metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(5-Bromo-2-oxido­benzyl­­idene-κO)-3-hydr­­oxy-2-naphthohydrazidato-κ2N′,O]di­methyl­tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 19 November 2009; accepted 9 January 2010; online 16 January 2010)

The SnIV atom in the title compound, [Sn(CH3)2(C18H11BrN2O3)], shows a distorted cis-C2NO2Sn trigonal-bipyramidal coordination geometry, with an axial O—Sn—O angle of 155.27 (9)°. The presence of an intra­molecular O—H⋯N hydrogen bond between the amido N atom and hydr­oxy H atom in the Schiff base ligand helps to stabilize the overall mol­ecular structure.

Related literature

For related structures, see Lee et al. (2009a[Lee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, m816.],b[Lee, S. M., Lo, K. M., Ali, H. M. & Ng, S. W. (2009b). Acta Cryst. E65, m862.]). For similar hydrazone dianions acting as O,N,O′-chelate ligands to tin in organotin compounds, see: Labib et al. (1996[Labib, L., Khalil, T. E., Iskander, M. F. & Refaat, L. S. (1996). Polyhedron, 21, 3697-3707.]); Samanta et al. (2007[Samanta, B., Chakraborty, J., Dey, D. K. & Mitra, S. (2007). Struct. Chem. 18, 287-297.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C18H11BrN2O3)]

  • Mr = 531.96

  • Triclinic, [P \overline 1]

  • a = 6.8662 (5) Å

  • b = 11.7998 (9) Å

  • c = 11.9365 (9) Å

  • α = 87.464 (1)°

  • β = 76.128 (1)°

  • γ = 81.213 (1)°

  • V = 927.84 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.55 mm−1

  • T = 145 K

  • 0.39 × 0.37 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.338, Tmax = 0.740

  • 5350 measured reflections

  • 4028 independent reflections

  • 3703 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.079

  • S = 1.14

  • 4028 reflections

  • 245 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.84 1.88 2.611 (4) 144

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]0); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For related structures, see Lee et al. (2009a,b). For similar hydrazone dianions acting as O,N,O'-chelate ligands to tin in organotin compounds, see: Labib et al. (1996); Samanta et al. (2007).

Experimental top

The Schiff base ligand was prepared by the condensation reaction of 3-hydroxy-2-naphthoyl hydrazide with 5-bromosalicylaldehyde. The title compound was prepared by refluxing the Schiff base (0.74 g, 2.0 mmol) with dimethyltin oxide (0.32 g, 2.0 mmol) in toluene for 6 h. The solution was filtered and left for recrystallization for a week during which yellow crystals were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.95Å, Uiso=1.2Ueq (C) for aromatic 0.98Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.84Å, Uiso = 1.5Ueq (O) for the OH group.

Structure description top

For related structures, see Lee et al. (2009a,b). For similar hydrazone dianions acting as O,N,O'-chelate ligands to tin in organotin compounds, see: Labib et al. (1996); Samanta et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 20080); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of [N'-(5-bromo-2-oxidobenzylidene-κO)-3-hydroxy-2- naphthohydrazidato-κ2N',O]dimethyltin(IV) showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
[N'-(5-Bromo-2-oxidobenzylidene-κO)-3-hydroxy-2- naphthohydrazidato-κ2N',O]dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C18H11BrN2O3)]Z = 2
Mr = 531.96F(000) = 520
Triclinic, P1Dx = 1.904 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8662 (5) ÅCell parameters from 3900 reflections
b = 11.7998 (9) Åθ = 2.5–30.6°
c = 11.9365 (9) ŵ = 3.55 mm1
α = 87.464 (1)°T = 145 K
β = 76.128 (1)°Plate, yellow
γ = 81.213 (1)°0.39 × 0.37 × 0.09 mm
V = 927.84 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4028 independent reflections
Radiation source: fine-focus sealed tube3703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.338, Tmax = 0.740k = 1015
5350 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0316P)2 + 1.8608P]
where P = (Fo2 + 2Fc2)/3
4028 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.63 e Å3
1 restraintΔρmin = 0.76 e Å3
Crystal data top
[Sn(CH3)2(C18H11BrN2O3)]γ = 81.213 (1)°
Mr = 531.96V = 927.84 (12) Å3
Triclinic, P1Z = 2
a = 6.8662 (5) ÅMo Kα radiation
b = 11.7998 (9) ŵ = 3.55 mm1
c = 11.9365 (9) ÅT = 145 K
α = 87.464 (1)°0.39 × 0.37 × 0.09 mm
β = 76.128 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3703 reflections with I > 2σ(I)
Tmin = 0.338, Tmax = 0.740Rint = 0.016
5350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.079H-atom parameters constrained
S = 1.14Δρmax = 0.63 e Å3
4028 reflectionsΔρmin = 0.76 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.75049 (3)0.561594 (19)0.670242 (18)0.01412 (8)
Br10.57215 (5)0.06224 (3)0.64595 (3)0.02011 (9)
N10.5307 (4)0.4692 (2)0.7889 (2)0.0141 (5)
N20.3995 (4)0.5332 (3)0.8788 (2)0.0172 (6)
O10.8546 (4)0.4001 (2)0.5966 (2)0.0202 (5)
O20.5723 (4)0.6809 (2)0.7987 (2)0.0228 (5)
O30.1095 (4)0.5698 (2)1.0656 (2)0.0219 (5)
H30.17500.53441.00540.033*
C10.6138 (5)0.2791 (3)0.6996 (3)0.0141 (6)
C20.7792 (5)0.3027 (3)0.6092 (3)0.0152 (6)
C30.8681 (5)0.2152 (3)0.5277 (3)0.0188 (7)
H3A0.97760.22880.46550.023*
C40.7999 (5)0.1105 (3)0.5364 (3)0.0158 (6)
H40.85930.05410.47900.019*
C50.6435 (5)0.0871 (3)0.6295 (3)0.0164 (6)
C60.5524 (5)0.1702 (3)0.7093 (3)0.0154 (6)
H60.44590.15400.77230.019*
C70.5032 (5)0.3630 (3)0.7853 (3)0.0150 (6)
H70.39990.33790.84500.018*
C80.4332 (5)0.6410 (3)0.8761 (3)0.0164 (6)
C90.3027 (5)0.7184 (3)0.9668 (3)0.0151 (6)
C100.1483 (5)0.6797 (3)1.0581 (3)0.0147 (6)
C110.0383 (5)0.7555 (3)1.1419 (3)0.0154 (6)
H110.06020.72911.20370.018*
C120.0673 (5)0.8711 (3)1.1392 (3)0.0139 (6)
C130.0460 (5)0.9515 (3)1.2244 (3)0.0189 (7)
H130.14290.92671.28800.023*
C140.0175 (5)1.0647 (3)1.2160 (3)0.0190 (7)
H140.09621.11741.27320.023*
C150.1279 (5)1.1033 (3)1.1232 (3)0.0192 (7)
H150.14691.18161.11860.023*
C160.2407 (5)1.0289 (3)1.0405 (3)0.0164 (6)
H160.33761.05580.97820.020*
C170.2153 (5)0.9112 (3)1.0461 (3)0.0138 (6)
C180.3312 (5)0.8320 (3)0.9627 (3)0.0152 (6)
H180.43220.85730.90170.018*
C191.0295 (5)0.5826 (3)0.7067 (3)0.0201 (7)
H19A1.04780.53670.77480.030*
H19B1.02910.66370.72160.030*
H19C1.14090.55720.64050.030*
C200.6241 (5)0.6376 (3)0.5344 (3)0.0227 (7)
H20A0.49330.61170.53910.034*
H20B0.71650.61500.46010.034*
H20C0.60400.72130.54120.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01425 (12)0.01281 (13)0.01497 (12)0.00358 (8)0.00180 (8)0.00023 (8)
Br10.02169 (17)0.01283 (18)0.02579 (18)0.00506 (13)0.00342 (14)0.00316 (13)
N10.0149 (12)0.0107 (13)0.0174 (13)0.0042 (10)0.0034 (10)0.0001 (10)
N20.0154 (13)0.0220 (15)0.0131 (12)0.0028 (11)0.0010 (10)0.0018 (11)
O10.0197 (12)0.0140 (12)0.0244 (12)0.0038 (9)0.0011 (10)0.0017 (10)
O20.0216 (12)0.0197 (13)0.0232 (12)0.0073 (10)0.0054 (10)0.0029 (10)
O30.0292 (13)0.0127 (12)0.0214 (12)0.0114 (10)0.0050 (10)0.0056 (9)
C10.0160 (14)0.0122 (15)0.0151 (14)0.0024 (12)0.0058 (12)0.0001 (12)
C20.0162 (15)0.0134 (16)0.0172 (15)0.0026 (12)0.0061 (12)0.0000 (12)
C30.0164 (15)0.0223 (18)0.0160 (15)0.0008 (13)0.0022 (12)0.0031 (13)
C40.0175 (15)0.0133 (16)0.0168 (15)0.0006 (12)0.0051 (12)0.0014 (12)
C50.0173 (15)0.0141 (16)0.0194 (16)0.0024 (12)0.0075 (12)0.0002 (13)
C60.0146 (14)0.0159 (16)0.0171 (15)0.0062 (12)0.0042 (12)0.0015 (12)
C70.0157 (14)0.0140 (16)0.0168 (15)0.0063 (12)0.0049 (12)0.0033 (12)
C80.0131 (14)0.0223 (18)0.0143 (15)0.0037 (12)0.0040 (12)0.0021 (13)
C90.0151 (14)0.0150 (16)0.0157 (15)0.0012 (12)0.0051 (12)0.0013 (12)
C100.0181 (15)0.0119 (15)0.0155 (15)0.0045 (12)0.0047 (12)0.0025 (12)
C110.0154 (14)0.0174 (17)0.0139 (14)0.0057 (12)0.0024 (12)0.0015 (12)
C120.0139 (14)0.0144 (16)0.0149 (14)0.0036 (12)0.0050 (11)0.0022 (12)
C130.0145 (15)0.0284 (19)0.0137 (15)0.0037 (13)0.0029 (12)0.0001 (13)
C140.0202 (16)0.0201 (18)0.0178 (16)0.0024 (13)0.0059 (13)0.0044 (13)
C150.0207 (16)0.0173 (17)0.0206 (16)0.0011 (13)0.0073 (13)0.0035 (13)
C160.0182 (15)0.0120 (16)0.0202 (16)0.0047 (12)0.0051 (12)0.0025 (12)
C170.0162 (14)0.0134 (15)0.0125 (14)0.0016 (12)0.0049 (11)0.0024 (12)
C180.0147 (14)0.0176 (17)0.0132 (14)0.0020 (12)0.0035 (11)0.0007 (12)
C190.0173 (15)0.0249 (19)0.0193 (16)0.0090 (14)0.0031 (13)0.0007 (14)
C200.0225 (17)0.0223 (19)0.0238 (17)0.0015 (14)0.0079 (14)0.0017 (14)
Geometric parameters (Å, º) top
Sn1—O12.084 (2)C8—C91.477 (5)
Sn1—C192.116 (3)C9—C181.381 (5)
Sn1—C202.120 (3)C9—C101.438 (4)
Sn1—O22.143 (2)C10—C111.372 (5)
Sn1—N12.194 (3)C11—C121.406 (5)
Br1—C51.890 (3)C11—H110.9500
N1—C71.300 (4)C12—C131.421 (5)
N1—N21.390 (4)C12—C171.432 (4)
N2—C81.324 (5)C13—C141.375 (5)
O1—C21.320 (4)C13—H130.9500
O2—C81.290 (4)C14—C151.412 (5)
O3—C101.358 (4)C14—H140.9500
O3—H30.8400C15—C161.360 (5)
C1—C61.404 (4)C15—H150.9500
C1—C21.419 (4)C16—C171.422 (5)
C1—C71.446 (5)C16—H160.9500
C2—C31.413 (5)C17—C181.405 (4)
C3—C41.377 (5)C18—H180.9500
C3—H3A0.9500C19—H19A0.9800
C4—C51.399 (5)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.367 (5)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
O1—Sn1—C1995.10 (12)C18—C9—C8118.2 (3)
O1—Sn1—C2097.09 (13)C10—C9—C8122.5 (3)
C19—Sn1—C20127.84 (14)O3—C10—C11118.6 (3)
O1—Sn1—O2155.27 (9)O3—C10—C9122.3 (3)
C19—Sn1—O294.33 (12)C11—C10—C9119.2 (3)
C20—Sn1—O295.04 (13)C10—C11—C12121.9 (3)
O1—Sn1—N183.01 (10)C10—C11—H11119.0
C19—Sn1—N1121.63 (12)C12—C11—H11119.0
C20—Sn1—N1110.12 (12)C11—C12—C13123.0 (3)
O2—Sn1—N172.59 (10)C11—C12—C17119.2 (3)
C7—N1—N2115.3 (3)C13—C12—C17117.8 (3)
C7—N1—Sn1128.8 (2)C14—C13—C12121.0 (3)
N2—N1—Sn1115.9 (2)C14—C13—H13119.5
C8—N2—N1112.2 (3)C12—C13—H13119.5
C2—O1—Sn1133.1 (2)C13—C14—C15120.6 (3)
C8—O2—Sn1115.9 (2)C13—C14—H14119.7
C10—O3—H3109.5C15—C14—H14119.7
C6—C1—C2120.1 (3)C16—C15—C14120.3 (3)
C6—C1—C7117.1 (3)C16—C15—H15119.9
C2—C1—C7122.8 (3)C14—C15—H15119.9
O1—C2—C3118.3 (3)C15—C16—C17120.7 (3)
O1—C2—C1124.5 (3)C15—C16—H16119.6
C3—C2—C1117.2 (3)C17—C16—H16119.6
C4—C3—C2121.6 (3)C18—C17—C16122.1 (3)
C4—C3—H3A119.2C18—C17—C12118.3 (3)
C2—C3—H3A119.2C16—C17—C12119.6 (3)
C3—C4—C5120.2 (3)C9—C18—C17121.9 (3)
C3—C4—H4119.9C9—C18—H18119.0
C5—C4—H4119.9C17—C18—H18119.0
C6—C5—C4119.8 (3)Sn1—C19—H19A109.5
C6—C5—Br1121.4 (2)Sn1—C19—H19B109.5
C4—C5—Br1118.7 (3)H19A—C19—H19B109.5
C5—C6—C1120.9 (3)Sn1—C19—H19C109.5
C5—C6—H6119.5H19A—C19—H19C109.5
C1—C6—H6119.5H19B—C19—H19C109.5
N1—C7—C1126.6 (3)Sn1—C20—H20A109.5
N1—C7—H7116.7Sn1—C20—H20B109.5
C1—C7—H7116.7H20A—C20—H20B109.5
O2—C8—N2123.4 (3)Sn1—C20—H20C109.5
O2—C8—C9119.1 (3)H20A—C20—H20C109.5
N2—C8—C9117.5 (3)H20B—C20—H20C109.5
C18—C9—C10119.4 (3)
O1—Sn1—N1—C75.4 (3)Sn1—N1—C7—C10.2 (5)
C19—Sn1—N1—C797.1 (3)C6—C1—C7—N1177.1 (3)
C20—Sn1—N1—C789.6 (3)C2—C1—C7—N13.5 (5)
O2—Sn1—N1—C7178.6 (3)Sn1—O2—C8—N20.3 (4)
O1—Sn1—N1—N2176.3 (2)Sn1—O2—C8—C9179.4 (2)
C19—Sn1—N1—N284.6 (2)N1—N2—C8—O20.0 (4)
C20—Sn1—N1—N288.7 (2)N1—N2—C8—C9179.6 (3)
O2—Sn1—N1—N20.3 (2)O2—C8—C9—C182.0 (4)
C7—N1—N2—C8178.8 (3)N2—C8—C9—C18177.7 (3)
Sn1—N1—N2—C80.3 (3)O2—C8—C9—C10178.2 (3)
C19—Sn1—O1—C2133.7 (3)N2—C8—C9—C102.2 (5)
C20—Sn1—O1—C297.1 (3)C18—C9—C10—O3178.5 (3)
O2—Sn1—O1—C221.7 (4)C8—C9—C10—O31.4 (5)
N1—Sn1—O1—C212.4 (3)C18—C9—C10—C112.7 (5)
O1—Sn1—O2—C810.0 (4)C8—C9—C10—C11177.4 (3)
C19—Sn1—O2—C8122.1 (2)O3—C10—C11—C12178.9 (3)
C20—Sn1—O2—C8109.2 (2)C9—C10—C11—C122.2 (5)
N1—Sn1—O2—C80.3 (2)C10—C11—C12—C13179.4 (3)
Sn1—O1—C2—C3166.5 (2)C10—C11—C12—C170.2 (5)
Sn1—O1—C2—C113.5 (5)C11—C12—C13—C14177.7 (3)
C6—C1—C2—O1176.3 (3)C17—C12—C13—C141.5 (5)
C7—C1—C2—O13.1 (5)C12—C13—C14—C151.0 (5)
C6—C1—C2—C33.7 (4)C13—C14—C15—C160.4 (5)
C7—C1—C2—C3177.0 (3)C14—C15—C16—C170.3 (5)
O1—C2—C3—C4178.9 (3)C15—C16—C17—C18179.2 (3)
C1—C2—C3—C41.1 (5)C15—C16—C17—C120.9 (5)
C2—C3—C4—C52.2 (5)C11—C12—C17—C182.1 (4)
C3—C4—C5—C62.8 (5)C13—C12—C17—C18178.7 (3)
C3—C4—C5—Br1174.0 (2)C11—C12—C17—C16177.8 (3)
C4—C5—C6—C10.2 (5)C13—C12—C17—C161.4 (4)
Br1—C5—C6—C1176.6 (2)C10—C9—C18—C170.8 (5)
C2—C1—C6—C53.1 (5)C8—C9—C18—C17179.3 (3)
C7—C1—C6—C5177.5 (3)C16—C17—C18—C9178.3 (3)
N2—N1—C7—C1178.1 (3)C12—C17—C18—C91.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.841.882.611 (4)144

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C18H11BrN2O3)]
Mr531.96
Crystal system, space groupTriclinic, P1
Temperature (K)145
a, b, c (Å)6.8662 (5), 11.7998 (9), 11.9365 (9)
α, β, γ (°)87.464 (1), 76.128 (1), 81.213 (1)
V3)927.84 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.55
Crystal size (mm)0.39 × 0.37 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.338, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
5350, 4028, 3703
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.079, 1.14
No. of reflections4028
No. of parameters245
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.76

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 20080), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.841.882.611 (4)144.4
 

Acknowledgements

We thank the University of Malaya (grant Nos. PS320/2008 C and RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLabib, L., Khalil, T. E., Iskander, M. F. & Refaat, L. S. (1996). Polyhedron, 21, 3697–3707.  CSD CrossRef Web of Science Google Scholar
First citationLee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, m816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. M., Lo, K. M., Ali, H. M. & Ng, S. W. (2009b). Acta Cryst. E65, m862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamanta, B., Chakraborty, J., Dey, D. K. & Mitra, S. (2007). Struct. Chem. 18, 287–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds