metal-organic compounds
Redetermination of aqua(dihydrogen ethylenediaminetetraacetato-κ5O,O′,N,N′,O′′)nickel(II)
aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: juraj.kuchar@upjs.sk
The 10H14N2O8)(H2O)] or [Ni(H2edta)(H2O)] (H4edta is ethylenediaminetetraacetic acid), originally determined by Smith & Hoard [J. Am. Chem. Soc. (1959), 81, 556–561] has been redetermined to a significantly higher precision. The NiII atom is coordinated in a distorted octahedral geometry by two N atoms and three O atoms from three carboxylate groups of the H2edta2− ligand and by an O atom of a water molecule. The complex molecules are linked by intermolecular O—H⋯O hydrogen bonds into layers perpendicular to [100].
of the title compound, [Ni(CRelated literature
For the crystal structures of nickel(II) complexes with deprotonized derivates of H4edta, see: Agre, Trunov et al. (1980); Agre, Sysoeva et al. (1980); Agre et al. (1981); Coronado et al. (1986); Sysoeva et al. (1981); Porai-Koshits et al. (1975); Sysoeva et al. (1986); Zubkowski et al. (1995); Stephens (1969). For the earlier determination of the title compound, see: Smith & Hoard (1959).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810002011/rz2407sup1.cif
contains datablocks I, global, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810002011/rz2407Isup2.hkl
Chemicals of reagent grade quality were obtained from commercial sources and were used as received. Solid NiCO3.2Ni(OH)2 (0.304 g, 1 mmol), ethylenediaminetetraacetic acid (0.877 g, 3 mmol) and tetraethylammonium bromide (0.421 g, 2 mmol) were dissolved under stirring in 10 cm3 of water at room temperature. The formed blue solution was filtered and left aside for crystallization at room temperature. After eight months, few blue prismatic crystals of the title compound appeared along with white microcrystalline material on slow evaporation of the solvent.
In order to allow a direct comparison of the present
determination with the previously published one (Smith & Hoard, 1959) the same labelling of the atoms was adopted. The hydrogen atoms of the water molecule were located in difference Fourier map, and refined with the O—H bond and the H···H separation restrained to 0.85 and 1.380 Å, respectively, and with Uiso(H) = 1.5 Ueq(O). The hydrogen atoms of the H2edta2- ligand were positioned geometrically with C—H = 0.97 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Uiso(C).We are interested in the synthesis and characterization of Cu—Ni heterobimetallic complexes as models of magnetic alternate chains. Few Cu—Ni heterobimetallic complexes based on edta-type ligands (H4edta = ethylenediaminetetraacetic acid) have been already structurally characterized (Agre, Trunov et al., 1980; Agre, Sysoeva et al., 1980; Agre et al., 1981). Previously, the crystal structures of one-dimensional [Ni(H2O)4(edta)Ni].2H2O (Coronado et al., 1986), dinuclear [Ni2(en)(edta)(H2O)3].H2O (Sysoeva et al., 1981), ionic [Ni(H2O)6][Ni(Hedta)]2.2H2O (Porai-Koshits et al., 1975) and ionic [Ni(en)3][Ni(edta)].4H2O (Sysoeva et al., 1986) complexes with the edta(4-) ligand were reported. As a part of our synthetic experiments on Cu—Ni heterobimetallic complexes from the aqueous system Ni2+-H4edta we have isolated the title compound. Its
was already studied by Smith & Hoard (1959). They obtained a correct structural model, however only two common isotropic thermal parameters were used and the positions of the hydrogen atoms were not determined. Consequently, the precision of the geometric parameters was limited.In the
of the title compound (Fig. 1) the nickel(II) atom exhibits an elongated octahedral coordination geometry. Five coordinations sites are occupied by the partially deprotonized, pentadentate chelate H2edta2- ligand, which coordinates through both nitrogen atoms and three oxygen atoms from carboxylate groups, among these two are deprotonized. The sixth coordination site is occupied by the oxygen atom of a water molecule. The fourth carboxylate group is not coordinated to the metal. The same type of coordination provided by the H2edta2- ligand was observed e.g. in analogous complexes [Co(H2edta)(H2O)].H2O (Zubkowski et al., 1995) and [Cu(H2edta)(H2O)] (Stephens, 1969). As expected, the intrachelate angles D1—Ni—D2 (D's are N and O donor atoms) in the title compound are significantly smaller then the ideal value of 90°. In the crystal packing, the H atoms of the water molecule and of two carboxylic groups are involved in intermolecular O—H···O hydrogen bonds (Fig. 2; Table 1) forming layers perpendicular to [100] (Fig. 3).For the crystal structures of nickel(II) complexes with deprotonized derivates of H4edta, see: Agre, Trunov et al. (1980); Agre, Sysoeva et al. (1980); Agre et al. (1981); Coronado et al. (1986); Sysoeva et al. (1981); Porai-Koshits et al. (1975); Sysoeva et al. (1986); Zubkowski et al. (1995); Stephens (1969). For the earlier determination of the title compound, see: Smith & Hoard (1959).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C10H14N2O8)(H2O)] | F(000) = 760 |
Mr = 366.96 | Dx = 1.809 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 23028 reflections |
a = 11.6786 (2) Å | θ = 2.9–29.7° |
b = 6.9358 (1) Å | µ = 1.49 mm−1 |
c = 16.6343 (2) Å | T = 291 K |
β = 91.140 (1)° | Prism, blue |
V = 1347.12 (3) Å3 | 0.35 × 0.31 × 0.15 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector | 2935 independent reflections |
Radiation source: fine-focus sealed tube | 2534 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 8.3438 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
ω scans | h = −14→14 |
Absorption correction: numerical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] | k = −8→8 |
Tmin = 0.690, Tmax = 0.830 | l = −21→21 |
43864 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1019P] where P = (Fo2 + 2Fc2)/3 |
2935 reflections | (Δ/σ)max < 0.001 |
198 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
[Ni(C10H14N2O8)(H2O)] | V = 1347.12 (3) Å3 |
Mr = 366.96 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.6786 (2) Å | µ = 1.49 mm−1 |
b = 6.9358 (1) Å | T = 291 K |
c = 16.6343 (2) Å | 0.35 × 0.31 × 0.15 mm |
β = 91.140 (1)° |
Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector | 2935 independent reflections |
Absorption correction: numerical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] | 2534 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.830 | Rint = 0.030 |
43864 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.33 e Å−3 |
2935 reflections | Δρmin = −0.18 e Å−3 |
198 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.328740 (14) | 0.17883 (3) | 0.575762 (10) | 0.01636 (7) | |
C1 | 0.31560 (12) | 0.2378 (2) | 0.75097 (8) | 0.0200 (3) | |
H1A | 0.3556 | 0.1440 | 0.7845 | 0.024* | |
H1B | 0.2635 | 0.3081 | 0.7850 | 0.024* | |
C2 | 0.40253 (12) | 0.3781 (2) | 0.71795 (9) | 0.0228 (3) | |
C3 | 0.13224 (12) | 0.2211 (2) | 0.67502 (9) | 0.0201 (3) | |
H3A | 0.0979 | 0.2483 | 0.7264 | 0.024* | |
H3B | 0.0831 | 0.1308 | 0.6462 | 0.024* | |
C4 | 0.14153 (12) | 0.4066 (2) | 0.62701 (8) | 0.0199 (3) | |
H4A | 0.0659 | 0.4615 | 0.6182 | 0.024* | |
H4B | 0.1878 | 0.4994 | 0.6568 | 0.024* | |
C5 | 0.11558 (13) | 0.2632 (2) | 0.49152 (9) | 0.0214 (3) | |
H5A | 0.1084 | 0.3382 | 0.4425 | 0.026* | |
H5B | 0.0404 | 0.2557 | 0.5150 | 0.026* | |
C6 | 0.15460 (13) | 0.0613 (2) | 0.47048 (9) | 0.0235 (3) | |
C7 | 0.24547 (12) | 0.5370 (2) | 0.51157 (9) | 0.0201 (3) | |
H7A | 0.2688 | 0.6278 | 0.5531 | 0.024* | |
H7B | 0.1889 | 0.5995 | 0.4769 | 0.024* | |
C8 | 0.34815 (11) | 0.4803 (2) | 0.46292 (8) | 0.0190 (3) | |
C9 | 0.24045 (13) | −0.0747 (2) | 0.70537 (9) | 0.0226 (3) | |
H9A | 0.3177 | −0.1259 | 0.7083 | 0.027* | |
H9B | 0.2015 | −0.1366 | 0.6603 | 0.027* | |
C10 | 0.17986 (12) | −0.1308 (2) | 0.78149 (8) | 0.0205 (3) | |
N1 | 0.24747 (9) | 0.13322 (17) | 0.68850 (7) | 0.0161 (2) | |
N2 | 0.19470 (10) | 0.36547 (16) | 0.54870 (7) | 0.0155 (2) | |
O1 | 0.37976 (9) | 0.61360 (17) | 0.41363 (7) | 0.0304 (3) | |
H1 | 0.4430 | 0.5870 | 0.3962 | 0.046* | |
O2 | 0.45601 (11) | 0.4832 (2) | 0.76438 (7) | 0.0434 (3) | |
O3 | 0.18039 (11) | −0.31910 (15) | 0.79037 (7) | 0.0333 (3) | |
H3 | 0.1531 | −0.3471 | 0.8339 | 0.050* | |
O4 | 0.13713 (9) | −0.01849 (16) | 0.82733 (6) | 0.0293 (3) | |
O5 | 0.09695 (7) | −0.02364 (13) | 0.41745 (5) | 0.0374 (3) | |
O6 | 0.45974 (7) | −0.01221 (13) | 0.58721 (5) | 0.0402 (3) | |
H6A | 0.4811 | −0.1050 | 0.5547 | 0.060* | |
H6B | 0.4970 | −0.0318 | 0.6315 | 0.060* | |
O7 | 0.41759 (8) | 0.37646 (16) | 0.64146 (6) | 0.0234 (2) | |
O8 | 0.23968 (9) | −0.00858 (15) | 0.50781 (6) | 0.0280 (2) | |
O9 | 0.39642 (9) | 0.32508 (15) | 0.47244 (6) | 0.0232 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01745 (10) | 0.01728 (10) | 0.01441 (10) | 0.00186 (7) | 0.00174 (6) | −0.00042 (7) |
C1 | 0.0201 (7) | 0.0249 (8) | 0.0149 (7) | −0.0024 (6) | −0.0003 (5) | −0.0006 (6) |
C2 | 0.0189 (7) | 0.0290 (8) | 0.0205 (7) | −0.0038 (6) | −0.0002 (6) | −0.0009 (6) |
C3 | 0.0146 (6) | 0.0271 (8) | 0.0187 (7) | −0.0010 (6) | 0.0028 (5) | 0.0029 (6) |
C4 | 0.0194 (7) | 0.0231 (8) | 0.0172 (7) | 0.0046 (6) | 0.0031 (5) | −0.0012 (6) |
C5 | 0.0212 (7) | 0.0236 (8) | 0.0190 (7) | −0.0046 (6) | −0.0042 (6) | 0.0006 (6) |
C6 | 0.0257 (8) | 0.0259 (8) | 0.0191 (7) | −0.0088 (6) | 0.0063 (6) | −0.0056 (6) |
C7 | 0.0218 (7) | 0.0150 (7) | 0.0236 (7) | −0.0007 (6) | 0.0033 (6) | 0.0014 (6) |
C8 | 0.0179 (7) | 0.0226 (8) | 0.0165 (7) | −0.0058 (6) | −0.0020 (5) | 0.0006 (6) |
C9 | 0.0312 (8) | 0.0165 (8) | 0.0203 (7) | −0.0005 (6) | 0.0067 (6) | 0.0000 (6) |
C10 | 0.0228 (7) | 0.0214 (8) | 0.0172 (7) | −0.0028 (6) | −0.0009 (6) | 0.0000 (6) |
N1 | 0.0177 (6) | 0.0157 (6) | 0.0151 (6) | −0.0010 (4) | 0.0018 (4) | −0.0003 (5) |
N2 | 0.0170 (5) | 0.0144 (6) | 0.0150 (5) | −0.0014 (4) | 0.0010 (4) | −0.0014 (4) |
O1 | 0.0223 (5) | 0.0333 (6) | 0.0359 (6) | −0.0026 (5) | 0.0076 (5) | 0.0145 (5) |
O2 | 0.0451 (7) | 0.0591 (9) | 0.0260 (6) | −0.0309 (7) | −0.0008 (5) | −0.0090 (6) |
O3 | 0.0559 (8) | 0.0203 (6) | 0.0240 (6) | −0.0024 (5) | 0.0132 (5) | 0.0044 (5) |
O4 | 0.0390 (6) | 0.0272 (6) | 0.0222 (5) | 0.0020 (5) | 0.0111 (5) | −0.0003 (5) |
O5 | 0.0315 (6) | 0.0481 (8) | 0.0327 (6) | −0.0110 (6) | 0.0007 (5) | −0.0250 (6) |
O6 | 0.0448 (7) | 0.0493 (8) | 0.0263 (6) | 0.0301 (6) | −0.0022 (5) | −0.0052 (6) |
O7 | 0.0203 (5) | 0.0324 (6) | 0.0176 (5) | −0.0079 (4) | 0.0021 (4) | −0.0005 (4) |
O8 | 0.0352 (6) | 0.0183 (5) | 0.0304 (6) | 0.0005 (5) | −0.0026 (5) | −0.0066 (5) |
O9 | 0.0245 (5) | 0.0244 (6) | 0.0210 (5) | 0.0030 (4) | 0.0060 (4) | 0.0019 (4) |
Ni1—O8 | 2.0006 (10) | C5—H5A | 0.9700 |
Ni1—O7 | 2.0260 (10) | C5—H5B | 0.9700 |
Ni1—O6 | 2.0300 (9) | C6—O5 | 1.2468 (16) |
Ni1—N2 | 2.0738 (11) | C6—O8 | 1.2582 (19) |
Ni1—N1 | 2.1421 (11) | C7—N2 | 1.4708 (17) |
Ni1—O9 | 2.1591 (10) | C7—C8 | 1.5121 (19) |
C1—N1 | 1.4852 (18) | C7—H7A | 0.9700 |
C1—C2 | 1.517 (2) | C7—H7B | 0.9700 |
C1—H1A | 0.9700 | C8—O9 | 1.2239 (17) |
C1—H1B | 0.9700 | C8—O1 | 1.2945 (17) |
C2—O2 | 1.2245 (18) | C9—N1 | 1.4717 (18) |
C2—O7 | 1.2880 (17) | C9—C10 | 1.514 (2) |
C3—N1 | 1.4903 (18) | C9—H9A | 0.9700 |
C3—C4 | 1.519 (2) | C9—H9B | 0.9700 |
C3—H3A | 0.9700 | C10—O4 | 1.2054 (17) |
C3—H3B | 0.9700 | C10—O3 | 1.3140 (18) |
C4—N2 | 1.4818 (17) | O1—H1 | 0.8200 |
C4—H4A | 0.9700 | O3—H3 | 0.8200 |
C4—H4B | 0.9700 | O6—H6A | 0.880 |
C5—N2 | 1.4922 (17) | O6—H6B | 0.859 |
C5—C6 | 1.516 (2) | ||
O8—Ni1—O7 | 177.83 (4) | O5—C6—O8 | 125.26 (14) |
O8—Ni1—O6 | 90.65 (4) | O5—C6—C5 | 116.05 (13) |
O7—Ni1—O6 | 90.80 (4) | O8—C6—C5 | 118.68 (13) |
O8—Ni1—N2 | 84.33 (4) | N2—C7—C8 | 110.17 (11) |
O7—Ni1—N2 | 94.08 (4) | N2—C7—H7A | 109.6 |
O6—Ni1—N2 | 172.75 (4) | C8—C7—H7A | 109.6 |
O8—Ni1—N1 | 99.45 (4) | N2—C7—H7B | 109.6 |
O7—Ni1—N1 | 81.88 (4) | C8—C7—H7B | 109.6 |
O6—Ni1—N1 | 99.65 (4) | H7A—C7—H7B | 108.1 |
N2—Ni1—N1 | 86.36 (4) | O9—C8—O1 | 125.02 (13) |
O8—Ni1—O9 | 92.86 (4) | O9—C8—C7 | 121.86 (13) |
O7—Ni1—O9 | 85.40 (4) | O1—C8—C7 | 113.09 (13) |
O6—Ni1—O9 | 95.41 (4) | N1—C9—C10 | 116.13 (12) |
N2—Ni1—O9 | 79.67 (4) | N1—C9—H9A | 108.3 |
N1—Ni1—O9 | 160.37 (4) | C10—C9—H9A | 108.3 |
N1—C1—C2 | 114.38 (11) | N1—C9—H9B | 108.3 |
N1—C1—H1A | 108.7 | C10—C9—H9B | 108.3 |
C2—C1—H1A | 108.7 | H9A—C9—H9B | 107.4 |
N1—C1—H1B | 108.7 | O4—C10—O3 | 124.91 (14) |
C2—C1—H1B | 108.7 | O4—C10—C9 | 124.69 (13) |
H1A—C1—H1B | 107.6 | O3—C10—C9 | 110.40 (12) |
O2—C2—O7 | 123.39 (14) | C9—N1—C1 | 112.09 (11) |
O2—C2—C1 | 119.36 (13) | C9—N1—C3 | 112.08 (11) |
O7—C2—C1 | 117.23 (13) | C1—N1—C3 | 112.03 (11) |
N1—C3—C4 | 110.60 (11) | C9—N1—Ni1 | 109.82 (8) |
N1—C3—H3A | 109.5 | C1—N1—Ni1 | 107.45 (8) |
C4—C3—H3A | 109.5 | C3—N1—Ni1 | 102.85 (8) |
N1—C3—H3B | 109.5 | C7—N2—C4 | 113.14 (11) |
C4—C3—H3B | 109.5 | C7—N2—C5 | 111.51 (11) |
H3A—C3—H3B | 108.1 | C4—N2—C5 | 112.76 (11) |
N2—C4—C3 | 109.56 (12) | C7—N2—Ni1 | 106.69 (8) |
N2—C4—H4A | 109.8 | C4—N2—Ni1 | 104.89 (8) |
C3—C4—H4A | 109.8 | C5—N2—Ni1 | 107.26 (8) |
N2—C4—H4B | 109.8 | C8—O1—H1 | 109.5 |
C3—C4—H4B | 109.8 | C10—O3—H3 | 109.5 |
H4A—C4—H4B | 108.2 | Ni1—O6—H6A | 129.9 |
N2—C5—C6 | 113.66 (12) | Ni1—O6—H6B | 123.5 |
N2—C5—H5A | 108.8 | H6A—O6—H6B | 105.4 |
C6—C5—H5A | 108.8 | C2—O7—Ni1 | 117.40 (9) |
N2—C5—H5B | 108.8 | C6—O8—Ni1 | 115.17 (10) |
C6—C5—H5B | 108.8 | C8—O9—Ni1 | 109.95 (9) |
H5A—C5—H5B | 107.7 | ||
N1—C1—C2—O2 | 173.79 (14) | C3—C4—N2—C5 | 73.50 (14) |
N1—C1—C2—O7 | −7.7 (2) | C3—C4—N2—Ni1 | −42.89 (12) |
N1—C3—C4—N2 | 58.79 (15) | C6—C5—N2—C7 | 116.31 (13) |
N2—C5—C6—O5 | −173.79 (12) | C6—C5—N2—C4 | −115.13 (13) |
N2—C5—C6—O8 | 7.39 (19) | C6—C5—N2—Ni1 | −0.16 (13) |
N2—C7—C8—O9 | −17.75 (18) | O8—Ni1—N2—C7 | −123.50 (9) |
N2—C7—C8—O1 | 164.25 (12) | O7—Ni1—N2—C7 | 55.03 (9) |
N1—C9—C10—O4 | 0.8 (2) | N1—Ni1—N2—C7 | 136.61 (9) |
N1—C9—C10—O3 | −179.23 (13) | O9—Ni1—N2—C7 | −29.54 (8) |
C10—C9—N1—C1 | 63.40 (16) | O8—Ni1—N2—C4 | 116.22 (9) |
C10—C9—N1—C3 | −63.58 (16) | O7—Ni1—N2—C4 | −65.25 (9) |
C10—C9—N1—Ni1 | −177.24 (10) | N1—Ni1—N2—C4 | 16.33 (9) |
C2—C1—N1—C9 | 133.66 (13) | O9—Ni1—N2—C4 | −149.82 (9) |
C2—C1—N1—C3 | −99.34 (14) | O8—Ni1—N2—C5 | −3.90 (8) |
C2—C1—N1—Ni1 | 12.92 (14) | O7—Ni1—N2—C5 | 174.63 (8) |
C4—C3—N1—C9 | −157.70 (11) | N1—Ni1—N2—C5 | −103.78 (9) |
C4—C3—N1—C1 | 75.29 (14) | O9—Ni1—N2—C5 | 90.06 (9) |
C4—C3—N1—Ni1 | −39.81 (12) | O2—C2—O7—Ni1 | 175.79 (13) |
O8—Ni1—N1—C9 | 48.50 (10) | C1—C2—O7—Ni1 | −2.69 (18) |
O7—Ni1—N1—C9 | −133.23 (10) | O6—Ni1—O7—C2 | −91.55 (10) |
O6—Ni1—N1—C9 | −43.79 (9) | N2—Ni1—O7—C2 | 93.81 (11) |
N2—Ni1—N1—C9 | 132.13 (10) | N1—Ni1—O7—C2 | 8.08 (11) |
O9—Ni1—N1—C9 | 176.63 (11) | O9—Ni1—O7—C2 | 173.09 (11) |
O8—Ni1—N1—C1 | 170.66 (9) | O5—C6—O8—Ni1 | 170.31 (11) |
O7—Ni1—N1—C1 | −11.06 (9) | C5—C6—O8—Ni1 | −10.99 (17) |
O6—Ni1—N1—C1 | 78.38 (8) | O6—Ni1—O8—C6 | −166.26 (10) |
N2—Ni1—N1—C1 | −105.71 (9) | N2—Ni1—O8—C6 | 8.50 (10) |
O9—Ni1—N1—C1 | −61.20 (17) | N1—Ni1—O8—C6 | 93.84 (11) |
O8—Ni1—N1—C3 | −70.97 (9) | O9—Ni1—O8—C6 | −70.82 (11) |
O7—Ni1—N1—C3 | 107.30 (9) | O1—C8—O9—Ni1 | 169.74 (12) |
O6—Ni1—N1—C3 | −163.26 (8) | C7—C8—O9—Ni1 | −8.00 (16) |
N2—Ni1—N1—C3 | 12.65 (8) | O8—Ni1—O9—C8 | 105.34 (9) |
O9—Ni1—N1—C3 | 57.16 (16) | O7—Ni1—O9—C8 | −73.36 (9) |
C8—C7—N2—C4 | 148.46 (11) | O6—Ni1—O9—C8 | −163.74 (9) |
C8—C7—N2—C5 | −83.18 (14) | N2—Ni1—O9—C8 | 21.64 (9) |
C8—C7—N2—Ni1 | 33.64 (12) | N1—Ni1—O9—C8 | −23.69 (18) |
C3—C4—N2—C7 | −158.79 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O7i | 0.82 | 1.77 | 2.5557 (14) | 159 |
O3—H3···O5ii | 0.82 | 1.79 | 2.5864 (13) | 164 |
O6—H6A···O9iii | 0.88 | 2.15 | 2.9294 (12) | 148 |
O6—H6B···O2iv | 0.86 | 1.81 | 2.6394 (11) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y−1/2, z+1/2; (iii) −x+1, −y, −z+1; (iv) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C10H14N2O8)(H2O)] |
Mr | 366.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 11.6786 (2), 6.9358 (1), 16.6343 (2) |
β (°) | 91.140 (1) |
V (Å3) | 1347.12 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.49 |
Crystal size (mm) | 0.35 × 0.31 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire2 (large Be window) detector |
Absorption correction | Numerical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] |
Tmin, Tmax | 0.690, 0.830 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 43864, 2935, 2534 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.055, 1.06 |
No. of reflections | 2935 |
No. of parameters | 198 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.18 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2007).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O7i | 0.82 | 1.77 | 2.5557 (14) | 159 |
O3—H3···O5ii | 0.82 | 1.79 | 2.5864 (13) | 164 |
O6—H6A···O9iii | 0.88 | 2.15 | 2.9294 (12) | 148 |
O6—H6B···O2iv | 0.86 | 1.81 | 2.6394 (11) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y−1/2, z+1/2; (iii) −x+1, −y, −z+1; (iv) −x+1, y−1/2, −z+3/2. |
Acknowledgements
This work was supported by the Slovak grant agency APVV (contract Nos. APVV-VVCE-0058–07 and APVV-0006–07) and the grant agency VEGA (grant No. 1/0089/09). Support from P. J. Šafárik University (VVGS 37/09–10) is also gratefully acknowledged.
References
Agre, V. M., Sysoeva, T. F., Trunov, V. K., Efremov, V. A., Fridman, A. Y. & Barkhanova, N. N. (1980). Zh. Strukt. Khim. 21, 110–117. CAS Google Scholar
Agre, V. M., Sysoeva, T. F., Trunov, V. K., Fridman, A. Y. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 114–120. CAS Google Scholar
Agre, V. M., Trunov, V. K. & Sysoeva, T. F. (1980). Dokl. Akad. Nauk SSSR, 250, 1123–1126. CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Coronado, E., Drillon, M., Fuertes, A., Beltran, D., Mosset, A. & Galy, J. (1986). J. Am. Chem. Soc. 108, 900–905. CSD CrossRef CAS Web of Science Google Scholar
Crystal Impact (2007). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Porai-Koshits, M. A., Nesterova, Y. M., Polynova, T. N. & de Garcia Banus, D. T. (1975). Koord. Khim. 1, 682. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. S. & Hoard, J. L. (1959). J. Am. Chem. Soc. 81, 556–561. CSD CrossRef CAS Web of Science Google Scholar
Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1723–1734. CrossRef Google Scholar
Sysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M. & Fridman, A. Ya. (1986). Zh. Strukt. Khim. 27, 108–114. CAS Google Scholar
Sysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M., Fridman, A. Ya. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 99–105. CAS Google Scholar
Zubkowski, J. D., Perry, D. L., Valente, E. J. & Lott, S. (1995). Inorg. Chem. 34, 6409–6411. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We are interested in the synthesis and characterization of Cu—Ni heterobimetallic complexes as models of magnetic alternate chains. Few Cu—Ni heterobimetallic complexes based on edta-type ligands (H4edta = ethylenediaminetetraacetic acid) have been already structurally characterized (Agre, Trunov et al., 1980; Agre, Sysoeva et al., 1980; Agre et al., 1981). Previously, the crystal structures of one-dimensional [Ni(H2O)4(edta)Ni].2H2O (Coronado et al., 1986), dinuclear [Ni2(en)(edta)(H2O)3].H2O (Sysoeva et al., 1981), ionic [Ni(H2O)6][Ni(Hedta)]2.2H2O (Porai-Koshits et al., 1975) and ionic [Ni(en)3][Ni(edta)].4H2O (Sysoeva et al., 1986) complexes with the edta(4-) ligand were reported. As a part of our synthetic experiments on Cu—Ni heterobimetallic complexes from the aqueous system Ni2+-H4edta we have isolated the title compound. Its crystal structure was already studied by Smith & Hoard (1959). They obtained a correct structural model, however only two common isotropic thermal parameters were used and the positions of the hydrogen atoms were not determined. Consequently, the precision of the geometric parameters was limited.
In the crystal structure of the title compound (Fig. 1) the nickel(II) atom exhibits an elongated octahedral coordination geometry. Five coordinations sites are occupied by the partially deprotonized, pentadentate chelate H2edta2- ligand, which coordinates through both nitrogen atoms and three oxygen atoms from carboxylate groups, among these two are deprotonized. The sixth coordination site is occupied by the oxygen atom of a water molecule. The fourth carboxylate group is not coordinated to the metal. The same type of coordination provided by the H2edta2- ligand was observed e.g. in analogous complexes [Co(H2edta)(H2O)].H2O (Zubkowski et al., 1995) and [Cu(H2edta)(H2O)] (Stephens, 1969). As expected, the intrachelate angles D1—Ni—D2 (D's are N and O donor atoms) in the title compound are significantly smaller then the ideal value of 90°. In the crystal packing, the H atoms of the water molecule and of two carboxylic groups are involved in intermolecular O—H···O hydrogen bonds (Fig. 2; Table 1) forming layers perpendicular to [100] (Fig. 3).