metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(1-methyl-1H-benzimidazol-2-yl)methanol-κ2N3,O]bis­­(thio­cyanato-κN)cobalt(II) methanol solvate

aSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: zmh@mailbox.gxnu.edu.cn

(Received 13 January 2010; accepted 18 January 2010; online 23 January 2010)

In the mononuclear title complex, [Co(NCS)2(C9H10N2O)2]·CH3OH, the cobalt(II) ion is surrounded by two (1-methyl-1H-benzimidazol-2-yl)methanol bidentate ligands and two thio­cyanate ligands, and exhibits a distorted octa­hedral coordination by four N atoms and two O atoms. The structure is consolidated by hydrogen bonds between the organic ligand, thio­cyanate anion and the uncoordinated methanol mol­ecule, leading to a chain along [100].

Related literature

For the synthesis of the ligand, see: van Albada et al. (1995[Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. L. & Reedijk, J. (1995). Inorg. Chem. 34, 4910-4917.]) and literature cited therein. For the cobalt(II) dithio­cyanato adduct, see: Zeng et al. (2006[Zeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101-m2102.]). For the zinc(II) complex of a similar N-heterocycle, see: Zhou et al. (2007[Zhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15-m16.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C9H10N2O)2]·CH4O

  • Mr = 531.53

  • Triclinic, [P \overline 1]

  • a = 7.5008 (13) Å

  • b = 10.3470 (18) Å

  • c = 16.042 (3) Å

  • α = 95.579 (3)°

  • β = 103.388 (3)°

  • γ = 95.179 (3)°

  • V = 1197.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 173 K

  • 0.40 × 0.36 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.]) Tmin = 0.708, Tmax = 0.921

  • 8542 measured reflections

  • 4146 independent reflections

  • 3288 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.116

  • S = 1.01

  • 4146 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N6 2.035 (3)
Co1—N5 2.047 (3)
Co1—N1 2.065 (3)
Co1—N3 2.079 (3)
Co1—O1 2.284 (2)
Co1—O2 2.327 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.85 1.89 2.689 (3) 155
O3—H3A⋯S2i 0.85 2.45 3.297 (3) 179
O1—H1⋯S1i 0.85 2.36 3.177 (2) 162
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The benzimidazol alcohols have widely been used as versatile ligands in coordination chemistry, and their metal complexes are of great interest in many fields. Recently, we have reported a few benzimidazol-2-yl methanol base cobalt and zinc complexes (Zeng et al. 2006, Zhou et al. 2007). In this paper, the title new cobalt(II) complex, (Fig. 1), is reported.

The complex consists of a mononuclear cobalt(II) complex molecule and a methanol molecule. The cobalt(II) ion is surrounded by two [(1-methyl-1H-benzimidazol-2-yl)methanol bidentate ligands and two thiocyanato ligands, and exhibits a distorted octahedral coordination by four N atoms and two O atoms (Albada et al. 1995) The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in our previously reported similar 2-Hydroxymethylbenzimidazole cobalt(II) complex (Zeng et al. 2006).

The structure is consolidated by hydrogen bonds between the organic ligand, thiocyanate anion and the uncoordinated methanol molecule, leading to a one-dimensional chain along the [100] direction. (Table 2, Fig. 2).

Related literature top

For the synthesis of the ligand, see: van Albada et al. (1995) and literature cited therein. For the cobalt(II) dithiocyanato adduct, see: Zeng et al. (2006). For the zinc(II) complex of a similar N-heterocycle, see: Zhou et al. (2007).

Experimental top

(1-methyl-1H-benzimidazol-2-yl) methanol was purchased from a chemical supplier. This reagent (0.16 g, 1 mmol), cobalt(II) nitrate hexahydrate (0.15 g, 0.5 mmol) and ammonium thiocyanate(0.08 g, 1 mmol) were dissolved in water (10 ml) that was kept at about 333 K. Red platelets separated from the solution after two weeks.

Refinement top

The C-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2(1.5)Ueq(C,Cmethyl). The hydroxy H atoms were located in a difference Fourier map and refined isotropically with distance restraints of O—H = 0.85 (1) Å, and Uiso(H) = 1.2Ueq(O).

Structure description top

The benzimidazol alcohols have widely been used as versatile ligands in coordination chemistry, and their metal complexes are of great interest in many fields. Recently, we have reported a few benzimidazol-2-yl methanol base cobalt and zinc complexes (Zeng et al. 2006, Zhou et al. 2007). In this paper, the title new cobalt(II) complex, (Fig. 1), is reported.

The complex consists of a mononuclear cobalt(II) complex molecule and a methanol molecule. The cobalt(II) ion is surrounded by two [(1-methyl-1H-benzimidazol-2-yl)methanol bidentate ligands and two thiocyanato ligands, and exhibits a distorted octahedral coordination by four N atoms and two O atoms (Albada et al. 1995) The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in our previously reported similar 2-Hydroxymethylbenzimidazole cobalt(II) complex (Zeng et al. 2006).

The structure is consolidated by hydrogen bonds between the organic ligand, thiocyanate anion and the uncoordinated methanol molecule, leading to a one-dimensional chain along the [100] direction. (Table 2, Fig. 2).

For the synthesis of the ligand, see: van Albada et al. (1995) and literature cited therein. For the cobalt(II) dithiocyanato adduct, see: Zeng et al. (2006). For the zinc(II) complex of a similar N-heterocycle, see: Zhou et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of the [Co(II)(NCS)2(C9H10N2O)2] molecule at the 50% probability level; hydrogen atoms are drawn as sphere of arbitrary radius.
[Figure 2] Fig. 2. Part of the hydrogen bonded chains along [100] direction. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -1 + x, y, z.
Bis[(1-methyl-1H-benzimidazol-2-yl)methanol- κ2N3,O]bis(thiocyanato-κN)cobalt(II) methanol solvate top
Crystal data top
[Co(NCS)2(C9H10N2O)2]·CH4OZ = 2
Mr = 531.53F(000) = 550
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5008 (13) ÅCell parameters from 4367 reflections
b = 10.3470 (18) Åθ = 2.8–25.0°
c = 16.042 (3) ŵ = 0.93 mm1
α = 95.579 (3)°T = 173 K
β = 103.388 (3)°Plate, red
γ = 95.179 (3)°0.40 × 0.36 × 0.09 mm
V = 1197.3 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4146 independent reflections
Radiation source: fine-focus sealed tube3288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.708, Tmax = 0.921k = 1212
8542 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0643P)2 + 1.1088P]
where P = (Fo2 + 2Fc2)/3
4146 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Co(NCS)2(C9H10N2O)2]·CH4Oγ = 95.179 (3)°
Mr = 531.53V = 1197.3 (4) Å3
Triclinic, P1Z = 2
a = 7.5008 (13) ÅMo Kα radiation
b = 10.3470 (18) ŵ = 0.93 mm1
c = 16.042 (3) ÅT = 173 K
α = 95.579 (3)°0.40 × 0.36 × 0.09 mm
β = 103.388 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4146 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3288 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.921Rint = 0.021
8542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
4146 reflectionsΔρmin = 0.26 e Å3
298 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. In Checkcif report, the following ALERTS were generated

PLAT230_ALERT_2_C Hirshfeld Test Diff for S1–C19.. 6.12 su PLAT230_ALERT_2_C Hirshfeld Test Diff for S2–C20.. 5.57 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M—X) Co1–O1..5.19 su Author response: referring to the alert levels C, similar anisotropic displacement ellipsoids were observed in the solvent-free cobalt(II) complex (Zeng et al., 2006), and similar distances for S—C and Co—O (2.268 (2) Å) are found in Zeng et al. (2006).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.49422 (6)0.79547 (4)0.71477 (3)0.03196 (15)
O10.3407 (3)0.9076 (2)0.61010 (13)0.0388 (5)
H10.25530.93210.63260.058*
O20.2200 (3)0.7225 (2)0.74875 (14)0.0420 (6)
H2A0.20620.64290.75750.063*
O30.0999 (4)0.4972 (2)0.79928 (16)0.0552 (7)
H3A0.04960.53150.83700.083*
N10.3872 (3)0.6541 (3)0.61074 (16)0.0321 (6)
N20.2271 (4)0.5910 (3)0.47582 (16)0.0360 (6)
N30.4426 (3)0.9434 (3)0.80037 (16)0.0335 (6)
N40.3048 (4)1.0150 (3)0.90172 (17)0.0377 (6)
N50.7251 (4)0.8800 (3)0.68486 (17)0.0402 (7)
N60.6311 (4)0.6910 (3)0.80523 (19)0.0451 (7)
C10.2850 (5)0.8331 (3)0.5273 (2)0.0435 (8)
H1A0.36510.86290.49010.052*
H1B0.15610.84490.49960.052*
C20.2998 (4)0.6920 (3)0.53789 (19)0.0335 (7)
C30.3678 (4)0.5184 (3)0.59742 (19)0.0321 (7)
C40.4280 (4)0.4266 (3)0.6519 (2)0.0365 (7)
H4A0.49740.45260.70960.044*
C50.3834 (5)0.2958 (3)0.6193 (2)0.0447 (8)
H5A0.42270.23100.65540.054*
C60.2822 (5)0.2573 (4)0.5348 (2)0.0479 (9)
H6B0.25390.16660.51480.057*
C70.2218 (5)0.3459 (4)0.4795 (2)0.0430 (8)
H7A0.15320.31900.42180.052*
C80.2661 (4)0.4773 (3)0.51224 (19)0.0335 (7)
C90.1212 (5)0.5970 (4)0.3872 (2)0.0444 (8)
H9A0.11240.68850.37760.067*
H9B0.00290.55100.37860.067*
H9C0.18370.55540.34620.067*
C100.1814 (5)0.7973 (3)0.8195 (2)0.0412 (8)
H10A0.19720.74750.86980.049*
H10B0.05250.81840.80450.049*
C110.3106 (4)0.9185 (3)0.8402 (2)0.0348 (7)
C120.5277 (4)1.0679 (3)0.83793 (19)0.0332 (7)
C130.6722 (4)1.1464 (4)0.8213 (2)0.0427 (8)
H13A0.73231.11830.77790.051*
C140.7252 (5)1.2669 (4)0.8701 (2)0.0508 (9)
H14A0.82191.32310.85890.061*
C150.6418 (5)1.3092 (4)0.9354 (2)0.0506 (9)
H15A0.68431.39230.96810.061*
C160.4986 (5)1.2322 (4)0.9530 (2)0.0471 (9)
H16A0.44111.25970.99750.056*
C170.4430 (4)1.1128 (3)0.9026 (2)0.0373 (7)
C180.1719 (5)1.0184 (4)0.9551 (2)0.0528 (10)
H18A0.08930.93620.94180.079*
H18B0.09951.09160.94330.079*
H18C0.23771.02951.01620.079*
C190.8474 (4)0.9482 (3)0.6751 (2)0.0354 (7)
C200.7421 (4)0.6650 (3)0.8619 (2)0.0317 (7)
C210.2200 (7)0.4131 (5)0.8363 (3)0.0730 (14)
H21B0.34740.45350.84550.109*
H21A0.20180.33090.79780.109*
H21C0.19580.39520.89180.109*
S20.89902 (12)0.63097 (9)0.94306 (5)0.0424 (2)
S11.01807 (12)1.04930 (9)0.66347 (6)0.0445 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0292 (2)0.0377 (3)0.0279 (2)0.00460 (18)0.00559 (17)0.00169 (18)
O10.0360 (12)0.0467 (13)0.0333 (12)0.0101 (10)0.0075 (10)0.0003 (10)
O20.0414 (13)0.0489 (14)0.0382 (13)0.0009 (11)0.0173 (11)0.0048 (11)
O30.0719 (18)0.0496 (15)0.0489 (15)0.0112 (14)0.0232 (14)0.0048 (12)
N10.0266 (13)0.0411 (15)0.0290 (14)0.0046 (11)0.0079 (11)0.0026 (11)
N20.0301 (14)0.0506 (17)0.0254 (13)0.0021 (12)0.0057 (11)0.0000 (12)
N30.0262 (13)0.0445 (16)0.0302 (14)0.0046 (11)0.0069 (11)0.0061 (12)
N40.0382 (15)0.0475 (17)0.0349 (14)0.0134 (13)0.0195 (12)0.0084 (12)
N50.0329 (15)0.0484 (17)0.0403 (16)0.0052 (13)0.0139 (13)0.0018 (13)
N60.0438 (17)0.0477 (18)0.0396 (16)0.0114 (14)0.0007 (14)0.0050 (13)
C10.044 (2)0.051 (2)0.0332 (18)0.0089 (16)0.0055 (15)0.0054 (15)
C20.0247 (15)0.0475 (19)0.0302 (16)0.0046 (13)0.0107 (13)0.0036 (14)
C30.0243 (15)0.0425 (18)0.0324 (16)0.0016 (13)0.0149 (13)0.0009 (14)
C40.0317 (17)0.0443 (19)0.0358 (17)0.0025 (14)0.0135 (14)0.0045 (15)
C50.045 (2)0.043 (2)0.052 (2)0.0053 (16)0.0233 (17)0.0076 (17)
C60.051 (2)0.040 (2)0.055 (2)0.0002 (17)0.0227 (18)0.0050 (17)
C70.0381 (19)0.056 (2)0.0343 (18)0.0029 (16)0.0159 (15)0.0067 (16)
C80.0266 (16)0.0448 (19)0.0313 (16)0.0016 (14)0.0145 (13)0.0001 (14)
C90.0383 (19)0.062 (2)0.0281 (17)0.0057 (17)0.0020 (14)0.0007 (16)
C100.0424 (19)0.045 (2)0.0438 (19)0.0089 (15)0.0213 (16)0.0116 (15)
C110.0297 (16)0.0445 (19)0.0340 (17)0.0094 (14)0.0107 (14)0.0120 (14)
C120.0272 (16)0.0422 (18)0.0291 (16)0.0095 (14)0.0029 (13)0.0037 (14)
C130.0296 (17)0.053 (2)0.0430 (19)0.0019 (15)0.0110 (15)0.0069 (16)
C140.0345 (19)0.058 (2)0.056 (2)0.0017 (17)0.0112 (17)0.0066 (19)
C150.041 (2)0.053 (2)0.051 (2)0.0014 (17)0.0065 (17)0.0123 (18)
C160.046 (2)0.059 (2)0.0378 (19)0.0163 (18)0.0111 (16)0.0029 (17)
C170.0311 (17)0.050 (2)0.0332 (17)0.0120 (15)0.0091 (14)0.0066 (15)
C180.057 (2)0.061 (2)0.054 (2)0.0158 (19)0.037 (2)0.0099 (19)
C190.0328 (18)0.0428 (19)0.0317 (17)0.0155 (15)0.0079 (14)0.0006 (14)
C200.0321 (17)0.0296 (16)0.0367 (17)0.0036 (13)0.0146 (15)0.0040 (13)
C210.084 (3)0.101 (4)0.056 (3)0.047 (3)0.039 (2)0.032 (3)
S20.0376 (5)0.0594 (6)0.0333 (4)0.0147 (4)0.0086 (4)0.0129 (4)
S10.0376 (5)0.0423 (5)0.0599 (6)0.0092 (4)0.0199 (4)0.0134 (4)
Geometric parameters (Å, º) top
Co1—N62.035 (3)C5—C61.392 (5)
Co1—N52.047 (3)C5—H5A0.9500
Co1—N12.065 (3)C6—C71.371 (5)
Co1—N32.079 (3)C6—H6B0.9500
Co1—O12.284 (2)C7—C81.390 (5)
Co1—O22.327 (2)C7—H7A0.9500
O1—C11.421 (4)C9—H9A0.9800
O1—H10.8500C9—H9B0.9800
O2—C101.411 (4)C9—H9C0.9800
O2—H2A0.8500C10—C111.474 (5)
O3—C211.384 (5)C10—H10A0.9900
O3—H3A0.8501C10—H10B0.9900
N1—C21.315 (4)C12—C131.387 (5)
N1—C31.389 (4)C12—C171.401 (4)
N2—C21.351 (4)C13—C141.380 (5)
N2—C81.388 (4)C13—H13A0.9500
N2—C91.470 (4)C14—C151.392 (5)
N3—C111.317 (4)C14—H14A0.9500
N3—C121.397 (4)C15—C161.378 (5)
N4—C111.345 (4)C15—H15A0.9500
N4—C171.378 (4)C16—C171.382 (5)
N4—C181.457 (4)C16—H16A0.9500
N5—C191.155 (4)C18—H18A0.9800
N6—C201.154 (4)C18—H18B0.9800
C1—C21.498 (5)C18—H18C0.9800
C1—H1A0.9900C19—S11.636 (4)
C1—H1B0.9900C20—S21.630 (3)
C3—C41.388 (5)C21—H21B0.9800
C3—C81.405 (4)C21—H21A0.9800
C4—C51.384 (5)C21—H21C0.9800
C4—H4A0.9500
N6—Co1—N595.76 (12)C7—C6—H6B118.9
N6—Co1—N1102.52 (11)C5—C6—H6B118.9
N5—Co1—N1102.62 (10)C6—C7—C8116.5 (3)
N6—Co1—N396.87 (11)C6—C7—H7A121.7
N5—Co1—N3101.37 (10)C8—C7—H7A121.7
N1—Co1—N3147.26 (10)N2—C8—C7132.0 (3)
N6—Co1—O1178.26 (10)N2—C8—C3105.7 (3)
N5—Co1—O184.12 (10)C7—C8—C3122.2 (3)
N1—Co1—O175.83 (9)N2—C9—H9A109.5
N3—Co1—O184.85 (9)N2—C9—H9B109.5
N6—Co1—O288.91 (11)H9A—C9—H9B109.5
N5—Co1—O2173.52 (10)N2—C9—H9C109.5
N1—Co1—O280.65 (9)H9A—C9—H9C109.5
N3—Co1—O273.54 (9)H9B—C9—H9C109.5
O1—Co1—O291.34 (8)O2—C10—C11107.8 (3)
C1—O1—Co1113.38 (19)O2—C10—H10A110.1
C1—O1—H1116.7C11—C10—H10A110.1
Co1—O1—H1100.9O2—C10—H10B110.1
C10—O2—Co1114.71 (19)C11—C10—H10B110.1
C10—O2—H2A106.8H10A—C10—H10B108.5
Co1—O2—H2A116.5N3—C11—N4113.3 (3)
C21—O3—H3A109.5N3—C11—C10123.5 (3)
C2—N1—C3106.1 (3)N4—C11—C10123.2 (3)
C2—N1—Co1117.9 (2)C13—C12—N3131.3 (3)
C3—N1—Co1135.7 (2)C13—C12—C17119.5 (3)
C2—N2—C8106.9 (3)N3—C12—C17109.2 (3)
C2—N2—C9127.6 (3)C14—C13—C12117.4 (3)
C8—N2—C9125.5 (3)C14—C13—H13A121.3
C11—N3—C12104.8 (3)C12—C13—H13A121.3
C11—N3—Co1118.5 (2)C13—C14—C15122.4 (4)
C12—N3—Co1136.2 (2)C13—C14—H14A118.8
C11—N4—C17107.4 (3)C15—C14—H14A118.8
C11—N4—C18126.4 (3)C16—C15—C14121.0 (3)
C17—N4—C18126.2 (3)C16—C15—H15A119.5
C19—N5—Co1167.6 (3)C14—C15—H15A119.5
C20—N6—Co1160.2 (3)C15—C16—C17116.6 (3)
O1—C1—C2108.7 (3)C15—C16—H16A121.7
O1—C1—H1A110.0C17—C16—H16A121.7
C2—C1—H1A110.0N4—C17—C16131.6 (3)
O1—C1—H1B110.0N4—C17—C12105.3 (3)
C2—C1—H1B110.0C16—C17—C12123.2 (3)
H1A—C1—H1B108.3N4—C18—H18A109.5
N1—C2—N2112.9 (3)N4—C18—H18B109.5
N1—C2—C1122.2 (3)H18A—C18—H18B109.5
N2—C2—C1124.9 (3)N4—C18—H18C109.5
C4—C3—N1131.5 (3)H18A—C18—H18C109.5
C4—C3—C8120.0 (3)H18B—C18—H18C109.5
N1—C3—C8108.5 (3)N5—C19—S1177.8 (3)
C5—C4—C3117.7 (3)N6—C20—S2178.9 (3)
C5—C4—H4A121.2O3—C21—H21B109.5
C3—C4—H4A121.2O3—C21—H21A109.5
C4—C5—C6121.3 (3)H21B—C21—H21A109.5
C4—C5—H5A119.3O3—C21—H21C109.5
C6—C5—H5A119.3H21B—C21—H21C109.5
C7—C6—C5122.2 (3)H21A—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.851.892.689 (3)155
O3—H3A···S2i0.852.453.297 (3)179
O1—H1···S1i0.852.363.177 (2)162
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C9H10N2O)2]·CH4O
Mr531.53
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.5008 (13), 10.3470 (18), 16.042 (3)
α, β, γ (°)95.579 (3), 103.388 (3), 95.179 (3)
V3)1197.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.40 × 0.36 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.708, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
8542, 4146, 3288
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.116, 1.01
No. of reflections4146
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N62.035 (3)Co1—N32.079 (3)
Co1—N52.047 (3)Co1—O12.284 (2)
Co1—N12.065 (3)Co1—O22.327 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.851.892.689 (3)155.2
O3—H3A···S2i0.852.453.297 (3)178.8
O1—H1···S1i0.852.363.177 (2)161.7
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Central South University and Guangxi Normal University for supporting this study.

References

First citationAlbada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. L. & Reedijk, J. (1995). Inorg. Chem. 34, 4910–4917.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101–m2102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15–m16.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds