metal-organic compounds
Diazidobis[(1-methyl-1H-benzimidazol-2-yl)methanol-κ2N3,O]manganese(II)
aSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: zmh@mailbox.gxnu.edu.cn
The title complex, [Mn(N3)2(C9H10N2O)2], possesses crystallographically imposed twofold symmetry. The MnII atom is coordinated by four N atoms and two O atoms in a distorted octahedral geometry. The crystal packing is stabilized by strong intermolecular O—H⋯N hydrogen bonds.
Related literature
For the synthesis of the ligand, see: van Albada et al. (1995) and literature cited therein. For the metal(II) complexes of a similar N-heterocycle, see: Zeng et al. (2006); Zhou et al. (2007); Alagna et al. (1984); Hamilton et al. (1979).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810002126/si2238sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810002126/si2238Isup2.hkl
(1-methyl-1H-benzimidazol-2-yl)methanol was purchased from a chemical supplier. This reagent (0.16 g, 1 mmol), manganese(II) nitrate hexahydrate (0.14 g, 0.5 mmol) and sodium azide (0.07 g, 1 mmol) were dissolved in water (10 ml) that was kept at about 333 K. Colorless blocks separated from the solution after one week.
The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and included in the
in the riding-model approximation, with Uiso(H) = 1.2(1.5)Ueq(C, Cmethyl). The hydroxy H atom has been located in a difference Fourier map and refined isotropically with a distance restraint of O—H = 0.85 (1) Å, and Uiso(H) = 1.2Ueq(O).The coordinated modes of (1-methyl-1H-benzimidazol-2-yl)methanol ligand are similar to our previously repored benzimidazol-2-yl methanol from the structural point, the latter has been shown to bind to cobalt(II) as a neutral chelate (Zeng et al., 2006, Zhou et al., 2007). This feature is also preserved in the present manganese(II) complex.
In the title compound, the ligand chelates through the hydroxyl O and imino N atoms, resulting in a N4O2Mn octahedral geometry at the metal center (Fig. 1, Table 1), like that observed in copper (Hamilton et al., 1979) and nickel (Alagna et al., 1984) adducts. In this structure, the azide anion as a terminal ligand coordinated to MnII atom, and N–N–N bond lengths and bond angle are close to compound [Cu(tbz)(N3)2]2(CH3OH)2 (tbz = bis(2-benzimidazolyl)propane) (Albada et al., 1995).The complex possesses crystallographically imposed twofold symmetry. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds which extend along the crystallographic twofold rotation axis (Fig. 2, Table 2).
For the synthesis of the ligand, see: Albada et al. (1995) and literature cited therein. For the metal(II) complexes of a similar N-heterocycle, see: Zeng et al. (2006); Zhou et al. (2007); Alagna et al. (1984); Hamilton et al. (1979).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).[Mn(N3)2(C9H10N2O)2] | F(000) = 956 |
Mr = 463.38 | Dx = 1.551 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1818 reflections |
a = 15.466 (3) Å | θ = 2.4–26.7° |
b = 7.5438 (16) Å | µ = 0.71 mm−1 |
c = 18.095 (4) Å | T = 173 K |
β = 109.989 (4)° | Block, colorless |
V = 1984.0 (7) Å3 | 0.33 × 0.22 × 0.10 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 1741 independent reflections |
Radiation source: fine-focus sealed tube | 1345 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
phi and ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan SADABS (Sheldrick, 1996) | h = −16→18 |
Tmin = 0.801, Tmax = 0.933 | k = −8→8 |
4125 measured reflections | l = −15→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0608P)2 + 4.1072P] where P = (Fo2 + 2Fc2)/3 |
1741 reflections | (Δ/σ)max < 0.001 |
142 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Mn(N3)2(C9H10N2O)2] | V = 1984.0 (7) Å3 |
Mr = 463.38 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.466 (3) Å | µ = 0.71 mm−1 |
b = 7.5438 (16) Å | T = 173 K |
c = 18.095 (4) Å | 0.33 × 0.22 × 0.10 mm |
β = 109.989 (4)° |
Bruker SMART APEX CCD area-detector diffractometer | 1741 independent reflections |
Absorption correction: multi-scan SADABS (Sheldrick, 1996) | 1345 reflections with I > 2σ(I) |
Tmin = 0.801, Tmax = 0.933 | Rint = 0.029 |
4125 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.46 e Å−3 |
1741 reflections | Δρmin = −0.29 e Å−3 |
142 parameters |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. In Checkcif report, the following ALERTS were generated PLAT230_ALERT_2_C Hirshfeld Test Diff for N3 – N4.. 5.98 su Author response: It is due to electron shift or resonance (N=N–N or N–N=N) bond lengths appear shorter than expected, see: Albada et al. (1995). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.12170 (15) | 0.1356 (3) | 0.26588 (12) | 0.0324 (5) | |
H1 | 0.1264 | 0.0343 | 0.2875 | 0.049* | |
Mn1 | 0.0000 | 0.32504 (9) | 0.2500 | 0.0247 (2) | |
N1 | −0.00030 (17) | 0.2562 (3) | 0.13315 (13) | 0.0228 (6) | |
N2 | 0.07803 (16) | 0.1833 (3) | 0.05480 (14) | 0.0226 (5) | |
N3 | 0.1101 (2) | 0.5198 (4) | 0.28397 (17) | 0.0405 (7) | |
N4 | 0.11891 (18) | 0.6678 (4) | 0.30523 (15) | 0.0324 (7) | |
N5 | 0.1360 (3) | 0.8099 (4) | 0.3311 (2) | 0.0545 (9) | |
C1 | 0.1524 (2) | 0.1270 (5) | 0.20037 (18) | 0.0316 (8) | |
H1A | 0.1698 | 0.0038 | 0.1928 | 0.038* | |
H1B | 0.2070 | 0.2037 | 0.2096 | 0.038* | |
C2 | 0.0761 (2) | 0.1879 (4) | 0.12911 (17) | 0.0226 (6) | |
C3 | −0.05362 (19) | 0.2995 (4) | 0.05571 (17) | 0.0208 (6) | |
C4 | −0.1407 (2) | 0.3733 (4) | 0.02570 (18) | 0.0257 (7) | |
H4A | −0.1745 | 0.4034 | 0.0590 | 0.031* | |
C5 | −0.1764 (2) | 0.4013 (4) | −0.05442 (18) | 0.0307 (7) | |
H5A | −0.2359 | 0.4520 | −0.0767 | 0.037* | |
C6 | −0.1269 (2) | 0.3569 (4) | −0.10337 (18) | 0.0331 (8) | |
H6A | −0.1538 | 0.3782 | −0.1583 | 0.040* | |
C7 | −0.0403 (2) | 0.2830 (4) | −0.07448 (18) | 0.0289 (7) | |
H7B | −0.0068 | 0.2526 | −0.1080 | 0.035* | |
C8 | −0.0045 (2) | 0.2554 (4) | 0.00618 (17) | 0.0230 (6) | |
C9 | 0.1533 (2) | 0.1183 (5) | 0.03086 (19) | 0.0309 (7) | |
H9A | 0.1617 | −0.0089 | 0.0419 | 0.046* | |
H9B | 0.2100 | 0.1814 | 0.0602 | 0.046* | |
H9C | 0.1387 | 0.1388 | −0.0256 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0388 (13) | 0.0343 (13) | 0.0242 (11) | 0.0082 (10) | 0.0111 (10) | 0.0071 (9) |
Mn1 | 0.0313 (4) | 0.0266 (4) | 0.0185 (3) | 0.000 | 0.0116 (3) | 0.000 |
N1 | 0.0244 (13) | 0.0266 (14) | 0.0183 (12) | 0.0014 (11) | 0.0087 (10) | −0.0004 (10) |
N2 | 0.0221 (13) | 0.0260 (13) | 0.0238 (12) | 0.0008 (10) | 0.0129 (10) | −0.0026 (10) |
N3 | 0.0522 (19) | 0.0308 (18) | 0.0451 (18) | −0.0144 (14) | 0.0254 (15) | −0.0073 (14) |
N4 | 0.0325 (15) | 0.043 (2) | 0.0243 (14) | −0.0057 (14) | 0.0135 (12) | 0.0027 (13) |
N5 | 0.081 (3) | 0.0340 (19) | 0.048 (2) | −0.0135 (18) | 0.0225 (19) | −0.0063 (16) |
C1 | 0.0296 (17) | 0.0375 (19) | 0.0296 (17) | 0.0092 (14) | 0.0125 (14) | 0.0043 (14) |
C2 | 0.0248 (16) | 0.0230 (16) | 0.0214 (14) | −0.0001 (13) | 0.0096 (12) | −0.0014 (12) |
C3 | 0.0216 (15) | 0.0198 (15) | 0.0221 (14) | −0.0029 (12) | 0.0088 (12) | 0.0016 (11) |
C4 | 0.0231 (16) | 0.0266 (17) | 0.0295 (16) | −0.0012 (13) | 0.0117 (13) | −0.0016 (13) |
C5 | 0.0238 (16) | 0.0314 (18) | 0.0314 (17) | 0.0006 (14) | 0.0023 (14) | 0.0036 (14) |
C6 | 0.0376 (19) | 0.036 (2) | 0.0205 (15) | −0.0087 (15) | 0.0031 (14) | 0.0024 (13) |
C7 | 0.0333 (18) | 0.0334 (19) | 0.0235 (15) | −0.0070 (14) | 0.0140 (14) | −0.0023 (13) |
C8 | 0.0233 (15) | 0.0240 (15) | 0.0237 (15) | −0.0033 (12) | 0.0106 (12) | −0.0022 (12) |
C9 | 0.0273 (17) | 0.0376 (19) | 0.0330 (17) | 0.0039 (14) | 0.0170 (14) | −0.0043 (14) |
O1—C1 | 1.421 (4) | C1—H1A | 0.9900 |
O1—Mn1 | 2.302 (2) | C1—H1B | 0.9900 |
O1—H1 | 0.8500 | C3—C4 | 1.385 (4) |
Mn1—N3 | 2.172 (3) | C3—C8 | 1.399 (4) |
Mn1—N3i | 2.172 (3) | C4—C5 | 1.380 (4) |
Mn1—N1 | 2.176 (2) | C4—H4A | 0.9500 |
Mn1—N1i | 2.176 (2) | C5—C6 | 1.395 (5) |
Mn1—O1i | 2.302 (2) | C5—H5A | 0.9500 |
N1—C2 | 1.314 (4) | C6—C7 | 1.379 (5) |
N1—C3 | 1.400 (4) | C6—H6A | 0.9500 |
N2—C2 | 1.355 (4) | C7—C8 | 1.388 (4) |
N2—C8 | 1.389 (4) | C7—H7B | 0.9500 |
N2—C9 | 1.459 (4) | C9—H9A | 0.9800 |
N3—N4 | 1.174 (4) | C9—H9B | 0.9800 |
N4—N5 | 1.163 (4) | C9—H9C | 0.9800 |
C1—C2 | 1.492 (4) | ||
C1—O1—Mn1 | 114.60 (17) | C2—C1—H1B | 110.0 |
C1—O1—H1 | 110.0 | H1A—C1—H1B | 108.4 |
Mn1—O1—H1 | 123.6 | N1—C2—N2 | 113.0 (3) |
N3—Mn1—N3i | 94.89 (17) | N1—C2—C1 | 122.2 (3) |
N3—Mn1—N1 | 100.23 (10) | N2—C2—C1 | 124.8 (3) |
N3i—Mn1—N1 | 98.36 (10) | C4—C3—C8 | 120.8 (3) |
N3—Mn1—N1i | 98.36 (10) | C4—C3—N1 | 130.3 (3) |
N3i—Mn1—N1i | 100.23 (10) | C8—C3—N1 | 108.8 (3) |
N1—Mn1—N1i | 152.37 (14) | C5—C4—C3 | 117.4 (3) |
N3—Mn1—O1i | 169.59 (9) | C5—C4—H4A | 121.3 |
N3i—Mn1—O1i | 81.74 (10) | C3—C4—H4A | 121.3 |
N1—Mn1—O1i | 90.02 (9) | C4—C5—C6 | 121.4 (3) |
N1i—Mn1—O1i | 72.72 (8) | C4—C5—H5A | 119.3 |
N3—Mn1—O1 | 81.74 (10) | C6—C5—H5A | 119.3 |
N3i—Mn1—O1 | 169.59 (9) | C7—C6—C5 | 122.0 (3) |
N1—Mn1—O1 | 72.72 (8) | C7—C6—H6A | 119.0 |
N1i—Mn1—O1 | 90.02 (9) | C5—C6—H6A | 119.0 |
O1i—Mn1—O1 | 103.23 (12) | C6—C7—C8 | 116.5 (3) |
C2—N1—C3 | 105.6 (2) | C6—C7—H7B | 121.8 |
C2—N1—Mn1 | 116.39 (19) | C8—C7—H7B | 121.8 |
C3—N1—Mn1 | 136.2 (2) | C7—C8—N2 | 132.4 (3) |
C2—N2—C8 | 106.9 (2) | C7—C8—C3 | 121.9 (3) |
C2—N2—C9 | 126.4 (3) | N2—C8—C3 | 105.7 (2) |
C8—N2—C9 | 126.6 (2) | N2—C9—H9A | 109.5 |
N4—N3—Mn1 | 136.7 (3) | N2—C9—H9B | 109.5 |
N5—N4—N3 | 173.4 (4) | H9A—C9—H9B | 109.5 |
O1—C1—C2 | 108.4 (2) | N2—C9—H9C | 109.5 |
O1—C1—H1A | 110.0 | H9A—C9—H9C | 109.5 |
C2—C1—H1A | 110.0 | H9B—C9—H9C | 109.5 |
O1—C1—H1B | 110.0 |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N5ii | 0.85 | 1.85 | 2.701 (4) | 178 |
Symmetry code: (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Mn(N3)2(C9H10N2O)2] |
Mr | 463.38 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 15.466 (3), 7.5438 (16), 18.095 (4) |
β (°) | 109.989 (4) |
V (Å3) | 1984.0 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.33 × 0.22 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan SADABS (Sheldrick, 1996) |
Tmin, Tmax | 0.801, 0.933 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4125, 1741, 1345 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.116, 1.02 |
No. of reflections | 1741 |
No. of parameters | 142 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.29 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010) and PLATON (Spek, 2009).
O1—Mn1 | 2.302 (2) | Mn1—N1 | 2.176 (2) |
Mn1—N3 | 2.172 (3) | Mn1—N1i | 2.176 (2) |
Mn1—N3i | 2.172 (3) | Mn1—O1i | 2.302 (2) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N5ii | 0.85 | 1.85 | 2.701 (4) | 177.9 |
Symmetry code: (ii) x, y−1, z. |
Acknowledgements
We thank Central South University and Guangxi Normal University for supporting this study.
References
Alagna, L., Hasnain, S. S., Piggott, B. & Williams, D. J. (1984). Biochem. J. 220, 591–595. CAS PubMed Web of Science Google Scholar
Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. J. & Reedijk, J. (1995). Inorg. Chem. 34, 4910–4917. Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Hamilton, G. J., Ferraro, J. R. & Sinn, E. (1979). J. Chem. Soc. Dalton Trans. pp. 515–519. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Zeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101–m2102. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15–m16. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordinated modes of (1-methyl-1H-benzimidazol-2-yl)methanol ligand are similar to our previously repored benzimidazol-2-yl methanol from the structural point, the latter has been shown to bind to cobalt(II) as a neutral chelate (Zeng et al., 2006, Zhou et al., 2007). This feature is also preserved in the present manganese(II) complex.
In the title compound, the ligand chelates through the hydroxyl O and imino N atoms, resulting in a N4O2Mn octahedral geometry at the metal center (Fig. 1, Table 1), like that observed in copper (Hamilton et al., 1979) and nickel (Alagna et al., 1984) adducts. In this structure, the azide anion as a terminal ligand coordinated to MnII atom, and N–N–N bond lengths and bond angle are close to compound [Cu(tbz)(N3)2]2(CH3OH)2 (tbz = bis(2-benzimidazolyl)propane) (Albada et al., 1995).The complex possesses crystallographically imposed twofold symmetry. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds which extend along the crystallographic twofold rotation axis (Fig. 2, Table 2).