organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Hy­droxy­meth­yl)pyrene

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

(Received 19 December 2009; accepted 19 January 2010; online 23 January 2010)

The asymmetric unit of the title compound, C17H12O, contains two molecules, in which the fused aromatic ring systems are almost planar [maximum deviations = 0.0529 (9) and 0.0256 (9) Å]. In the crystal, aromatic ππ stacking inter­actions (perpendicular distance of centroids of about 3.4 Å) and strong O—H⋯O hydrogen bonds result in a helical arrangement of pyrenyl dimers.

Related literature

For the solid–state structures of pyrenes, see: Robertson & White (1947[Robertson, J. M. & White, J. G. (1947). J. Chem. Soc. pp. 358-368.]); Camerman & Trotter (1965[Camerman, A. & Trotter, J. (1965). Acta Cryst. 18, 636-643.]); Allmann (1970[Allmann, R. (1970). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 132, 129-151.]); Hazell et al. (1972[Hazell, A. C., Larsen, F. K. & Lehmann, M. S. (1972). Acta Cryst. B28, 2977-2984.]); Kai et al. (1978[Kai, Y., Hama, F., Yasuoka, N. & Kasai, N. (1978). Acta Cryst. B34, 1263-1270.]); Frampton et al. (2000[Frampton, C. S., Knight, K. S., Shankland, N. & Shankland, K. (2000). J. Mol. Struct. 520, 29-32.]). For the synthesis and structures of pyrene derivatives, see: Steward (1960[Steward, F. H. L. (1960). Aust. J. Chem. 13, 478-487.]); Gruber et al. (2006[Gruber, T., Seichter, W. & Weber, E. (2006). Acta Cryst. E62, o2569-o2570.], 2008[Gruber, T., Seichter, W. & Weber, E. (2008). Supramol. Chem. 20, 753-760.], 2009[Gruber, T., Fischer, C., Felsmann, M., Seichter, W. & Weber, E. (2009). Org. Biomol. Chem. 7, 4904-4917.]). For the use of pyrenes in fluorescence sensors, see: Bren (2001[Bren, V. A. (2001). Russ. Chem. Rev. 70, 1017-1036.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12O

  • Mr = 232.27

  • Monoclinic, P 21 /c

  • a = 19.9182 (6) Å

  • b = 8.8880 (3) Å

  • c = 13.0882 (4) Å

  • β = 91.719 (2)°

  • V = 2316.00 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 153 K

  • 0.59 × 0.29 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 29632 measured reflections

  • 5051 independent reflections

  • 3801 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.06

  • 5051 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Ai 0.84 1.87 2.6972 (12) 167
O1A—H1A⋯O1ii 0.84 1.89 2.7163 (12) 167
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Owing to their electronic, optical and geometric properties, monofunctionalized pyrenes, attachable to a receptor platform, are of special interest for fluorescent sensor development (Bren, 2001). In this respect, 1–(hydroxymethyl)pyrene was prepared as part of our studies on the solid state structure of fluorogenic calixarenes with possible analytical applications (Gruber et al., 2008; Gruber et al., 2009).

Being composed of a plane aromatic region and a methylene bridged hydroxy group, the hybrid nature of the title compound is striking. The pyrene moiety alone shows no significant deviations of bond lengths and angles compared with those of the unsubstituted analogue (Robertson & White, 1947; Camerman & Trotter, 1965; Allmann, 1970; Hazell et al., 1972; Kai et al., 1978), and is almost planar. The largest deviation from the mean plane through the carbon framework of the pyrene unit is observed for atoms C2 [0.0529 (9)Å] and C1A [0.0256 (9)Å], respectively. Similiar to the unsubstituted parent substance, the pyrene moities of two molecules of 1–(hydroxymethyl)pyrene are forming a slightly displaced face–to–face dimer with an average distance of the aromatic units of about 3.4Å, though the latter are not arranged entirely coplanar [2.43 (3)°]. Additionally, within the dimer a strong hydrogen bond involving the two hydroxy groups can be observed [d(O···O) = 2.6972 (12)Å]. Worth mentoining is the varying conformation of the hydroxymethyl residue in both molecules of the asymmetrtic unit. In molecule 1, a nearly coplanar arrangement with regard to the aromatic plane can be observed [C2–C1–C17–O1 = 3.46 (15)°], whereas in molecule 2 the same torsion angle of 116.54 (12)° is adopted (Fig. 1). These findings are explained by the sterical demands of a strong hydrogen bond between two hydroxy groups [d(O···O) = 2.7163 (12)Å], which links the pyrene dimers mentioned above in a helical manner in the direction of the crystallographic b axis. Considering the packing, two of these helices, each in the opposite direction, are connected by edge–to–face interactions of the pyrenyl groups as shown in Fig. 2.

Related literature top

For the solid–state structures of pyrenes, see: Robertson & White (1947); Camerman & Trotter (1965); Allmann (1970); Hazell et al. (1972); Kai et al. (1978); Frampton et al. (2000). For the synthesis and structures of pyrene derivatives, see: Steward (1960); Gruber et al. (2006, 2008, 2009). For the use of pyrenes in fluorescence sensors, see: Bren (2001).

Experimental top

The title compound was synthesized from commercially available pyrene–1–carbaldehyde, which was reduced with sodium borohydride in boiling methanol, following an analogous procedure described for the reduction of anthracene–9–carbaldehyde (Steward, 1960; Gruber et al., 2006). Colourless plates (m.p. 393–394 K) of the solvent–free 1–(hydroxymethyl)pyrene suitable for X–ray diffraction were obtained by recrystallization from n–hexane/dichloromethane (1:2).

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.84Å, C—H = 0.95–0.99Å and Uiso = 1.2–1.5 Ueq(parent atom).

Structure description top

Owing to their electronic, optical and geometric properties, monofunctionalized pyrenes, attachable to a receptor platform, are of special interest for fluorescent sensor development (Bren, 2001). In this respect, 1–(hydroxymethyl)pyrene was prepared as part of our studies on the solid state structure of fluorogenic calixarenes with possible analytical applications (Gruber et al., 2008; Gruber et al., 2009).

Being composed of a plane aromatic region and a methylene bridged hydroxy group, the hybrid nature of the title compound is striking. The pyrene moiety alone shows no significant deviations of bond lengths and angles compared with those of the unsubstituted analogue (Robertson & White, 1947; Camerman & Trotter, 1965; Allmann, 1970; Hazell et al., 1972; Kai et al., 1978), and is almost planar. The largest deviation from the mean plane through the carbon framework of the pyrene unit is observed for atoms C2 [0.0529 (9)Å] and C1A [0.0256 (9)Å], respectively. Similiar to the unsubstituted parent substance, the pyrene moities of two molecules of 1–(hydroxymethyl)pyrene are forming a slightly displaced face–to–face dimer with an average distance of the aromatic units of about 3.4Å, though the latter are not arranged entirely coplanar [2.43 (3)°]. Additionally, within the dimer a strong hydrogen bond involving the two hydroxy groups can be observed [d(O···O) = 2.6972 (12)Å]. Worth mentoining is the varying conformation of the hydroxymethyl residue in both molecules of the asymmetrtic unit. In molecule 1, a nearly coplanar arrangement with regard to the aromatic plane can be observed [C2–C1–C17–O1 = 3.46 (15)°], whereas in molecule 2 the same torsion angle of 116.54 (12)° is adopted (Fig. 1). These findings are explained by the sterical demands of a strong hydrogen bond between two hydroxy groups [d(O···O) = 2.7163 (12)Å], which links the pyrene dimers mentioned above in a helical manner in the direction of the crystallographic b axis. Considering the packing, two of these helices, each in the opposite direction, are connected by edge–to–face interactions of the pyrenyl groups as shown in Fig. 2.

For the solid–state structures of pyrenes, see: Robertson & White (1947); Camerman & Trotter (1965); Allmann (1970); Hazell et al. (1972); Kai et al. (1978); Frampton et al. (2000). For the synthesis and structures of pyrene derivatives, see: Steward (1960); Gruber et al. (2006, 2008, 2009). For the use of pyrenes in fluorescence sensors, see: Bren (2001).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small cyrcles of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis. Hydrogen atoms not involved in hydrogen bonding have been omitted.
1-(Hydroxymethyl)pyrene top
Crystal data top
C17H12OF(000) = 976
Mr = 232.27Dx = 1.332 Mg m3
Monoclinic, P21/cMelting point: 393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 19.9182 (6) ÅCell parameters from 8740 reflections
b = 8.8880 (3) Åθ = 2.5–32.3°
c = 13.0882 (4) ŵ = 0.08 mm1
β = 91.719 (2)°T = 153 K
V = 2316.00 (13) Å3Plate, colourless
Z = 80.59 × 0.29 × 0.12 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3801 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.0°, θmin = 3.0°
φ and ω scansh = 2525
29632 measured reflectionsk = 1110
5051 independent reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2704P]
where P = (Fo2 + 2Fc2)/3
5051 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H12OV = 2316.00 (13) Å3
Mr = 232.27Z = 8
Monoclinic, P21/cMo Kα radiation
a = 19.9182 (6) ŵ = 0.08 mm1
b = 8.8880 (3) ÅT = 153 K
c = 13.0882 (4) Å0.59 × 0.29 × 0.12 mm
β = 91.719 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3801 reflections with I > 2σ(I)
29632 measured reflectionsRint = 0.026
5051 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
5051 reflectionsΔρmin = 0.18 e Å3
327 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53989 (4)0.02633 (10)0.21742 (7)0.0412 (2)
H10.52950.08990.26170.062*
C10.65534 (6)0.05248 (12)0.26246 (8)0.0262 (2)
C20.63001 (6)0.15072 (13)0.33402 (8)0.0316 (3)
H20.58280.15820.34090.038*
C30.67218 (6)0.23825 (13)0.39567 (8)0.0336 (3)
H30.65340.30360.44470.040*
C40.74142 (6)0.23177 (12)0.38682 (8)0.0296 (3)
C50.78651 (7)0.32180 (13)0.44853 (9)0.0392 (3)
H50.76880.38640.49890.047*
C60.85288 (7)0.31708 (14)0.43697 (10)0.0444 (3)
H60.88120.37810.47940.053*
C70.88234 (7)0.22197 (14)0.36198 (10)0.0388 (3)
C80.95132 (7)0.21558 (18)0.34778 (12)0.0540 (4)
H80.98070.27470.38990.065*
C90.97759 (7)0.1249 (2)0.27363 (13)0.0606 (5)
H91.02470.12360.26450.073*
C100.93612 (7)0.03560 (18)0.21215 (11)0.0494 (4)
H100.95500.02560.16090.059*
C110.86674 (6)0.03471 (14)0.22482 (9)0.0334 (3)
C120.82208 (6)0.05924 (13)0.16581 (9)0.0334 (3)
H120.84000.12560.11670.040*
C130.75524 (6)0.05603 (12)0.17800 (8)0.0282 (3)
H130.72720.12040.13740.034*
C140.72512 (5)0.04227 (11)0.25087 (7)0.0236 (2)
C150.76866 (6)0.13372 (11)0.31289 (8)0.0250 (2)
C160.83916 (6)0.12977 (12)0.29987 (8)0.0296 (3)
C170.60896 (6)0.04252 (14)0.19512 (9)0.0335 (3)
H17A0.61530.01460.12280.040*
H17B0.62180.14960.20320.040*
O1A0.48228 (4)0.26209 (9)0.65830 (6)0.0368 (2)
H1A0.49980.33850.68590.055*
C1A0.41705 (5)0.19195 (13)0.50620 (8)0.0286 (3)
C2A0.43258 (6)0.08575 (14)0.43237 (9)0.0343 (3)
H2A0.47810.07240.41480.041*
C3A0.38356 (6)0.00083 (14)0.38391 (8)0.0337 (3)
H3A0.39590.07280.33420.040*
C4A0.31636 (6)0.01636 (12)0.40716 (8)0.0277 (2)
C5A0.26394 (7)0.06959 (13)0.35757 (8)0.0341 (3)
H5A0.27540.14250.30800.041*
C6A0.19914 (7)0.04986 (13)0.37933 (9)0.0360 (3)
H6A0.16580.10810.34420.043*
C7A0.17913 (6)0.05748 (13)0.45456 (8)0.0308 (3)
C8A0.11218 (6)0.08017 (15)0.47954 (10)0.0397 (3)
H8A0.07790.02340.44550.048*
C9A0.09507 (6)0.18397 (16)0.55308 (10)0.0426 (3)
H9A0.04920.19780.56880.051*
C10A0.14416 (6)0.26767 (15)0.60382 (9)0.0371 (3)
H10A0.13170.33830.65430.045*
C11A0.21194 (6)0.24959 (12)0.58179 (8)0.0281 (3)
C12A0.26408 (6)0.33496 (13)0.63165 (8)0.0305 (3)
H12A0.25260.40590.68260.037*
C13A0.32911 (6)0.31781 (12)0.60855 (8)0.0286 (3)
H13A0.36220.37770.64290.034*
C14A0.34959 (5)0.21105 (12)0.53313 (8)0.0245 (2)
C15A0.29880 (5)0.12329 (11)0.48278 (7)0.0232 (2)
C16A0.23004 (5)0.14309 (12)0.50639 (8)0.0250 (2)
C17A0.47224 (6)0.28837 (15)0.55113 (9)0.0370 (3)
H17C0.51450.26690.51590.044*
H17D0.46090.39560.53970.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (5)0.0379 (5)0.0551 (6)0.0008 (4)0.0045 (4)0.0141 (4)
C10.0342 (6)0.0209 (5)0.0234 (5)0.0014 (5)0.0018 (4)0.0054 (4)
C20.0356 (6)0.0297 (6)0.0297 (6)0.0062 (5)0.0051 (5)0.0060 (5)
C30.0529 (8)0.0252 (6)0.0231 (6)0.0098 (5)0.0058 (5)0.0004 (5)
C40.0489 (7)0.0184 (6)0.0211 (5)0.0018 (5)0.0035 (5)0.0024 (4)
C50.0675 (9)0.0225 (6)0.0269 (6)0.0012 (6)0.0102 (6)0.0014 (5)
C60.0669 (10)0.0280 (7)0.0369 (7)0.0142 (6)0.0201 (6)0.0039 (5)
C70.0451 (7)0.0328 (7)0.0377 (7)0.0109 (6)0.0120 (5)0.0143 (5)
C80.0460 (8)0.0608 (10)0.0545 (9)0.0216 (7)0.0128 (7)0.0200 (8)
C90.0329 (7)0.0859 (12)0.0627 (10)0.0102 (8)0.0017 (7)0.0288 (9)
C100.0401 (8)0.0603 (9)0.0481 (8)0.0083 (7)0.0065 (6)0.0171 (7)
C110.0344 (6)0.0344 (7)0.0316 (6)0.0045 (5)0.0012 (5)0.0120 (5)
C120.0445 (7)0.0297 (6)0.0262 (6)0.0108 (5)0.0044 (5)0.0020 (5)
C130.0392 (7)0.0224 (6)0.0229 (5)0.0024 (5)0.0027 (4)0.0003 (4)
C140.0342 (6)0.0176 (5)0.0188 (5)0.0018 (4)0.0016 (4)0.0033 (4)
C150.0371 (6)0.0177 (5)0.0202 (5)0.0015 (4)0.0030 (4)0.0050 (4)
C160.0374 (7)0.0244 (6)0.0268 (6)0.0026 (5)0.0049 (5)0.0102 (4)
C170.0322 (6)0.0327 (7)0.0351 (6)0.0021 (5)0.0036 (5)0.0026 (5)
O1A0.0400 (5)0.0354 (5)0.0342 (5)0.0092 (4)0.0105 (3)0.0040 (4)
C1A0.0319 (6)0.0281 (6)0.0257 (6)0.0012 (5)0.0023 (4)0.0072 (4)
C2A0.0324 (6)0.0411 (7)0.0297 (6)0.0056 (5)0.0043 (5)0.0065 (5)
C3A0.0468 (7)0.0307 (6)0.0236 (6)0.0090 (5)0.0033 (5)0.0016 (5)
C4A0.0420 (7)0.0206 (5)0.0202 (5)0.0009 (5)0.0029 (4)0.0029 (4)
C5A0.0568 (8)0.0233 (6)0.0219 (6)0.0028 (5)0.0059 (5)0.0013 (4)
C6A0.0508 (8)0.0282 (6)0.0281 (6)0.0129 (6)0.0143 (5)0.0037 (5)
C7A0.0358 (7)0.0281 (6)0.0279 (6)0.0056 (5)0.0083 (5)0.0104 (5)
C8A0.0346 (7)0.0413 (7)0.0425 (7)0.0083 (6)0.0101 (5)0.0161 (6)
C9A0.0292 (6)0.0506 (8)0.0481 (8)0.0017 (6)0.0014 (5)0.0206 (7)
C10A0.0387 (7)0.0384 (7)0.0345 (6)0.0106 (5)0.0069 (5)0.0104 (5)
C11A0.0341 (6)0.0257 (6)0.0244 (5)0.0044 (5)0.0002 (4)0.0070 (4)
C12A0.0430 (7)0.0244 (6)0.0239 (5)0.0067 (5)0.0017 (5)0.0022 (4)
C13A0.0383 (6)0.0214 (6)0.0257 (6)0.0009 (5)0.0080 (4)0.0012 (4)
C14A0.0315 (6)0.0197 (5)0.0220 (5)0.0001 (4)0.0032 (4)0.0042 (4)
C15A0.0330 (6)0.0174 (5)0.0190 (5)0.0002 (4)0.0033 (4)0.0036 (4)
C16A0.0321 (6)0.0205 (5)0.0221 (5)0.0002 (4)0.0043 (4)0.0072 (4)
C17A0.0349 (6)0.0411 (7)0.0349 (7)0.0081 (6)0.0028 (5)0.0093 (5)
Geometric parameters (Å, º) top
O1—C171.4222 (14)O1A—C17A1.4301 (14)
O1—H10.8400O1A—H1A0.8400
C1—C21.3865 (15)C1A—C2A1.3922 (17)
C1—C141.4056 (15)C1A—C14A1.4094 (15)
C1—C171.5146 (15)C1A—C17A1.5000 (16)
C2—C31.3860 (17)C2A—C3A1.3824 (17)
C2—H20.9500C2A—H2A0.9500
C3—C41.3887 (17)C3A—C4A1.3900 (16)
C3—H30.9500C3A—H3A0.9500
C4—C151.4218 (15)C4A—C15A1.4232 (15)
C4—C51.4338 (16)C4A—C5A1.4334 (16)
C5—C61.3356 (19)C5A—C6A1.3415 (18)
C5—H50.9500C5A—H5A0.9500
C6—C71.434 (2)C6A—C7A1.4360 (17)
C6—H60.9500C6A—H6A0.9500
C7—C81.393 (2)C7A—C8A1.3971 (17)
C7—C161.4247 (16)C7A—C16A1.4233 (15)
C8—C91.377 (2)C8A—C9A1.383 (2)
C8—H80.9500C8A—H8A0.9500
C9—C101.386 (2)C9A—C10A1.3825 (19)
C9—H90.9500C9A—H9A0.9500
C10—C111.3969 (18)C10A—C11A1.3983 (16)
C10—H100.9500C10A—H10A0.9500
C11—C161.4187 (17)C11A—C16A1.4216 (15)
C11—C121.4295 (17)C11A—C12A1.4281 (16)
C12—C131.3459 (16)C12A—C13A1.3476 (16)
C12—H120.9500C12A—H12A0.9500
C13—C141.4377 (15)C13A—C14A1.4371 (15)
C13—H130.9500C13A—H13A0.9500
C14—C151.4246 (14)C14A—C15A1.4235 (14)
C15—C161.4201 (16)C15A—C16A1.4241 (15)
C17—H17A0.9900C17A—H17C0.9900
C17—H17B0.9900C17A—H17D0.9900
C17—O1—H1109.5C17A—O1A—H1A109.5
C2—C1—C14119.64 (10)C2A—C1A—C14A119.25 (10)
C2—C1—C17121.08 (10)C2A—C1A—C17A118.94 (11)
C14—C1—C17119.28 (10)C14A—C1A—C17A121.74 (11)
C3—C2—C1121.36 (11)C3A—C2A—C1A121.82 (11)
C3—C2—H2119.3C3A—C2A—H2A119.1
C1—C2—H2119.3C1A—C2A—H2A119.1
C2—C3—C4120.94 (10)C2A—C3A—C4A120.66 (11)
C2—C3—H3119.5C2A—C3A—H3A119.7
C4—C3—H3119.5C4A—C3A—H3A119.7
C3—C4—C15118.84 (10)C3A—C4A—C15A118.95 (10)
C3—C4—C5122.47 (11)C3A—C4A—C5A122.37 (10)
C15—C4—C5118.69 (11)C15A—C4A—C5A118.68 (10)
C6—C5—C4121.60 (12)C6A—C5A—C4A121.78 (11)
C6—C5—H5119.2C6A—C5A—H5A119.1
C4—C5—H5119.2C4A—C5A—H5A119.1
C5—C6—C7121.51 (11)C5A—C6A—C7A121.40 (10)
C5—C6—H6119.2C5A—C6A—H6A119.3
C7—C6—H6119.2C7A—C6A—H6A119.3
C8—C7—C16118.77 (13)C8A—C7A—C16A118.86 (11)
C8—C7—C6122.73 (12)C8A—C7A—C6A122.87 (11)
C16—C7—C6118.50 (12)C16A—C7A—C6A118.27 (11)
C9—C8—C7121.00 (13)C9A—C8A—C7A121.06 (12)
C9—C8—H8119.5C9A—C8A—H8A119.5
C7—C8—H8119.5C7A—C8A—H8A119.5
C8—C9—C10120.81 (13)C10A—C9A—C8A120.51 (12)
C8—C9—H9119.6C10A—C9A—H9A119.7
C10—C9—H9119.6C8A—C9A—H9A119.7
C9—C10—C11120.59 (14)C9A—C10A—C11A120.82 (12)
C9—C10—H10119.7C9A—C10A—H10A119.6
C11—C10—H10119.7C11A—C10A—H10A119.6
C10—C11—C16118.93 (12)C10A—C11A—C16A119.09 (11)
C10—C11—C12122.74 (12)C10A—C11A—C12A122.55 (11)
C16—C11—C12118.32 (10)C16A—C11A—C12A118.36 (10)
C13—C12—C11121.68 (11)C13A—C12A—C11A121.88 (10)
C13—C12—H12119.2C13A—C12A—H12A119.1
C11—C12—H12119.2C11A—C12A—H12A119.1
C12—C13—C14121.70 (10)C12A—C13A—C14A121.56 (10)
C12—C13—H13119.2C12A—C13A—H13A119.2
C14—C13—H13119.2C14A—C13A—H13A119.2
C1—C14—C15119.25 (9)C1A—C14A—C15A119.19 (10)
C1—C14—C13122.99 (10)C1A—C14A—C13A122.93 (10)
C15—C14—C13117.76 (10)C15A—C14A—C13A117.87 (10)
C16—C15—C4119.72 (10)C4A—C15A—C14A120.12 (10)
C16—C15—C14120.31 (10)C4A—C15A—C16A119.43 (10)
C4—C15—C14119.95 (10)C14A—C15A—C16A120.44 (9)
C11—C16—C15120.17 (10)C11A—C16A—C7A119.67 (10)
C11—C16—C7119.86 (11)C11A—C16A—C15A119.90 (10)
C15—C16—C7119.96 (11)C7A—C16A—C15A120.43 (10)
O1—C17—C1113.64 (10)O1A—C17A—C1A111.75 (9)
O1—C17—H17A108.8O1A—C17A—H17C109.3
C1—C17—H17A108.8C1A—C17A—H17C109.3
O1—C17—H17B108.8O1A—C17A—H17D109.3
C1—C17—H17B108.8C1A—C17A—H17D109.3
H17A—C17—H17B107.7H17C—C17A—H17D107.9
C14—C1—C2—C30.83 (16)C14A—C1A—C2A—C3A0.59 (17)
C17—C1—C2—C3179.82 (10)C17A—C1A—C2A—C3A176.38 (10)
C1—C2—C3—C40.83 (17)C1A—C2A—C3A—C4A0.44 (18)
C2—C3—C4—C150.19 (16)C2A—C3A—C4A—C15A0.83 (16)
C2—C3—C4—C5179.32 (10)C2A—C3A—C4A—C5A179.05 (10)
C3—C4—C5—C6178.12 (11)C3A—C4A—C5A—C6A178.71 (11)
C15—C4—C5—C61.01 (17)C15A—C4A—C5A—C6A1.17 (16)
C4—C5—C6—C70.19 (18)C4A—C5A—C6A—C7A0.76 (17)
C5—C6—C7—C8179.54 (12)C5A—C6A—C7A—C8A179.58 (11)
C5—C6—C7—C160.77 (18)C5A—C6A—C7A—C16A0.22 (16)
C16—C7—C8—C91.55 (19)C16A—C7A—C8A—C9A0.14 (17)
C6—C7—C8—C9178.76 (13)C6A—C7A—C8A—C9A179.50 (11)
C7—C8—C9—C101.0 (2)C7A—C8A—C9A—C10A0.13 (18)
C8—C9—C10—C110.6 (2)C8A—C9A—C10A—C11A0.17 (18)
C9—C10—C11—C161.65 (19)C9A—C10A—C11A—C16A0.23 (16)
C9—C10—C11—C12177.77 (12)C9A—C10A—C11A—C12A179.31 (11)
C10—C11—C12—C13178.69 (11)C10A—C11A—C12A—C13A179.03 (10)
C16—C11—C12—C131.88 (16)C16A—C11A—C12A—C13A0.50 (16)
C11—C12—C13—C140.14 (17)C11A—C12A—C13A—C14A0.75 (17)
C2—C1—C14—C150.18 (15)C2A—C1A—C14A—C15A1.18 (15)
C17—C1—C14—C15178.83 (9)C17A—C1A—C14A—C15A175.69 (9)
C2—C1—C14—C13179.59 (10)C2A—C1A—C14A—C13A179.92 (10)
C17—C1—C14—C130.58 (15)C17A—C1A—C14A—C13A3.20 (16)
C12—C13—C14—C1177.38 (10)C12A—C13A—C14A—C1A179.07 (10)
C12—C13—C14—C152.04 (15)C12A—C13A—C14A—C15A0.15 (15)
C3—C4—C15—C16177.55 (9)C3A—C4A—C15A—C14A0.21 (15)
C5—C4—C15—C161.62 (15)C5A—C4A—C15A—C14A179.68 (9)
C3—C4—C15—C141.19 (15)C3A—C4A—C15A—C16A179.28 (9)
C5—C4—C15—C14179.65 (9)C5A—C4A—C15A—C16A0.60 (14)
C1—C14—C15—C16177.54 (9)C1A—C14A—C15A—C4A0.80 (15)
C13—C14—C15—C161.90 (14)C13A—C14A—C15A—C4A179.75 (9)
C1—C14—C15—C41.18 (14)C1A—C14A—C15A—C16A178.27 (9)
C13—C14—C15—C4179.38 (9)C13A—C14A—C15A—C16A0.68 (14)
C10—C11—C16—C15178.59 (10)C10A—C11A—C16A—C7A0.24 (15)
C12—C11—C16—C151.96 (15)C12A—C11A—C16A—C7A179.32 (9)
C10—C11—C16—C71.12 (16)C10A—C11A—C16A—C15A179.89 (9)
C12—C11—C16—C7178.33 (10)C12A—C11A—C16A—C15A0.34 (15)
C4—C15—C16—C11178.65 (9)C8A—C7A—C16A—C11A0.19 (15)
C14—C15—C16—C110.08 (15)C6A—C7A—C16A—C11A179.58 (9)
C4—C15—C16—C71.05 (15)C8A—C7A—C16A—C15A179.84 (9)
C14—C15—C16—C7179.78 (9)C6A—C7A—C16A—C15A0.77 (15)
C8—C7—C16—C110.46 (16)C4A—C15A—C16A—C11A180.00 (9)
C6—C7—C16—C11179.84 (10)C14A—C15A—C16A—C11A0.92 (15)
C8—C7—C16—C15179.83 (10)C4A—C15A—C16A—C7A0.35 (15)
C6—C7—C16—C150.13 (16)C14A—C15A—C16A—C7A178.73 (9)
C2—C1—C17—O13.46 (15)C2A—C1A—C17A—O1A116.54 (12)
C14—C1—C17—O1177.53 (9)C14A—C1A—C17A—O1A66.57 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Ai0.841.872.6972 (12)167
O1A—H1A···O1ii0.841.892.7163 (12)167
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H12O
Mr232.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)19.9182 (6), 8.8880 (3), 13.0882 (4)
β (°) 91.719 (2)
V3)2316.00 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.59 × 0.29 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29632, 5051, 3801
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.06
No. of reflections5051
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Ai0.841.872.6972 (12)166.7
O1A—H1A···O1ii0.841.892.7163 (12)167.1
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.
 

Footnotes

Current address: University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.

Acknowledgements

The authors are indebted to F. Eissmann for his swift assistance. Financial support from the German Federal Ministry of Economics and Technolgy (BMWi) under grant No. 16IN0218 `ChemoChips' is gratefully acknowledged.

References

First citationAllmann, R. (1970). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 132, 129–151.  CrossRef CAS Google Scholar
First citationBren, V. A. (2001). Russ. Chem. Rev. 70, 1017–1036.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamerman, A. & Trotter, J. (1965). Acta Cryst. 18, 636–643.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrampton, C. S., Knight, K. S., Shankland, N. & Shankland, K. (2000). J. Mol. Struct. 520, 29–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationGruber, T., Fischer, C., Felsmann, M., Seichter, W. & Weber, E. (2009). Org. Biomol. Chem. 7, 4904–4917.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGruber, T., Seichter, W. & Weber, E. (2006). Acta Cryst. E62, o2569–o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruber, T., Seichter, W. & Weber, E. (2008). Supramol. Chem. 20, 753–760.  Web of Science CSD CrossRef CAS Google Scholar
First citationHazell, A. C., Larsen, F. K. & Lehmann, M. S. (1972). Acta Cryst. B28, 2977–2984.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKai, Y., Hama, F., Yasuoka, N. & Kasai, N. (1978). Acta Cryst. B34, 1263–1270.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobertson, J. M. & White, J. G. (1947). J. Chem. Soc. pp. 358–368.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteward, F. H. L. (1960). Aust. J. Chem. 13, 478–487.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds