organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­methyl­phen­yl)succinamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 January 2010; accepted 16 January 2010; online 23 January 2010)

The asymmetric unit of the title compound, C12H15NO3, contains two independent mol­ecules. In both mol­ecules, the conformations of the amide oxygen and the carbonyl O atom of the acid segment are anti to the adjacent CH2 groups. In the crystal, both molecules form inversion dimers linked by pairs of O—H⋯O hydrogen bonds and N—H⋯O interactions link the dimers into [100] chains.

Related literature

For the crystal structures of related anilides, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.]); Gowda, Foro, Saraswathi & Fuess (2009[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o1722.]); Gowda, Foro, Saraswathi et al. (2009[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.]). For the modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Jagannathan et al. (1994[Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75-78.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO3

  • Mr = 221.25

  • Triclinic, [P \overline 1]

  • a = 9.736 (1) Å

  • b = 9.919 (1) Å

  • c = 12.601 (2) Å

  • α = 106.42 (1)°

  • β = 100.98 (1)°

  • γ = 99.81 (1)°

  • V = 1112.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 299 K

  • 0.44 × 0.40 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.959, Tmax = 0.985

  • 7776 measured reflections

  • 4538 independent reflections

  • 3173 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.03

  • 4538 reflections

  • 305 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.85 (2) 1.82 (2) 2.6681 (18) 174 (2)
N1—H1N⋯O4ii 0.894 (18) 2.127 (18) 2.9909 (18) 162.5 (15)
O6—H6O⋯O2i 0.88 (2) 1.78 (2) 2.6555 (18) 175 (2)
N2—H2N⋯O1 0.87 (2) 2.26 (2) 3.0676 (19) 154.7 (17)
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of the ring and side chain substitutions on the crystal structures of anilides (Gowda et al., 2007; Gowda, Foro, Saraswathi & Fuess, 2009; Gowda, Foro, Saraswathi et al., 2009), we report herein the crystal structure of N-(3,4-dimethylphenyl)succinamic acid (I). The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H and CO bonds in the amide segments are anti to each other. Further, the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are anti to the H atoms of their adjacent CH2 groups, while the conformation of the C=O and O—H bonds of the acid group are in syn position to each other, similar to that observed in N-(3,4-dichlorophenyl)succinamic acid monohydrate (II) (Gowda, Foro, Saraswathi & Fuess, 2009) and N-(2,6-dimethylphenyl)succinamic acid (III) (Gowda, Foro, Saraswathi et al., 2009).

The conformation of the amide hydrogen in (I) is syn to the meta-methyl group in the benzene ring, contrary to the anti conformation observed between the amide hydrogen and the meta-Cl in (II). Further, the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are syn to each other, contrary to the anti conformation observed in (II). N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules into chains running parallel to the a axis (Table 1, Fig. 2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Related literature top

For the crystal structures of related anilides, see: Gowda et al. (2007); Gowda, Foro, Saraswathi & Fuess (2009); Gowda, Foro, Saraswathi et al. (2009). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976); Jagannathan et al. (1994).

Experimental top

A solution of succinic anhydride (0.02 mol) in toluene (25 ml) was treated dropwise with a solution of 3,4-dimethylaniline (0.02 mol) in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dimethylaniline. The resultant solid N-(3,4-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol.

The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra. The rod like colourless single crystals used in X-ray diffraction studies were grown by slow evaporation at room temperature of an ethanolic solution.

Refinement top

The H atoms of the NH groups were located in a difference Fourier map and their positions refined with N—H = 0.87 (2)–0.89 (2) %A. The H atoms of the OH groups were located in a difference Fourier map and the O—H distance restrained to 0.82 (2) Å. All other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å and refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Structure description top

As a part of studying the effect of the ring and side chain substitutions on the crystal structures of anilides (Gowda et al., 2007; Gowda, Foro, Saraswathi & Fuess, 2009; Gowda, Foro, Saraswathi et al., 2009), we report herein the crystal structure of N-(3,4-dimethylphenyl)succinamic acid (I). The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H and CO bonds in the amide segments are anti to each other. Further, the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are anti to the H atoms of their adjacent CH2 groups, while the conformation of the C=O and O—H bonds of the acid group are in syn position to each other, similar to that observed in N-(3,4-dichlorophenyl)succinamic acid monohydrate (II) (Gowda, Foro, Saraswathi & Fuess, 2009) and N-(2,6-dimethylphenyl)succinamic acid (III) (Gowda, Foro, Saraswathi et al., 2009).

The conformation of the amide hydrogen in (I) is syn to the meta-methyl group in the benzene ring, contrary to the anti conformation observed between the amide hydrogen and the meta-Cl in (II). Further, the conformation of the amide oxygen and the carbonyl oxygen of the acid segment are syn to each other, contrary to the anti conformation observed in (II). N—H···O and O—H···O intermolecular hydrogen bonds pack the molecules into chains running parallel to the a axis (Table 1, Fig. 2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

For the crystal structures of related anilides, see: Gowda et al. (2007); Gowda, Foro, Saraswathi & Fuess (2009); Gowda, Foro, Saraswathi et al. (2009). For the modes of interlinking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976); Jagannathan et al. (1994).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,4-Dimethylphenyl)succinamic acid top
Crystal data top
C12H15NO3Z = 4
Mr = 221.25F(000) = 472
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.736 (1) ÅCell parameters from 2369 reflections
b = 9.919 (1) Åθ = 3.1–27.7°
c = 12.601 (2) ŵ = 0.10 mm1
α = 106.42 (1)°T = 299 K
β = 100.98 (1)°Rod, colourless
γ = 99.81 (1)°0.44 × 0.40 × 0.16 mm
V = 1112.9 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4538 independent reflections
Radiation source: fine-focus sealed tube3173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and φ scans.θmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1112
Tmin = 0.959, Tmax = 0.985k = 1210
7776 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2735P]
where P = (Fo2 + 2Fc2)/3
4538 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H15NO3γ = 99.81 (1)°
Mr = 221.25V = 1112.9 (2) Å3
Triclinic, P1Z = 4
a = 9.736 (1) ÅMo Kα radiation
b = 9.919 (1) ŵ = 0.10 mm1
c = 12.601 (2) ÅT = 299 K
α = 106.42 (1)°0.44 × 0.40 × 0.16 mm
β = 100.98 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4538 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3173 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.985Rint = 0.013
7776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
4538 reflectionsΔρmin = 0.17 e Å3
305 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25568 (12)0.46649 (13)0.13575 (10)0.0454 (3)
O20.15120 (14)0.11617 (14)0.05553 (10)0.0529 (3)
O30.20038 (15)0.09014 (14)0.11316 (10)0.0530 (3)
H3O0.243 (2)0.030 (2)0.0934 (17)0.064*
N10.08150 (14)0.53340 (15)0.22197 (11)0.0380 (3)
H1N0.013 (2)0.5115 (19)0.2162 (14)0.046*
C10.16800 (16)0.63065 (16)0.32941 (13)0.0344 (4)
C20.11108 (17)0.64457 (17)0.42386 (14)0.0382 (4)
H20.01700.59490.41380.046*
C30.19110 (18)0.73073 (17)0.53296 (14)0.0395 (4)
C40.33168 (18)0.80814 (18)0.54764 (14)0.0409 (4)
C50.38529 (18)0.79638 (18)0.45219 (15)0.0436 (4)
H50.47800.84890.46130.052*
C60.30594 (17)0.70921 (17)0.34342 (14)0.0409 (4)
H60.34480.70360.28080.049*
C70.12894 (16)0.45212 (17)0.13761 (13)0.0344 (3)
C80.01037 (17)0.33813 (18)0.04349 (13)0.0404 (4)
H8A0.06240.38410.01530.048*
H8B0.03480.26890.07500.048*
C90.06420 (18)0.25797 (19)0.05577 (13)0.0423 (4)
H9A0.01730.20940.12140.051*
H9B0.12800.32780.07580.051*
C100.14225 (17)0.14906 (17)0.03140 (13)0.0386 (4)
C110.1276 (2)0.7378 (2)0.63389 (15)0.0568 (5)
H11A0.02860.68510.60750.068*
H11B0.13340.83700.67510.068*
H11C0.18040.69600.68340.068*
C120.4230 (2)0.9026 (2)0.66431 (15)0.0592 (5)
H12A0.51700.94290.65840.071*
H12B0.43150.84570.71440.071*
H12C0.37880.97940.69450.071*
O40.75949 (12)0.46145 (14)0.15126 (10)0.0545 (4)
O50.66192 (15)0.10463 (14)0.06567 (10)0.0548 (3)
O60.71268 (15)0.07822 (14)0.10294 (10)0.0524 (3)
H6O0.756 (2)0.015 (2)0.0837 (17)0.063*
N20.57898 (15)0.50597 (17)0.23359 (12)0.0478 (4)
H2N0.486 (2)0.484 (2)0.2237 (16)0.057*
C130.66100 (17)0.61991 (18)0.33598 (13)0.0390 (4)
C140.66191 (17)0.60174 (18)0.44074 (14)0.0398 (4)
H140.61800.51220.44340.048*
C150.72698 (17)0.71425 (18)0.54223 (13)0.0385 (4)
C160.79482 (17)0.84812 (17)0.53795 (14)0.0387 (4)
C170.79743 (19)0.86189 (18)0.43201 (15)0.0448 (4)
H170.84530.94950.42860.054*
C180.73127 (19)0.7499 (2)0.33125 (14)0.0457 (4)
H180.73420.76230.26120.055*
C190.63180 (17)0.43683 (17)0.14927 (13)0.0363 (4)
C200.51791 (18)0.32399 (19)0.05010 (14)0.0434 (4)
H20A0.46900.25290.07820.052*
H20B0.44700.37060.02010.052*
C210.57788 (19)0.24675 (19)0.04634 (13)0.0441 (4)
H21A0.49930.19930.11430.053*
H21B0.64410.31820.06290.053*
C220.65414 (17)0.13717 (17)0.02138 (13)0.0389 (4)
C230.7220 (2)0.6912 (2)0.65422 (15)0.0559 (5)
H23A0.68220.59080.64110.067*
H23B0.66280.74830.69000.067*
H23C0.81770.71990.70310.067*
C240.8606 (2)0.9755 (2)0.64499 (15)0.0536 (5)
H24A0.93360.95180.69450.064*
H24B0.78730.99910.68330.064*
H24C0.90291.05700.62550.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (6)0.0520 (7)0.0422 (7)0.0089 (5)0.0099 (5)0.0014 (5)
O20.0701 (9)0.0541 (8)0.0409 (7)0.0255 (7)0.0226 (6)0.0134 (6)
O30.0680 (9)0.0579 (8)0.0407 (7)0.0301 (7)0.0231 (6)0.0127 (6)
N10.0285 (7)0.0405 (8)0.0367 (7)0.0091 (6)0.0057 (6)0.0011 (6)
C10.0318 (8)0.0303 (8)0.0355 (8)0.0101 (7)0.0051 (6)0.0031 (7)
C20.0330 (8)0.0350 (8)0.0421 (9)0.0073 (7)0.0106 (7)0.0054 (7)
C30.0425 (9)0.0358 (9)0.0386 (9)0.0148 (7)0.0092 (7)0.0073 (7)
C40.0394 (9)0.0362 (9)0.0393 (9)0.0115 (7)0.0026 (7)0.0039 (7)
C50.0324 (8)0.0384 (9)0.0493 (10)0.0036 (7)0.0069 (7)0.0032 (8)
C60.0382 (9)0.0389 (9)0.0419 (9)0.0079 (7)0.0134 (7)0.0062 (7)
C70.0327 (8)0.0348 (8)0.0335 (8)0.0098 (7)0.0056 (6)0.0085 (7)
C80.0340 (8)0.0410 (9)0.0378 (9)0.0092 (7)0.0041 (7)0.0032 (7)
C90.0414 (9)0.0450 (10)0.0316 (8)0.0101 (8)0.0041 (7)0.0022 (7)
C100.0394 (9)0.0354 (9)0.0303 (8)0.0037 (7)0.0069 (7)0.0012 (7)
C110.0591 (12)0.0626 (13)0.0442 (11)0.0140 (10)0.0158 (9)0.0091 (9)
C120.0544 (12)0.0601 (12)0.0453 (11)0.0113 (10)0.0011 (9)0.0001 (9)
O40.0315 (6)0.0638 (8)0.0517 (8)0.0084 (6)0.0116 (5)0.0053 (6)
O50.0720 (9)0.0607 (8)0.0413 (7)0.0297 (7)0.0245 (6)0.0165 (6)
O60.0651 (9)0.0557 (8)0.0399 (7)0.0249 (7)0.0220 (6)0.0093 (6)
N20.0291 (7)0.0580 (9)0.0406 (8)0.0045 (7)0.0091 (6)0.0046 (7)
C130.0322 (8)0.0439 (9)0.0348 (9)0.0094 (7)0.0093 (7)0.0029 (7)
C140.0379 (9)0.0368 (9)0.0439 (9)0.0088 (7)0.0129 (7)0.0105 (7)
C150.0391 (9)0.0415 (9)0.0354 (8)0.0146 (7)0.0099 (7)0.0099 (7)
C160.0355 (8)0.0386 (9)0.0384 (9)0.0113 (7)0.0075 (7)0.0065 (7)
C170.0470 (10)0.0371 (9)0.0489 (10)0.0056 (8)0.0138 (8)0.0136 (8)
C180.0479 (10)0.0553 (11)0.0353 (9)0.0117 (9)0.0126 (8)0.0159 (8)
C190.0325 (8)0.0383 (9)0.0351 (8)0.0104 (7)0.0072 (7)0.0071 (7)
C200.0353 (9)0.0443 (10)0.0405 (9)0.0095 (7)0.0049 (7)0.0016 (8)
C210.0449 (9)0.0467 (10)0.0313 (9)0.0100 (8)0.0037 (7)0.0029 (7)
C220.0380 (9)0.0377 (9)0.0309 (8)0.0038 (7)0.0072 (7)0.0005 (7)
C230.0693 (13)0.0605 (12)0.0423 (10)0.0198 (10)0.0161 (9)0.0195 (9)
C240.0522 (11)0.0458 (10)0.0491 (11)0.0100 (9)0.0061 (9)0.0003 (9)
Geometric parameters (Å, º) top
O1—C71.2233 (18)O4—C191.2194 (18)
O2—C101.2203 (19)O5—C221.221 (2)
O3—C101.3106 (19)O6—C221.3115 (19)
O3—H3O0.850 (15)O6—H6O0.875 (15)
N1—C71.3500 (19)N2—C191.334 (2)
N1—C11.4224 (19)N2—C131.434 (2)
N1—H1N0.894 (18)N2—H2N0.87 (2)
C1—C61.385 (2)C13—C181.376 (2)
C1—C21.388 (2)C13—C141.381 (2)
C2—C31.389 (2)C14—C151.388 (2)
C2—H20.9300C14—H140.9300
C3—C41.401 (2)C15—C161.399 (2)
C3—C111.506 (2)C15—C231.500 (2)
C4—C51.383 (2)C16—C171.384 (2)
C4—C121.506 (2)C16—C241.503 (2)
C5—C61.386 (2)C17—C181.381 (2)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—H180.9300
C7—C81.514 (2)C19—C201.517 (2)
C8—C91.517 (2)C20—C211.517 (2)
C8—H8A0.9700C20—H20A0.9700
C8—H8B0.9700C20—H20B0.9700
C9—C101.489 (2)C21—C221.487 (2)
C9—H9A0.9700C21—H21A0.9700
C9—H9B0.9700C21—H21B0.9700
C11—H11A0.9600C23—H23A0.9600
C11—H11B0.9600C23—H23B0.9600
C11—H11C0.9600C23—H23C0.9600
C12—H12A0.9600C24—H24A0.9600
C12—H12B0.9600C24—H24B0.9600
C12—H12C0.9600C24—H24C0.9600
C10—O3—H3O108.4 (14)C22—O6—H6O109.0 (14)
C7—N1—C1126.35 (13)C19—N2—C13125.70 (14)
C7—N1—H1N116.8 (11)C19—N2—H2N117.3 (13)
C1—N1—H1N115.6 (11)C13—N2—H2N116.9 (13)
C6—C1—C2119.26 (14)C18—C13—C14119.74 (15)
C6—C1—N1122.85 (14)C18—C13—N2120.78 (15)
C2—C1—N1117.89 (14)C14—C13—N2119.36 (15)
C1—C2—C3121.68 (15)C13—C14—C15121.39 (16)
C1—C2—H2119.2C13—C14—H14119.3
C3—C2—H2119.2C15—C14—H14119.3
C2—C3—C4119.12 (15)C14—C15—C16119.12 (15)
C2—C3—C11120.02 (16)C14—C15—C23119.71 (16)
C4—C3—C11120.84 (15)C16—C15—C23121.16 (15)
C5—C4—C3118.47 (15)C17—C16—C15118.37 (15)
C5—C4—C12120.40 (16)C17—C16—C24120.35 (16)
C3—C4—C12121.13 (16)C15—C16—C24121.26 (15)
C4—C5—C6122.41 (16)C18—C17—C16122.22 (16)
C4—C5—H5118.8C18—C17—H17118.9
C6—C5—H5118.8C16—C17—H17118.9
C1—C6—C5119.02 (15)C13—C18—C17119.08 (16)
C1—C6—H6120.5C13—C18—H18120.5
C5—C6—H6120.5C17—C18—H18120.5
O1—C7—N1124.17 (14)O4—C19—N2123.43 (15)
O1—C7—C8121.87 (14)O4—C19—C20122.88 (14)
N1—C7—C8113.96 (13)N2—C19—C20113.68 (14)
C7—C8—C9113.04 (13)C21—C20—C19113.63 (14)
C7—C8—H8A109.0C21—C20—H20A108.8
C9—C8—H8A109.0C19—C20—H20A108.8
C7—C8—H8B109.0C21—C20—H20B108.8
C9—C8—H8B109.0C19—C20—H20B108.8
H8A—C8—H8B107.8H20A—C20—H20B107.7
C10—C9—C8113.76 (14)C22—C21—C20114.09 (14)
C10—C9—H9A108.8C22—C21—H21A108.7
C8—C9—H9A108.8C20—C21—H21A108.7
C10—C9—H9B108.8C22—C21—H21B108.7
C8—C9—H9B108.8C20—C21—H21B108.7
H9A—C9—H9B107.7H21A—C21—H21B107.6
O2—C10—O3122.68 (16)O5—C22—O6123.06 (16)
O2—C10—C9123.86 (15)O5—C22—C21123.93 (15)
O3—C10—C9113.46 (15)O6—C22—C21113.01 (15)
C3—C11—H11A109.5C15—C23—H23A109.5
C3—C11—H11B109.5C15—C23—H23B109.5
H11A—C11—H11B109.5H23A—C23—H23B109.5
C3—C11—H11C109.5C15—C23—H23C109.5
H11A—C11—H11C109.5H23A—C23—H23C109.5
H11B—C11—H11C109.5H23B—C23—H23C109.5
C4—C12—H12A109.5C16—C24—H24A109.5
C4—C12—H12B109.5C16—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C4—C12—H12C109.5C16—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
C7—N1—C1—C633.1 (2)C19—N2—C13—C1863.8 (2)
C7—N1—C1—C2145.84 (16)C19—N2—C13—C14120.24 (19)
C6—C1—C2—C32.7 (2)C18—C13—C14—C152.9 (2)
N1—C1—C2—C3176.29 (14)N2—C13—C14—C15173.11 (15)
C1—C2—C3—C41.5 (2)C13—C14—C15—C161.0 (2)
C1—C2—C3—C11177.34 (15)C13—C14—C15—C23178.29 (15)
C2—C3—C4—C50.4 (2)C14—C15—C16—C171.6 (2)
C11—C3—C4—C5179.24 (16)C23—C15—C16—C17179.16 (16)
C2—C3—C4—C12179.75 (16)C14—C15—C16—C24177.00 (15)
C11—C3—C4—C120.9 (3)C23—C15—C16—C242.2 (2)
C3—C4—C5—C61.1 (3)C15—C16—C17—C182.3 (3)
C12—C4—C5—C6179.05 (16)C24—C16—C17—C18176.32 (16)
C2—C1—C6—C52.0 (2)C14—C13—C18—C172.2 (2)
N1—C1—C6—C5176.97 (15)N2—C13—C18—C17173.74 (15)
C4—C5—C6—C10.1 (3)C16—C17—C18—C130.4 (3)
C1—N1—C7—O110.9 (3)C13—N2—C19—O41.7 (3)
C1—N1—C7—C8168.62 (15)C13—N2—C19—C20178.33 (16)
O1—C7—C8—C96.0 (2)O4—C19—C20—C210.8 (2)
N1—C7—C8—C9174.42 (14)N2—C19—C20—C21179.30 (15)
C7—C8—C9—C1075.78 (18)C19—C20—C21—C2275.46 (19)
C8—C9—C10—O26.6 (2)C20—C21—C22—O54.0 (2)
C8—C9—C10—O3173.82 (14)C20—C21—C22—O6176.04 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.85 (2)1.82 (2)2.6681 (18)174 (2)
N1—H1N···O4ii0.894 (18)2.127 (18)2.9909 (18)162.5 (15)
O6—H6O···O2i0.88 (2)1.78 (2)2.6555 (18)175 (2)
N2—H2N···O10.87 (2)2.26 (2)3.0676 (19)154.7 (17)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H15NO3
Mr221.25
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)9.736 (1), 9.919 (1), 12.601 (2)
α, β, γ (°)106.42 (1), 100.98 (1), 99.81 (1)
V3)1112.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.40 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.959, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7776, 4538, 3173
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.03
No. of reflections4538
No. of parameters305
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.850 (15)1.821 (16)2.6681 (18)174 (2)
N1—H1N···O4ii0.894 (18)2.127 (18)2.9909 (18)162.5 (15)
O6—H6O···O2i0.875 (15)1.782 (15)2.6555 (18)175 (2)
N2—H2N···O10.87 (2)2.26 (2)3.0676 (19)154.7 (17)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o1722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationJagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds