metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[2-(Ethyl­amino)ethyl­imino­meth­yl]-5-meth­oxy­phenolato}thio­cyanato­nickel(II)

aCollege of Chemistry and Biology Engineering, Yichun University, Yichun 336000, People's Republic of China
*Correspondence e-mail: liulin_ycu@126.com

(Received 12 January 2010; accepted 19 January 2010; online 23 January 2010)

In the title mononuclear nickel(II) complex, [Ni(C12H17N2O2)(NCS)], the metal atom is four-coordinated in a tetra­hedrally distorted square-planar geometry by the phenolate O atom, the imine N atom and the amine N atom of the Schiff base ligand and by the N atom of a thio­cyanate ligand. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers through inter­molecular N—H⋯O hydrogen bonds. These dimers are further connected by inter­molecular C—H⋯S hydrogen bonds, forming chains running parallel to [101].

Related literature

For general background to nickel(II) complexes with Schiff bases, see: Campbell & Urbach (1973[Campbell, T. B. & Urbach, F. L. (1973). Inorg. Chem. 12, 1840-1846.]); Wallis & Cummings (1974[Wallis, W. N. & Cummings, S. C. (1974). Inorg. Chem. 13, 991-994.]); Polt et al. (2003[Polt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566-574.]); Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]). For the structures of related complexes, see: Montazerozohori et al. (2009[Montazerozohori, M., Habibi, M. H., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, m703.]); Zhu et al. (2004[Zhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634-m636.], 2006[Zhu, C.-G., Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m1816-m1817.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H17N2O2)(NCS)]

  • Mr = 338.07

  • Monoclinic, P 21 /c

  • a = 9.298 (7) Å

  • b = 19.679 (14) Å

  • c = 8.461 (7) Å

  • β = 111.716 (11)°

  • V = 1438.3 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.754

  • 6520 measured reflections

  • 2500 independent reflections

  • 1564 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.127

  • S = 1.08

  • 2500 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (5) 2.25 (3) 3.059 (6) 150 (5)
C7—H7⋯S1ii 0.93 2.83 3.708 (6) 158
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x+1, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel(II) complexes with Schiff bases have been extensively studied (Campbell & Urbach, 1973; Wallis & Cummings, 1974; Polt et al., 2003; Mukhopadhyay et al., 2003). In the title compound, the Ni atom is four-coordinate by the phenolate O atom, imine N atom, and amine N atom of the Schiff base ligand, and by the N atom of a thiocyanate ligand, forming a tetrahedrally distorted square-planar geometry (Fig. 1). Bond lengths and angles involving the metal atom are comparable with those observed in similar complexes (Montazerozohori et al., 2009; Zhu et al., 2004; Zhu et al., 2006). The Ni1/N1/O1/C1/C2/C7 six-membered chelate ring is approximately planar (maximum deviation 0.063 (4) Å for atom N1, the Ni1/N1/N2/C8/C8 five-membered chelate ring assumes an envelope conformation, with atom C9 displaced by 0.589 (6) Å from the mean plane of the other atoms. In the crystal structure, centrosymmetrically related complex molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming a dimer (Fig. 2). The dimers are further connected by C—H···S hydrogen bonds, forming chains running parallel to [101].

Related literature top

For general background to nickel(II) complexes with Schiff bases, see: Campbell & Urbach (1973); Wallis & Cummings (1974); Polt et al. (2003); Mukhopadhyay et al. (2003). For the structures of related complexes, see: Montazerozohori et al. (2009); Zhu et al. (2004, 2006).

Experimental top

Equimolar quantities (0.1 mmol each) of N-ethylethane-1,2-diamine, ammonium thiocyanate, and Ni(CH3COO)2.4H2O were mixed and stirred in a methanol solution for 30 min at reflux. After keeping the filtrate in air for a few days, red block crystals were formed on slow evaporation of the solvent.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

Nickel(II) complexes with Schiff bases have been extensively studied (Campbell & Urbach, 1973; Wallis & Cummings, 1974; Polt et al., 2003; Mukhopadhyay et al., 2003). In the title compound, the Ni atom is four-coordinate by the phenolate O atom, imine N atom, and amine N atom of the Schiff base ligand, and by the N atom of a thiocyanate ligand, forming a tetrahedrally distorted square-planar geometry (Fig. 1). Bond lengths and angles involving the metal atom are comparable with those observed in similar complexes (Montazerozohori et al., 2009; Zhu et al., 2004; Zhu et al., 2006). The Ni1/N1/O1/C1/C2/C7 six-membered chelate ring is approximately planar (maximum deviation 0.063 (4) Å for atom N1, the Ni1/N1/N2/C8/C8 five-membered chelate ring assumes an envelope conformation, with atom C9 displaced by 0.589 (6) Å from the mean plane of the other atoms. In the crystal structure, centrosymmetrically related complex molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming a dimer (Fig. 2). The dimers are further connected by C—H···S hydrogen bonds, forming chains running parallel to [101].

For general background to nickel(II) complexes with Schiff bases, see: Campbell & Urbach (1973); Wallis & Cummings (1974); Polt et al. (2003); Mukhopadhyay et al. (2003). For the structures of related complexes, see: Montazerozohori et al. (2009); Zhu et al. (2004, 2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with 30% displacement ellipsoids.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing the formation of a dimer through N—H···O hydrogen bonds. Hydrogen atoms not involved in hydrogen interactions are omitted for clarity.
{2-[2-(Ethylamino)ethyliminomethyl]-5-methoxyphenolato}thiocyanatonickel(II) top
Crystal data top
[Ni(C12H17N2O2)(NCS)]F(000) = 704
Mr = 338.07Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1958 reflections
a = 9.298 (7) Åθ = 2.4–24.5°
b = 19.679 (14) ŵ = 1.50 mm1
c = 8.461 (7) ÅT = 298 K
β = 111.716 (11)°Block, red
V = 1438.3 (19) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2500 independent reflections
Radiation source: fine-focus sealed tube1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ω scanθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1011
Tmin = 0.725, Tmax = 0.754k = 2316
6520 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2075P]
where P = (Fo2 + 2Fc2)/3
2500 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
[Ni(C12H17N2O2)(NCS)]V = 1438.3 (19) Å3
Mr = 338.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.298 (7) ŵ = 1.50 mm1
b = 19.679 (14) ÅT = 298 K
c = 8.461 (7) Å0.23 × 0.20 × 0.20 mm
β = 111.716 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2500 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1564 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.754Rint = 0.071
6520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.40 e Å3
2500 reflectionsΔρmin = 0.52 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.66858 (7)0.96690 (3)0.04177 (8)0.0404 (2)
N10.8603 (5)0.9561 (2)0.2264 (5)0.0469 (11)
N20.5948 (5)0.8919 (2)0.1568 (6)0.0493 (11)
N30.4937 (5)0.9566 (2)0.1713 (6)0.0522 (12)
O10.7312 (4)1.04775 (15)0.0367 (4)0.0453 (9)
O21.0527 (5)1.2299 (2)0.0529 (5)0.0685 (12)
S10.3559 (2)0.90996 (10)0.4968 (2)0.1057 (8)
C10.9916 (6)1.0501 (2)0.1607 (6)0.0430 (13)
C20.8670 (6)1.0760 (3)0.0252 (6)0.0401 (12)
C30.8866 (6)1.1367 (2)0.0506 (6)0.0459 (13)
H30.80421.15500.14060.055*
C41.0268 (7)1.1694 (3)0.0070 (7)0.0501 (14)
C51.1530 (7)1.1415 (3)0.1362 (7)0.0557 (15)
H51.24891.16290.17170.067*
C61.1350 (6)1.0835 (3)0.2092 (7)0.0516 (14)
H61.22021.06460.29470.062*
C70.9819 (7)0.9921 (3)0.2524 (6)0.0475 (13)
H71.07190.97840.34020.057*
C80.8622 (6)0.8990 (2)0.3367 (6)0.0534 (15)
H8A0.93470.90740.45150.064*
H8B0.89290.85770.29490.064*
C90.7018 (6)0.8923 (3)0.3346 (7)0.0562 (15)
H9A0.69190.85040.39030.067*
H9B0.67840.93000.39470.067*
C100.5750 (7)0.8253 (3)0.0735 (8)0.0659 (17)
H10A0.67600.80840.08350.079*
H10B0.51440.83120.04670.079*
C110.4994 (8)0.7737 (3)0.1418 (11)0.112 (3)
H11A0.56220.76480.25860.168*
H11B0.48690.73260.07700.168*
H11C0.39980.79000.13420.168*
C120.9247 (8)1.2632 (3)0.1721 (8)0.080 (2)
H12A0.88351.23610.27330.120*
H12B0.95661.30650.19990.120*
H12C0.84661.26980.12470.120*
C130.4377 (6)0.9358 (3)0.3067 (8)0.0506 (14)
H20.507 (4)0.908 (3)0.164 (7)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0370 (4)0.0427 (4)0.0389 (4)0.0023 (3)0.0108 (3)0.0030 (3)
N10.046 (3)0.051 (3)0.046 (3)0.007 (2)0.021 (2)0.009 (2)
N20.045 (3)0.049 (3)0.052 (3)0.002 (2)0.016 (2)0.001 (2)
N30.046 (3)0.061 (3)0.048 (3)0.009 (2)0.017 (2)0.004 (2)
O10.038 (2)0.049 (2)0.045 (2)0.0006 (17)0.0100 (17)0.0081 (15)
O20.066 (3)0.070 (3)0.077 (3)0.021 (2)0.036 (3)0.003 (2)
S10.1060 (17)0.1090 (16)0.0647 (12)0.0371 (12)0.0118 (11)0.0307 (10)
C10.047 (4)0.047 (3)0.037 (3)0.005 (3)0.018 (3)0.004 (2)
C20.033 (3)0.052 (3)0.039 (3)0.002 (3)0.018 (3)0.007 (2)
C30.045 (3)0.050 (3)0.049 (3)0.002 (3)0.024 (3)0.004 (2)
C40.058 (4)0.054 (3)0.051 (4)0.005 (3)0.036 (3)0.001 (3)
C50.043 (4)0.077 (4)0.056 (4)0.015 (3)0.028 (3)0.008 (3)
C60.037 (3)0.071 (4)0.050 (3)0.001 (3)0.019 (3)0.006 (3)
C70.040 (3)0.057 (3)0.045 (3)0.007 (3)0.014 (3)0.005 (3)
C80.059 (4)0.048 (3)0.046 (3)0.004 (3)0.011 (3)0.007 (2)
C90.057 (4)0.064 (4)0.049 (4)0.001 (3)0.020 (3)0.011 (3)
C100.067 (4)0.053 (4)0.076 (4)0.010 (3)0.024 (4)0.001 (3)
C110.099 (6)0.053 (4)0.213 (9)0.003 (4)0.092 (6)0.008 (5)
C120.095 (5)0.067 (4)0.087 (5)0.015 (4)0.044 (5)0.019 (4)
C130.043 (4)0.050 (3)0.053 (4)0.011 (3)0.011 (3)0.002 (3)
Geometric parameters (Å, º) top
Ni1—O11.897 (3)C4—C51.387 (7)
Ni1—N11.898 (4)C5—C61.338 (7)
Ni1—N31.940 (5)C5—H50.9300
Ni1—N22.023 (5)C6—H60.9300
N1—C71.281 (6)C7—H70.9300
N1—C81.457 (6)C8—C91.491 (7)
N2—C91.465 (6)C8—H8A0.9700
N2—C101.467 (7)C8—H8B0.9700
N2—H20.90 (5)C9—H9A0.9700
N3—C131.144 (6)C9—H9B0.9700
O1—C21.299 (5)C10—C111.469 (8)
O2—C41.351 (6)C10—H10A0.9700
O2—C121.405 (7)C10—H10B0.9700
S1—C131.588 (6)C11—H11A0.9600
C1—C21.391 (7)C11—H11B0.9600
C1—C71.403 (7)C11—H11C0.9600
C1—C61.404 (7)C12—H12A0.9600
C2—C31.399 (7)C12—H12B0.9600
C3—C41.371 (7)C12—H12C0.9600
C3—H30.9300
O1—Ni1—N193.75 (17)C1—C6—H6119.0
O1—Ni1—N391.31 (16)N1—C7—C1126.0 (5)
N1—Ni1—N3164.13 (18)N1—C7—H7117.0
O1—Ni1—N2169.56 (16)C1—C7—H7117.0
N1—Ni1—N284.54 (18)N1—C8—C9106.6 (4)
N3—Ni1—N293.08 (18)N1—C8—H8A110.4
C7—N1—C8121.0 (5)C9—C8—H8A110.4
C7—N1—Ni1125.4 (4)N1—C8—H8B110.4
C8—N1—Ni1113.5 (3)C9—C8—H8B110.4
C9—N2—C10114.5 (4)H8A—C8—H8B108.6
C9—N2—Ni1105.5 (3)N2—C9—C8108.0 (4)
C10—N2—Ni1115.2 (4)N2—C9—H9A110.1
C9—N2—H2103 (4)C8—C9—H9A110.1
C10—N2—H2113 (4)N2—C9—H9B110.1
Ni1—N2—H2105 (4)C8—C9—H9B110.1
C13—N3—Ni1151.9 (5)H9A—C9—H9B108.4
C2—O1—Ni1126.6 (3)N2—C10—C11114.9 (6)
C4—O2—C12117.3 (5)N2—C10—H10A108.5
C2—C1—C7123.4 (5)C11—C10—H10A108.5
C2—C1—C6118.8 (5)N2—C10—H10B108.5
C7—C1—C6117.9 (5)C11—C10—H10B108.5
O1—C2—C1124.4 (5)H10A—C10—H10B107.5
O1—C2—C3116.9 (5)C10—C11—H11A109.5
C1—C2—C3118.7 (5)C10—C11—H11B109.5
C4—C3—C2120.4 (5)H11A—C11—H11B109.5
C4—C3—H3119.8C10—C11—H11C109.5
C2—C3—H3119.8H11A—C11—H11C109.5
O2—C4—C3123.9 (5)H11B—C11—H11C109.5
O2—C4—C5115.4 (5)O2—C12—H12A109.5
C3—C4—C5120.7 (5)O2—C12—H12B109.5
C6—C5—C4119.2 (5)H12A—C12—H12B109.5
C6—C5—H5120.4O2—C12—H12C109.5
C4—C5—H5120.4H12A—C12—H12C109.5
C5—C6—C1122.1 (5)H12B—C12—H12C109.5
C5—C6—H6119.0N3—C13—S1177.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (5)2.25 (3)3.059 (6)150 (5)
C7—H7···S1ii0.932.833.708 (6)158
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C12H17N2O2)(NCS)]
Mr338.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.298 (7), 19.679 (14), 8.461 (7)
β (°) 111.716 (11)
V3)1438.3 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.725, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
6520, 2500, 1564
Rint0.071
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.127, 1.08
No. of reflections2500
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.52

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (5)2.25 (3)3.059 (6)150 (5)
C7—H7···S1ii0.932.833.708 (6)158
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by Yichun University.

References

First citationBruker (1998). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, T. B. & Urbach, F. L. (1973). Inorg. Chem. 12, 1840–1846.  CrossRef CAS Web of Science Google Scholar
First citationMontazerozohori, M., Habibi, M. H., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, m703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPolt, R., Kelly, B. D., Dangel, B. D., Tadikonda, U. B., Ross, R. E., Raitsimring, A. M. & Astashkin, A. V. (2003). Inorg. Chem. 42, 566–574.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWallis, W. N. & Cummings, S. C. (1974). Inorg. Chem. 13, 991–994.  CrossRef CAS Web of Science Google Scholar
First citationZhu, B., Ruang, W. & Zhu, Z. (2004). Acta Cryst. E60, m634–m636.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wang, F.-W. & Wei, Y.-J. (2006). Acta Cryst. E62, m1816–m1817.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds