the tridentate azamacrocycle backbone and other three from coordinated propionitrile molecules. The Cu—N(macrocycle) length (2.089 (3)Å) is slightly longer than that of the Cu—N(propionitrile) (2.030 (3)Å), while the bond angles subtended by cis–pairs of donor atoms at CuII range from 84.13 (13)° to 96.12 (11)°. In the ab–plane, each [Cu(C12H18N6)(C3H5N)3]2+ cation are linked with six neighbouring cations by means of C—H···N hydrogen bonding (Table 1) to form an extended two–dimensional supramolecular network, as depicted in Fig. 2. Perchlorate counter–anions are embedded in the two–dimensional supramolecular cationic layer via weak interactions.

Related literature top

For transition metal complexes with cyanoalkylated triazamacrocycles, see: Tei et al. (2003). For transition metal complexes with cyanoalkylated tetraazamacrocycles, see: Aneetha et al. (1999); Freeman et al. (1984); Kang et al. (2002a); Kong et al. (2000). For the reactivity of the pendant nitrile group attached to the azamacrocycle, see: Freeman et al. (1984); Kang et al. (2002b, 2005, 2008); Siegfried et al. (2005); Tei et al. (2003); Zhang et al. (2006). For the synthesis of the triazamacrocyclic derivative 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane, see: Tei et al. (1998).

Experimental top

The triazamacrocyclic derivative 1,4,7–tris(cyanomethyl)–1,4,7–triazacyclononane was prepared according to a published method (Tei et al., 1998).

To the propionitrile solution (20 ml) of the triazamacrocyclic ligand (49 mg, 0.2 mmol), Cu(ClO4)2.6H2O (74 mg, 0.2 mmol) was added. The resulting mixture was stirred under reflux for 4 h and then cooled to ambient temperature. Blue single crystals of title compound suitable for X–ray diffraction analysis were obtained by slow diffusion of diethyl ether into the complex solution. (yield 51 mg, 72%). Elemental analysis found: C 35.52; H 5.39; N 17.69%; calculated for C21H37Cl2CuN9O10: C 35.31; H 5.28; N 17.75%.

Refinement top

All H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.96–0.97Å and O—H = 0.85Å, and with Uiso(H) = 1.2Ueq(C and O) or 1.5Ueq(methyl C). OW2 lies on a threefold rotation axis, so its hydrogen atoms are disordered with site occupancy factor of 0.33. OW1 and OW3 are disordered on special positions with threefold roto–inversion symmetry and each of them has 0.17 occupancy in the asymmetric unit.

Structure description top

The coordination chemistry of the azamacrocycles with nitrile pendant arms has been studied extensively. Usually, these azamacrocycle derivatives only chelate the metal through tertiary amines and the pendant nitrile groups do not involve in the coordination (Aneetha et al., 1999; Freeman et al., 1984; Kang et al., 2002a; Kong et al., 2000; Tei et al., 2003). However, the reactivity of the nitrile group in these complexes towards nucleophilic reagents, such as water, alcohols and amines, provides a convenient route to the synthesis of a variety of N–functionalized azamacrocycles (Freeman et al., 1984; Kang et al., 2002b, 2005, 2008; Siegfried et al., 2005; Tei et al., 2003; Zhang et al., 2006). In order to obtain further knowledge about the reactivity of the nitrile groups attached to the triazamacrocycle, a title compound of CuII with 1,4,7–tris(cyanomethyl)–1,4,7–triazacyclononane has been prepared and structurally characterized.

As shown in Fig. 1, the distorted octahedral CuII center in the title compound is located on a threefold rotation axis and is ligated by three N donors of the tridentate azamacrocycle backbone and other three from coordinated propionitrile molecules. The Cu—N(macrocycle) length (2.089 (3)Å) is slightly longer than that of the Cu—N(propionitrile) (2.030 (3)Å), while the bond angles subtended by cis–pairs of donor atoms at CuII range from 84.13 (13)° to 96.12 (11)°. In the ab–plane, each [Cu(C12H18N6)(C3H5N)3]2+ cation are linked with six neighbouring cations by means of C—H···N hydrogen bonding (Table 1) to form an extended two–dimensional supramolecular network, as depicted in Fig. 2. Perchlorate counter–anions are embedded in the two–dimensional supramolecular cationic layer via weak interactions.

For transition metal complexes with cyanoalkylated triazamacrocycles, see: Tei et al. (2003). For transition metal complexes with cyanoalkylated tetraazamacrocycles, see: Aneetha et al. (1999); Freeman et al. (1984); Kang et al. (2002a); Kong et al. (2000). For the reactivity of the pendant nitrile group attached to the azamacrocycle, see: Freeman et al. (1984); Kang et al. (2002b, 2005, 2008); Siegfried et al. (2005); Tei et al. (2003); Zhang et al. (2006). For the synthesis of the triazamacrocyclic derivative 1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane, see: Tei et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP plot for the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms of the macrocyclic ligand are omitted for clarity. The disorder in the solvent water molecules are not shown. Symmetry codes: (i) -x+y+1, -x+1, z; (ii) -y+2, x-y+1, z; (iii) -x+y+1, -x+2, z; (iv) -y+1, x-y+1, z; (v) -x+y, -x+1, z; (vi) -y+1, x-y, z.
[Figure 2] Fig. 2. A view of the packing diagram of the title compound, showing the two–dimensional hydrogen–bonding supramolecular sheet. H atoms not involved in hydrogen bonds are omitted for clarity.
Tris(propionitrile-κN)[1,4,7-tris(cyanomethyl)-1,4,7-triazacyclononane- κ3N1,N4,N7]copper(II) bis(perchlorate) dihydrate top
Crystal data top
[Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2ODx = 1.336 Mg m3
Mr = 710.05Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1799 reflections
Hall symbol: -R 3θ = 2.4–20.9°
a = 9.962 (2) ŵ = 0.83 mm1
c = 61.623 (18) ÅT = 298 K
V = 5296 (2) Å3Plate, blue
Z = 60.34 × 0.32 × 0.14 mm
F(000) = 2214
Data collection top
Bruker SMART APEXII CCD
diffractometer
2327 independent reflections
Radiation source: fine–focus sealed tube1837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.760, Tmax = 0.887k = 712
9484 measured reflectionsl = 7564
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0959P)2 + 1.480P]
where P = (Fo2 + 2Fc2)/3
2327 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2OZ = 6
Mr = 710.05Mo Kα radiation
Trigonal, R3µ = 0.83 mm1
a = 9.962 (2) ÅT = 298 K
c = 61.623 (18) Å0.34 × 0.32 × 0.14 mm
V = 5296 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1837 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.887Rint = 0.044
9484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
2327 reflectionsΔρmin = 0.44 e Å3
132 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8592 (4)0.4740 (4)0.02573 (6)0.0412 (8)
H1A0.96820.54070.02240.049*
H1B0.80780.41880.01260.049*
C20.7901 (4)0.5749 (4)0.03281 (5)0.0336 (7)
H2A0.86150.65470.04270.040*
H2B0.77780.62580.02020.040*
C30.5888 (4)0.5827 (4)0.05172 (5)0.0379 (8)
H3A0.65680.64270.06350.045*
H3B0.48730.51550.05800.045*
C40.5751 (4)0.6906 (4)0.03705 (5)0.0360 (7)
C50.4092 (4)0.2743 (4)0.09939 (5)0.0394 (8)
C60.3004 (4)0.2578 (4)0.11629 (5)0.0389 (8)
H6A0.19590.21110.11050.047*
H6B0.32810.35780.12250.047*
C70.3123 (5)0.1525 (4)0.13332 (5)0.0404 (8)
H7A0.36510.10290.12720.061*
H7B0.21010.07510.13780.061*
H7C0.36910.21330.14560.061*
Cl11.00001.00000.07171 (2)0.0373 (3)
Cl20.33330.66670.09665 (2)0.0383 (3)
Cu10.66670.33330.063982 (10)0.0316 (2)
N10.6443 (3)0.4868 (3)0.04321 (4)0.0335 (6)
N20.5838 (3)0.7880 (3)0.02473 (4)0.0385 (7)
N30.4964 (4)0.3039 (3)0.08486 (5)0.0423 (7)
O10.33330.66670.16670.0247 (10)
H1C0.33000.60810.17690.037*0.16667
H1D0.38670.76080.17060.037*0.16667
O20.66670.33330.14060 (6)0.0353 (8)
H2C0.61520.37410.14540.042*0.33333
H2D0.61600.26960.13050.042*0.33333
O31.00001.00000.00000.0544 (16)
H3D1.02411.04810.01200.065*0.16667
H3C0.90200.95060.00140.082*0.16667
O110.8501 (3)0.9383 (3)0.06411 (4)0.0473 (7)
O121.00001.00000.09409 (6)0.0442 (10)
O210.33330.66670.07487 (7)0.0413 (10)
O220.3579 (3)0.8074 (3)0.10312 (4)0.0379 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0410 (19)0.0400 (19)0.0380 (17)0.0170 (16)0.0013 (14)0.0008 (14)
C20.0297 (15)0.0339 (16)0.0334 (15)0.0131 (13)0.0009 (12)0.0114 (13)
C30.0303 (16)0.0250 (15)0.0417 (17)0.0014 (13)0.0066 (13)0.0010 (13)
C40.0364 (17)0.0447 (18)0.0314 (15)0.0238 (15)0.0036 (13)0.0041 (14)
C50.0386 (19)0.0444 (19)0.0345 (16)0.0203 (16)0.0006 (14)0.0139 (14)
C60.0439 (19)0.0317 (17)0.0335 (16)0.0132 (15)0.0138 (14)0.0150 (13)
C70.056 (2)0.0431 (19)0.0344 (16)0.0335 (18)0.0156 (15)0.0193 (15)
Cl10.0360 (5)0.0360 (5)0.0400 (7)0.0180 (2)0.0000.000
Cl20.0363 (5)0.0363 (5)0.0421 (7)0.0182 (2)0.0000.000
Cu10.0322 (3)0.0322 (3)0.0304 (4)0.01610 (14)0.0000.000
N10.0323 (14)0.0296 (13)0.0363 (14)0.0138 (11)0.0006 (11)0.0048 (10)
N20.0368 (15)0.0411 (16)0.0304 (13)0.0142 (13)0.0070 (11)0.0034 (12)
N30.0474 (17)0.0317 (15)0.0431 (15)0.0163 (13)0.0109 (14)0.0150 (12)
O10.0253 (15)0.0253 (15)0.023 (2)0.0126 (7)0.0000.000
O20.0318 (12)0.0318 (12)0.042 (2)0.0159 (6)0.0000.000
O30.054 (2)0.054 (2)0.054 (4)0.0272 (12)0.0000.000
O110.0335 (13)0.0445 (14)0.0399 (13)0.0015 (11)0.0118 (10)0.0034 (11)
O120.0503 (16)0.0503 (16)0.032 (2)0.0252 (8)0.0000.000
O210.0424 (15)0.0424 (15)0.039 (2)0.0212 (7)0.0000.000
O220.0341 (12)0.0427 (13)0.0341 (11)0.0172 (11)0.0008 (9)0.0054 (10)
Geometric parameters (Å, º) top
C1—C21.538 (5)Cl1—O11ii1.382 (3)
C1—N1i1.543 (4)Cl1—O111.382 (3)
C1—H1A0.9700Cl1—O11iii1.382 (3)
C1—H1B0.9700Cl2—O211.342 (4)
C2—N11.420 (4)Cl2—O221.357 (3)
C2—H2A0.9700Cl2—O22iv1.357 (3)
C2—H2B0.9700Cl2—O22v1.357 (3)
C3—N11.422 (5)Cu1—N3vi2.030 (3)
C3—C41.462 (5)Cu1—N3i2.030 (3)
C3—H3A0.9700Cu1—N32.030 (3)
C3—H3B0.9700Cu1—N1vi2.089 (3)
C4—N21.200 (5)Cu1—N1i2.089 (3)
C5—N31.178 (5)Cu1—N12.089 (3)
C5—C61.452 (5)N1—C1vi1.543 (4)
C6—C71.529 (4)O1—H1C0.8500
C6—H6A0.9700O1—H1D0.8500
C6—H6B0.9700O2—H2C0.8500
C7—H7A0.9600O2—H2D0.8500
C7—H7B0.9600O3—H3D0.8500
C7—H7C0.9600O3—H3C0.8500
Cl1—O121.379 (4)
C2—C1—N1i112.9 (3)O12—Cl1—O11iii109.83 (11)
C2—C1—H1A109.0O11ii—Cl1—O11iii109.11 (11)
N1i—C1—H1A109.0O11—Cl1—O11iii109.11 (11)
C2—C1—H1B109.0O21—Cl2—O22107.08 (11)
N1i—C1—H1B109.0O21—Cl2—O22iv107.08 (11)
H1A—C1—H1B107.8O22—Cl2—O22iv111.75 (10)
N1—C2—C1112.2 (3)O21—Cl2—O22v107.08 (11)
N1—C2—H2A109.2O22—Cl2—O22v111.75 (10)
C1—C2—H2A109.2O22iv—Cl2—O22v111.75 (10)
N1—C2—H2B109.2N3vi—Cu1—N3i84.13 (13)
C1—C2—H2B109.2N3vi—Cu1—N384.13 (13)
H2A—C2—H2B107.9N3i—Cu1—N384.13 (13)
N1—C3—C4118.5 (3)N3vi—Cu1—N1vi96.12 (11)
N1—C3—H3A107.7N3i—Cu1—N1vi177.46 (11)
C4—C3—H3A107.7N3—Cu1—N1vi93.37 (12)
N1—C3—H3B107.7N3vi—Cu1—N1i93.37 (12)
C4—C3—H3B107.7N3i—Cu1—N1i96.12 (11)
H3A—C3—H3B107.1N3—Cu1—N1i177.46 (11)
N2—C4—C3171.7 (4)N1vi—Cu1—N1i86.40 (11)
N3—C5—C6171.5 (4)N3vi—Cu1—N1177.46 (11)
C5—C6—C7105.1 (3)N3i—Cu1—N193.37 (12)
C5—C6—H6A110.7N3—Cu1—N196.12 (11)
C7—C6—H6A110.7N1vi—Cu1—N186.40 (11)
C5—C6—H6B110.7N1i—Cu1—N186.40 (11)
C7—C6—H6B110.7C2—N1—C3111.9 (2)
H6A—C6—H6B108.8C2—N1—C1vi107.5 (2)
C6—C7—H7A109.5C3—N1—C1vi105.8 (3)
C6—C7—H7B109.5C2—N1—Cu1106.2 (2)
H7A—C7—H7B109.5C3—N1—Cu1119.0 (2)
C6—C7—H7C109.5C1vi—N1—Cu1105.87 (19)
H7A—C7—H7C109.5C5—N3—Cu1167.5 (3)
H7B—C7—H7C109.5H1C—O1—H1D109.4
O12—Cl1—O11ii109.83 (11)H2C—O2—H2D109.5
O12—Cl1—O11109.83 (11)H3D—O3—H3C109.5
O11ii—Cl1—O11109.11 (11)
N1i—C1—C2—N143.3 (4)N3—Cu1—N1—C328.2 (2)
C1—C2—N1—C3173.9 (3)N1vi—Cu1—N1—C3121.2 (3)
C1—C2—N1—C1vi70.5 (4)N1i—Cu1—N1—C3152.2 (3)
C1—C2—N1—Cu142.5 (3)N3i—Cu1—N1—C1vi175.0 (2)
C4—C3—N1—C254.9 (4)N3—Cu1—N1—C1vi90.6 (2)
C4—C3—N1—C1vi61.8 (3)N1vi—Cu1—N1—C1vi2.44 (19)
C4—C3—N1—Cu1179.4 (2)N1i—Cu1—N1—C1vi89.05 (15)
N3i—Cu1—N1—C271.0 (2)N3vi—Cu1—N3—C510.1 (14)
N3—Cu1—N1—C2155.4 (2)N3i—Cu1—N3—C574.6 (13)
N1vi—Cu1—N1—C2111.58 (15)N1vi—Cu1—N3—C5105.9 (14)
N1i—Cu1—N1—C225.0 (2)N1—Cu1—N3—C5167.3 (14)
N3i—Cu1—N1—C356.3 (2)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+2, xy+1, z; (iii) x+y+1, x+2, z; (iv) y+1, xy+1, z; (v) x+y, x+1, z; (vi) y+1, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N2ii0.972.493.371 (5)151
C3—H3A···O110.972.593.269 (4)127
C6—H6A···O12vii0.972.273.120 (4)146
Symmetry codes: (ii) y+2, xy+1, z; (vii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C3H5N)3(C12H18N6)](ClO4)2·2H2O
Mr710.05
Crystal system, space groupTrigonal, R3
Temperature (K)298
a, c (Å)9.962 (2), 61.623 (18)
V3)5296 (2)
Z6
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.34 × 0.32 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.760, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
9484, 2327, 1837
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.144, 0.99
No. of reflections2327
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.44

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N2i0.972.493.371 (5)151
C3—H3A···O110.972.593.269 (4)127
C6—H6A···O12ii0.972.273.120 (4)146
Symmetry codes: (i) y+2, xy+1, z; (ii) x1, y1, z.
 

Acknowledgements

The authors are grateful for financial support from the Guangxi Science Foundation (grant No. 0832023) and the Scientific Research Foundation of Guangxi Normal University.

References

First citationAneetha, H., Lai, Y. H., Lin, S. C., Panneerselvam, K., Lu, T. H. & Chung, C. S. (1999). J. Chem. Soc. Dalton Trans. pp. 2885–2892.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1998). SADABS. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationFreeman, G. M., Barefield, E. K. & Derveer, D. G. V. (1984). Inorg. Chem. 23, 3092–3103.  CSD CrossRef CAS Web of Science Google Scholar
First citationKang, S.-G., Kim, N. & Jeong, J. H. (2008). Inorg. Chim. Acta, 361, 349–354.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, S.-G., Kweon, J. K. & Jeong, J. H. (2005). Bull. Korean Chem. Soc. 26, 1861–1864.  CAS Google Scholar
First citationKang, S.-G., Ryu, K. & Kim, J. (2002a). Bull. Korean Chem. Soc. 23, 81–85.  Web of Science CrossRef CAS Google Scholar
First citationKang, S.-G., Song, J. & Jeong, J. H. (2002b). Bull. Korean Chem. Soc. 23, 824–828.  CAS Google Scholar
First citationKong, D. Y., Meng, L. H., Ding, J., Xie, Y. Y. & Huang, X. Y. (2000). Polyhedron, 19, 217–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegfried, L., Comparone, A., Neuburger, M. & Kaden, T. A. (2005). Dalton Trans. pp. 30–36.  Web of Science CSD CrossRef Google Scholar
First citationTei, L., Blake, A. J., Lippolis, V., Wilson, C. & Schröder, M. (2003). Dalton Trans. pp. 304–310.  Web of Science CSD CrossRef Google Scholar
First citationTei, L., Lippolis, V., Blake, A. J., Cooke, P. A. & Schröder, M. (1998). Chem. Commun. pp. 2633–2634.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Z., He, Y., Zhao, Q., Xu, W., Li, Y. Z. & Wang, Z. L. (2006). Inorg. Chem. Commun. 9, 269–272.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds