organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,8-Di-tert-butyl-3-(4-nitro­phen­yl)-2H-chromen-2-one

aCollege of Transportation, Southeast University, Nanjing 210096, People's Republic of China, and Department of Physics, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xfzhouphy@263.net

(Received 10 January 2010; accepted 18 January 2010; online 30 January 2010)

The title compound, C23H25NO4, was synthesized by the reaction of 2-(4-nitro­phen­yl)acetonitrile and 3,5-di-tert-butyl-2-hydroxy­benzaldehyde. The dihedral angle formed by the benzene ring and the mean plane through the benzopyran­one ring system is 35.57 (5)°. The nitro group is almost coplanar with the attached benzene ring [dihedral angle = 5.19 (15)°]. The crystal packing is stabilized by an inter­molecular C—H⋯O hydrogen-bond inter­action.

Related literature

For the applications and biological activity of coumarin deriv­atives, see: Tian et al. (2000[Tian, Y., Akiyama, E., Nagase, Y., Kanazawa, A., Tsutsumi, O. & Ikeda, T. (2000). Macromol. Chem. Phys. 201, 1640-1652.]); Fun et al. (2009[Fun, H.-K., Jebas, S. R., Parveen, M., Khanam, Z. & Ghalib, R. M. (2009). Acta Cryst. E65, o1322-o1323.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25NO4

  • Mr = 379.44

  • Orthorhombic, P b c a

  • a = 14.6463 (13) Å

  • b = 11.8634 (10) Å

  • c = 23.604 (2) Å

  • V = 4101.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 1.000

  • 33748 measured reflections

  • 4736 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.140

  • S = 1.01

  • 4736 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.93 2.55 3.409 (3) 154
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin (1-benzopyran-2-one) derivatives are a class of important organic compounds which have been found to be very useful in many applications as nonlinear optical materials, laser dyes, fluorescence materials, photorefractive materials, luminescence materials and as intermediates for drug synthesis (Tian et al., 2000). In addition, many natural coumarins possess a wide range of biological activities such as antifungal, antioxidant and antitumor activities (Fun et al. 2009). Herein the synthesis and crystal structure of the title compound is reported.

The molecular structure and atom-numbering scheme of the title compound are shown in Fig. 1. The C15—C16 bond is 1.347 (2) Å, which corresponds well to a typical CC double bond. In addition, the C18—C16—C15 and C16—C15—C1 bond angles are almost equal (122.24 (15) and 122.66 (16)° respectively). The coumarin ring system, consisting of atoms C15, C16, C17, O1, O4 and C1—C6, is almost planar with a maximum deviation from the least-squares plane of 0.0442 (16) Å for atom O4. The phenyl ring attached at the C16 atom is twisted by a dihedral angle of 35.57 (5)°. The nitro group is slightly rotated about the C—N bond by 5.19 (15)°. The crystal packing is stabilized by an intermolecular C—H···O hydrogen bond (Table 1).

Related literature top

For the applications and biological activity of coumarin derivatives, see: Tian et al. (2000); Fun et al. (2009).

Experimental top

2-(4-Nitrophenyl)acetonitrile (486 mg, 3 mmol) and 3,5-di-tert-butyl-2-hydroxybenzaldehyde (703 mg, 3 mmol) were dissolved in ethanol (20 ml) in a 50-ml round-bottom flask equipped with a magnetic stir bar and a water-cooled reflux condenser under nitrogen. The mixture was heated to reflux for 15 minutes, then three drops of piperidine and acetic acid were added. The solution was allowed to reflux for 4 h under nitrogen. After cooling, the reaction mixture was evaporated to dryness using a rotary evaporator to yield a yellow solid. The title compound was recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All H atoms were located geometrically and treated as riding atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Structure description top

Coumarin (1-benzopyran-2-one) derivatives are a class of important organic compounds which have been found to be very useful in many applications as nonlinear optical materials, laser dyes, fluorescence materials, photorefractive materials, luminescence materials and as intermediates for drug synthesis (Tian et al., 2000). In addition, many natural coumarins possess a wide range of biological activities such as antifungal, antioxidant and antitumor activities (Fun et al. 2009). Herein the synthesis and crystal structure of the title compound is reported.

The molecular structure and atom-numbering scheme of the title compound are shown in Fig. 1. The C15—C16 bond is 1.347 (2) Å, which corresponds well to a typical CC double bond. In addition, the C18—C16—C15 and C16—C15—C1 bond angles are almost equal (122.24 (15) and 122.66 (16)° respectively). The coumarin ring system, consisting of atoms C15, C16, C17, O1, O4 and C1—C6, is almost planar with a maximum deviation from the least-squares plane of 0.0442 (16) Å for atom O4. The phenyl ring attached at the C16 atom is twisted by a dihedral angle of 35.57 (5)°. The nitro group is slightly rotated about the C—N bond by 5.19 (15)°. The crystal packing is stabilized by an intermolecular C—H···O hydrogen bond (Table 1).

For the applications and biological activity of coumarin derivatives, see: Tian et al. (2000); Fun et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
6,8-Di-tert-butyl-3-(4-nitrophenyl)-2H-chromen-2-one top
Crystal data top
C23H25NO4F(000) = 1616
Mr = 379.44Dx = 1.229 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5698 reflections
a = 14.6463 (13) Åθ = 3.1–27.3°
b = 11.8634 (10) ŵ = 0.08 mm1
c = 23.604 (2) ÅT = 293 K
V = 4101.3 (6) Å3Block, yellow
Z = 80.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4736 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.2°
phi and ω scansh = 1918
Absorption correction: multi-scan
(SADABS; Bruker,2000)
k = 1515
Tmin = 0.982, Tmax = 1.000l = 3026
33748 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.7021P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4736 reflectionsΔρmax = 0.19 e Å3
254 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (4)
Crystal data top
C23H25NO4V = 4101.3 (6) Å3
Mr = 379.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.6463 (13) ŵ = 0.08 mm1
b = 11.8634 (10) ÅT = 293 K
c = 23.604 (2) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4736 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2000)
2809 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 1.000Rint = 0.053
33748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
4736 reflectionsΔρmin = 0.18 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14469 (8)0.87691 (10)0.19264 (5)0.0519 (3)
C10.04378 (11)0.96286 (14)0.12603 (7)0.0423 (4)
C20.05769 (11)0.88906 (14)0.17099 (7)0.0425 (4)
N10.50655 (12)1.22755 (18)0.01632 (8)0.0709 (5)
O20.49270 (12)1.31945 (18)0.00487 (8)0.1067 (6)
C30.01328 (11)0.82746 (14)0.19572 (7)0.0434 (4)
O30.58048 (12)1.18104 (17)0.01503 (9)0.1104 (7)
C40.09936 (11)0.84849 (14)0.17326 (7)0.0459 (4)
H4A0.14860.81070.18930.055*
C50.11757 (11)0.92252 (14)0.12817 (7)0.0433 (4)
C60.04451 (11)0.97845 (14)0.10493 (7)0.0452 (4)
H6A0.05391.02740.07470.054*
C70.00116 (12)0.74480 (15)0.24487 (8)0.0503 (4)
C80.07354 (17)0.65680 (19)0.22987 (11)0.0861 (7)
H8A0.12990.69400.22080.129*
H8B0.05340.61370.19780.129*
H8C0.08280.60750.26160.129*
C90.02893 (15)0.8108 (2)0.29770 (8)0.0726 (6)
H9A0.08430.85160.29020.109*
H9B0.03860.75950.32860.109*
H9C0.01870.86300.30750.109*
C100.08682 (14)0.68095 (18)0.25937 (9)0.0715 (6)
H10A0.10620.63800.22710.107*
H10B0.13370.73380.26950.107*
H10C0.07570.63100.29060.107*
C110.21566 (11)0.94186 (15)0.10840 (7)0.0475 (4)
C120.26345 (13)0.82947 (18)0.09799 (10)0.0705 (6)
H12A0.23160.78860.06900.106*
H12B0.32520.84300.08610.106*
H12C0.26370.78620.13230.106*
C130.26683 (13)1.00688 (19)0.15457 (9)0.0664 (6)
H13A0.23711.07780.16110.100*
H13B0.26690.96370.18900.100*
H13C0.32861.01990.14260.100*
C140.21945 (13)1.0105 (2)0.05374 (9)0.0685 (6)
H14A0.18951.08160.05950.103*
H14B0.28201.02320.04340.103*
H14C0.18920.96990.02400.103*
C150.12116 (11)1.02005 (14)0.10272 (7)0.0456 (4)
H15A0.11231.06840.07220.055*
C160.20632 (11)1.00669 (14)0.12319 (7)0.0447 (4)
C170.22005 (12)0.93221 (17)0.17162 (8)0.0529 (5)
C180.28618 (11)1.06494 (15)0.09819 (7)0.0461 (4)
C190.37009 (12)1.01170 (16)0.09219 (8)0.0565 (5)
H19A0.37760.93890.10600.068*
C200.44247 (12)1.06487 (18)0.06604 (8)0.0608 (5)
H20A0.49841.02860.06230.073*
C210.43052 (12)1.17234 (16)0.04563 (7)0.0538 (5)
C220.34929 (13)1.22816 (16)0.05115 (8)0.0578 (5)
H22A0.34251.30110.03730.069*
C230.27740 (12)1.17399 (16)0.07773 (8)0.0544 (5)
H23A0.22211.21150.08200.065*
O40.29087 (9)0.91451 (14)0.19558 (6)0.0807 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0473 (7)0.0605 (8)0.0480 (7)0.0011 (6)0.0026 (5)0.0141 (6)
C10.0472 (9)0.0418 (9)0.0380 (9)0.0019 (7)0.0015 (7)0.0018 (7)
C20.0442 (9)0.0442 (9)0.0390 (9)0.0035 (7)0.0014 (7)0.0002 (7)
N10.0655 (11)0.0793 (14)0.0680 (12)0.0223 (10)0.0043 (9)0.0057 (10)
O20.0982 (13)0.1086 (15)0.1132 (15)0.0251 (11)0.0095 (10)0.0500 (12)
C30.0530 (10)0.0385 (9)0.0387 (9)0.0006 (7)0.0008 (7)0.0009 (7)
O30.0677 (10)0.1078 (14)0.1556 (18)0.0113 (10)0.0351 (11)0.0174 (13)
C40.0496 (9)0.0436 (10)0.0445 (10)0.0030 (7)0.0030 (7)0.0015 (8)
C50.0468 (9)0.0425 (9)0.0405 (9)0.0014 (7)0.0001 (7)0.0029 (8)
C60.0501 (10)0.0452 (10)0.0402 (9)0.0048 (8)0.0018 (7)0.0055 (7)
C70.0563 (10)0.0488 (10)0.0458 (10)0.0016 (8)0.0010 (8)0.0084 (8)
C80.1032 (18)0.0653 (14)0.0898 (17)0.0275 (13)0.0165 (14)0.0257 (13)
C90.0846 (14)0.0847 (16)0.0485 (12)0.0168 (12)0.0113 (10)0.0076 (11)
C100.0800 (14)0.0669 (13)0.0676 (14)0.0178 (11)0.0094 (11)0.0259 (11)
C110.0448 (9)0.0492 (10)0.0486 (10)0.0028 (8)0.0006 (7)0.0013 (8)
C120.0577 (12)0.0658 (14)0.0879 (16)0.0063 (10)0.0137 (10)0.0057 (12)
C130.0577 (11)0.0726 (14)0.0691 (13)0.0102 (10)0.0083 (10)0.0038 (11)
C140.0527 (10)0.0902 (16)0.0627 (13)0.0075 (10)0.0050 (9)0.0145 (12)
C150.0504 (10)0.0468 (10)0.0396 (9)0.0006 (8)0.0013 (7)0.0060 (8)
C160.0455 (9)0.0467 (10)0.0420 (9)0.0014 (7)0.0005 (7)0.0019 (8)
C170.0458 (9)0.0635 (12)0.0494 (10)0.0002 (9)0.0016 (8)0.0092 (9)
C180.0481 (9)0.0507 (10)0.0394 (9)0.0027 (8)0.0034 (7)0.0001 (8)
C190.0533 (10)0.0557 (12)0.0604 (12)0.0012 (9)0.0013 (9)0.0089 (9)
C200.0484 (10)0.0694 (13)0.0646 (13)0.0002 (9)0.0032 (9)0.0039 (10)
C210.0540 (10)0.0600 (12)0.0473 (10)0.0146 (9)0.0005 (8)0.0002 (9)
C220.0650 (12)0.0484 (11)0.0600 (12)0.0077 (9)0.0025 (9)0.0054 (9)
C230.0519 (10)0.0514 (11)0.0600 (11)0.0008 (8)0.0009 (8)0.0013 (9)
O40.0516 (8)0.1155 (13)0.0749 (10)0.0047 (8)0.0127 (7)0.0394 (9)
Geometric parameters (Å, º) top
O1—C171.376 (2)C11—C121.526 (3)
O1—C21.3804 (19)C11—C141.527 (3)
C1—C21.391 (2)C11—C131.531 (2)
C1—C61.398 (2)C12—H12A0.9600
C1—C151.431 (2)C12—H12B0.9600
C2—C31.398 (2)C12—H12C0.9600
N1—O31.216 (2)C13—H13A0.9600
N1—O21.216 (2)C13—H13B0.9600
N1—C211.466 (2)C13—H13C0.9600
C3—C41.390 (2)C14—H14A0.9600
C3—C71.534 (2)C14—H14B0.9600
C4—C51.405 (2)C14—H14C0.9600
C4—H4A0.9300C15—C161.347 (2)
C5—C61.373 (2)C15—H15A0.9300
C5—C111.528 (2)C16—C171.459 (2)
C6—H6A0.9300C16—C181.481 (2)
C7—C91.528 (3)C17—O41.200 (2)
C7—C81.529 (3)C18—C231.387 (2)
C7—C101.533 (2)C18—C191.389 (2)
C8—H8A0.9600C19—C201.379 (2)
C8—H8B0.9600C19—H19A0.9300
C8—H8C0.9600C20—C211.374 (3)
C9—H9A0.9600C20—H20A0.9300
C9—H9B0.9600C21—C221.368 (3)
C9—H9C0.9600C22—C231.384 (2)
C10—H10A0.9600C22—H22A0.9300
C10—H10B0.9600C23—H23A0.9300
C10—H10C0.9600
C17—O1—C2123.84 (13)C12—C11—C5110.45 (15)
C2—C1—C6119.39 (15)C14—C11—C5111.87 (14)
C2—C1—C15118.41 (15)C13—C11—C5108.56 (14)
C6—C1—C15122.20 (15)C11—C12—H12A109.5
O1—C2—C1118.92 (14)C11—C12—H12B109.5
O1—C2—C3118.49 (14)H12A—C12—H12B109.5
C1—C2—C3122.59 (15)C11—C12—H12C109.5
O3—N1—O2123.03 (19)H12A—C12—H12C109.5
O3—N1—C21119.1 (2)H12B—C12—H12C109.5
O2—N1—C21117.90 (19)C11—C13—H13A109.5
C4—C3—C2114.90 (15)C11—C13—H13B109.5
C4—C3—C7121.89 (15)H13A—C13—H13B109.5
C2—C3—C7123.20 (14)C11—C13—H13C109.5
C3—C4—C5124.96 (15)H13A—C13—H13C109.5
C3—C4—H4A117.5H13B—C13—H13C109.5
C5—C4—H4A117.5C11—C14—H14A109.5
C6—C5—C4117.16 (15)C11—C14—H14B109.5
C6—C5—C11122.55 (15)H14A—C14—H14B109.5
C4—C5—C11120.24 (14)C11—C14—H14C109.5
C5—C6—C1120.96 (15)H14A—C14—H14C109.5
C5—C6—H6A119.5H14B—C14—H14C109.5
C1—C6—H6A119.5C16—C15—C1122.66 (16)
C9—C7—C3109.04 (15)C16—C15—H15A118.7
C9—C7—C8110.76 (17)C1—C15—H15A118.7
C3—C7—C8110.91 (15)C15—C16—C17118.68 (15)
C9—C7—C10107.15 (16)C15—C16—C18122.24 (15)
C3—C7—C10111.65 (14)C17—C16—C18119.07 (14)
C8—C7—C10107.27 (16)O4—C17—O1116.10 (16)
C7—C8—H8A109.5O4—C17—C16126.47 (17)
C7—C8—H8B109.5O1—C17—C16117.43 (14)
H8A—C8—H8B109.5C23—C18—C19118.07 (16)
C7—C8—H8C109.5C23—C18—C16120.05 (15)
H8A—C8—H8C109.5C19—C18—C16121.82 (16)
H8B—C8—H8C109.5C18—C19—C20121.18 (18)
C7—C9—H9A109.5C18—C19—H19A119.4
C7—C9—H9B109.5C20—C19—H19A119.4
H9A—C9—H9B109.5C21—C20—C19118.90 (18)
C7—C9—H9C109.5C21—C20—H20A120.5
H9A—C9—H9C109.5C19—C20—H20A120.5
H9B—C9—H9C109.5C22—C21—C20121.77 (17)
C7—C10—H10A109.5C22—C21—N1119.31 (18)
C7—C10—H10B109.5C20—C21—N1118.91 (18)
H10A—C10—H10B109.5C21—C22—C23118.69 (18)
C7—C10—H10C109.5C21—C22—H22A120.7
H10A—C10—H10C109.5C23—C22—H22A120.7
H10B—C10—H10C109.5C18—C23—C22121.37 (17)
C12—C11—C14108.27 (16)C18—C23—H23A119.3
C12—C11—C13109.29 (16)C22—C23—H23A119.3
C14—C11—C13108.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.553.409 (3)154
Symmetry code: (i) x1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC23H25NO4
Mr379.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.6463 (13), 11.8634 (10), 23.604 (2)
V3)4101.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker,2000)
Tmin, Tmax0.982, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
33748, 4736, 2809
Rint0.053
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.01
No. of reflections4736
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O2i0.932.553.409 (3)154
Symmetry code: (i) x1/2, y+5/2, z.
 

Acknowledgements

This work was supported by Jiangsu Province Innovation Project No. CX07B-032z (XiaoFeng Zhou) and the Scientific Research Foundation of the Graduate School of Southeast University

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Parveen, M., Khanam, Z. & Ghalib, R. M. (2009). Acta Cryst. E65, o1322–o1323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y., Akiyama, E., Nagase, Y., Kanazawa, A., Tsutsumi, O. & Ikeda, T. (2000). Macromol. Chem. Phys. 201, 1640–1652.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds