metal-organic compounds
Diguanidinium bis(μ-2-hydroxypropane-1,2,3-tricarboxylato)bis[diaquazincate(II)] dihydrate
aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The 6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2O, contains one-half of a centrosymmetric dizinc(II) complex anion, one guanidinium cation and one water molecule. Each ZnII ion is hexacoordinated by two citrate anions, one in a bidentate fashion and the second monodentate, and two water molecules in a distorted octahedral geometry. Intramolecular O—H⋯O hydrogen bonds add further stability to the molecular structure. In the molecules are linked into a three-dimensional framework by intermolecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds.
of the title compound, (CHRelated literature
For general background to guanidine and citric acid, see: Raczyńska et al. (2003); Yamada et al. (2009); Sigman et al. (1993); Schuck (1934); Sherman et al. (1936). For applications of citric acid in industry and materials science, see: Blair et al. (1991); Jiang et al. (2007). For related guanidinium structures, see: Al-Dajani et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536809054439/sj2710sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809054439/sj2710Isup2.hkl
Citric acid (anhydrous) (0.02 mol, 3.85 g) was dissolved in THF in a flat bottom flask with magnetic stirrer. In a separating funnel, guanidine carbonate (0.005 mol, 0.9 g), 99% [H2NC(NH)NH2].2H2CO3 was dissolved in THF. The guanidine solution was added in small portions to the citric acid with stirring. At room temperature, zinc chloride (ZnCl2) (0.02 mol, 2.75 g) was added also with stirring. The reaction mixture was refluxed for 30 min. After cooling the mixture to room temperature, it was left stirring overnight. The resulting colourless crystals were filtered, washed with methanol and dried at 353 K.
N-bound and O-bound H atoms were located in a difference Fourier map and refined as riding on their parent atom, with Uiso(H) = 1.2, 1.5Ueq(N, O). The remaining H atoms were positioned geometrically [C–H = 0.97 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C)].
Citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid contains three carboxyl groups. It is found in the literature that an organism has the ability to synthesize citric acid. (Schuck, 1934; Sherman et al., 1936). Citric acid has many applications including use in the manufacture of detergents, shampoos, cosmetics and in chemical cleaning (Blair et al., 1991). It can also be used for the preparation of the catalyst LaNiO3 for the preparation of carbon nanotubes (Jiang et al., 2007).
Guanidine can be formed by the oxidation of guanine as a final product of the protein metabolism (Raczyńska et al., 2003; Yamada et al., 2009; Sigman et al., 1993).
The
of title compound contains one half of a dizinc(II) complex anion, one guanidinium cation and one water solvent molecule (Fig. 1). The anion lies across a crystallographic inversion center, the other half is symmetry generated [symmetry code: 1/2 - x, 1/2 - y, 1 - z]. The Zn1 and Zn2 ions are coordinated to four O atoms from two citrate anions and two water molecules to form a distorted octahedral geometry. Two citric acid molecules are deprotonated and two guanidine molecules protonated to yield the cation and anion. The geometrical parameters of the guanidinium cations agree with those previously reported (Al-Dajani et al., 2009a,b). An intramolecular O3—H1O3···O6 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).In
(Fig. 2), the ZnII complex anion and water molecules are linked into sheets parallel to the bc plane via intermoleculer O1W—H1W1···O2, O1W—H2W1···O5, O2W—H1W2···O1, O2W—H2W2···O7, O3W—H1W3···O2, O3W—H2W3···O7 and C5—H5B···O3W hydrogen bonds. The guanidinium cations are linked these sheets generating a three-dimensional framework through N—H···O hydrogen bonds (Table 1).For general background to guanidine and citric acid, see: Raczyńska et al. (2003); Yamada et al. (2009); Sigman et al. (1993); Schuck (1934); Sherman et al. (1936). For applications of citric acid in industry and materials science, see: Blair et al. (1991); Jiang et al. (2007). For related guanidinium structures, see: Al-Dajani et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels and 30% probability ellipsoids for non-H atoms. Atoms with suffix A are generated by the symmetry operation (1/2 - x, 1/2 - y, 1 - z). | |
Fig. 2. The crystal packing of title compound, viewed down the c axis, showing the hydrogen-bonded (dashed lines) three-dimensional framework. Hydrogen atoms not involved in the hydrogen-bonding have been omitted for clarity. |
(CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2O | F(000) = 1520 |
Mr = 737.21 | Dx = 1.748 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9983 reflections |
a = 28.9405 (4) Å | θ = 2.5–34.8° |
b = 8.5708 (1) Å | µ = 1.81 mm−1 |
c = 11.3395 (2) Å | T = 296 K |
β = 95.249 (1)° | Block, colourless |
V = 2800.89 (7) Å3 | 0.32 × 0.30 × 0.18 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 7693 independent reflections |
Radiation source: fine-focus sealed tube | 5495 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
φ and ω scans | θmax = 38.3°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −48→50 |
Tmin = 0.593, Tmax = 0.734 | k = −14→12 |
32332 measured reflections | l = −19→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0404P)2 + 0.5068P] where P = (Fo2 + 2Fc2)/3 |
7693 reflections | (Δ/σ)max = 0.002 |
190 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
(CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2O | V = 2800.89 (7) Å3 |
Mr = 737.21 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 28.9405 (4) Å | µ = 1.81 mm−1 |
b = 8.5708 (1) Å | T = 296 K |
c = 11.3395 (2) Å | 0.32 × 0.30 × 0.18 mm |
β = 95.249 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 7693 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 5495 reflections with I > 2σ(I) |
Tmin = 0.593, Tmax = 0.734 | Rint = 0.026 |
32332 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.45 e Å−3 |
7693 reflections | Δρmin = −0.29 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.322092 (4) | 0.394890 (14) | 0.631912 (11) | 0.02481 (4) | |
O1 | 0.33231 (4) | 0.37163 (9) | 0.45220 (8) | 0.03439 (19) | |
O2 | 0.36716 (3) | 0.20991 (10) | 0.33603 (8) | 0.03573 (18) | |
O3 | 0.31089 (3) | 0.15045 (9) | 0.60117 (7) | 0.02494 (14) | |
H1O3 | 0.2815 | 0.1428 | 0.5651 | 0.037* | |
O4 | 0.39328 (3) | 0.33281 (11) | 0.66307 (9) | 0.03675 (19) | |
O5 | 0.44700 (3) | 0.16069 (13) | 0.72462 (10) | 0.0474 (2) | |
O6 | 0.24882 (3) | 0.07623 (10) | 0.42434 (9) | 0.0365 (2) | |
O7 | 0.25557 (3) | −0.16794 (10) | 0.36365 (10) | 0.0427 (2) | |
C1 | 0.34724 (4) | 0.23880 (12) | 0.42612 (9) | 0.02427 (18) | |
C2 | 0.34175 (3) | 0.10406 (10) | 0.51507 (9) | 0.02214 (16) | |
C3 | 0.38848 (4) | 0.06848 (13) | 0.58412 (10) | 0.0288 (2) | |
H3A | 0.3844 | −0.0221 | 0.6334 | 0.035* | |
H3B | 0.4101 | 0.0393 | 0.5275 | 0.035* | |
C4 | 0.41101 (4) | 0.19654 (14) | 0.66293 (10) | 0.0295 (2) | |
C5 | 0.32367 (4) | −0.04392 (12) | 0.44989 (10) | 0.0273 (2) | |
H5A | 0.3410 | −0.0586 | 0.3814 | 0.033* | |
H5B | 0.3302 | −0.1325 | 0.5020 | 0.033* | |
C6 | 0.27248 (4) | −0.04513 (12) | 0.40863 (10) | 0.02705 (19) | |
C7 | 0.45073 (5) | 0.64963 (16) | 0.50364 (12) | 0.0382 (3) | |
N1 | 0.45132 (5) | 0.61025 (16) | 0.61676 (12) | 0.0511 (3) | |
H1N1 | 0.4644 | 0.6641 | 0.6751 | 0.061* | |
H2N1 | 0.4393 | 0.5187 | 0.6424 | 0.061* | |
N2 | 0.47821 (5) | 0.76043 (17) | 0.47097 (13) | 0.0552 (3) | |
H1N2 | 0.4783 | 0.7888 | 0.3966 | 0.066* | |
H2N2 | 0.5000 | 0.7945 | 0.5235 | 0.066* | |
N3 | 0.42259 (5) | 0.57429 (17) | 0.42351 (13) | 0.0547 (3) | |
H1N3 | 0.4208 | 0.6209 | 0.3559 | 0.066* | |
H2N3 | 0.4020 | 0.5135 | 0.4454 | 0.066* | |
O1W | 0.46013 (4) | 0.85648 (15) | 0.82510 (11) | 0.0525 (3) | |
H1W1 | 0.4335 | 0.8373 | 0.8306 | 0.079* | |
H2W1 | 0.4593 | 0.9470 | 0.8020 | 0.079* | |
O2W | 0.31354 (4) | 0.38177 (10) | 0.80498 (8) | 0.0388 (2) | |
H1W2 | 0.3163 | 0.4610 | 0.8492 | 0.058* | |
H2W2 | 0.2975 | 0.3236 | 0.8321 | 0.058* | |
O3W | 0.33513 (3) | 0.63182 (9) | 0.63707 (8) | 0.03042 (16) | |
H1W3 | 0.3494 | 0.6661 | 0.7004 | 0.046* | |
H2W3 | 0.3106 | 0.6561 | 0.6328 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02665 (6) | 0.02218 (6) | 0.02509 (7) | 0.00090 (4) | −0.00047 (4) | −0.00195 (4) |
O1 | 0.0534 (5) | 0.0230 (3) | 0.0269 (4) | 0.0080 (3) | 0.0047 (4) | 0.0038 (3) |
O2 | 0.0384 (4) | 0.0412 (4) | 0.0285 (4) | 0.0094 (4) | 0.0079 (3) | 0.0043 (3) |
O3 | 0.0251 (3) | 0.0245 (3) | 0.0252 (3) | −0.0002 (3) | 0.0025 (3) | −0.0024 (3) |
O4 | 0.0276 (4) | 0.0324 (4) | 0.0490 (5) | −0.0006 (3) | −0.0035 (3) | −0.0064 (4) |
O5 | 0.0344 (5) | 0.0509 (6) | 0.0527 (6) | 0.0026 (4) | −0.0192 (4) | −0.0009 (5) |
O6 | 0.0275 (4) | 0.0277 (4) | 0.0521 (5) | 0.0073 (3) | −0.0089 (4) | −0.0145 (4) |
O7 | 0.0306 (4) | 0.0291 (4) | 0.0666 (7) | 0.0027 (3) | −0.0057 (4) | −0.0205 (4) |
C1 | 0.0243 (4) | 0.0252 (4) | 0.0226 (4) | 0.0018 (3) | −0.0016 (3) | 0.0015 (3) |
C2 | 0.0221 (4) | 0.0207 (4) | 0.0231 (4) | 0.0036 (3) | −0.0010 (3) | −0.0007 (3) |
C3 | 0.0259 (5) | 0.0282 (4) | 0.0307 (5) | 0.0052 (4) | −0.0055 (4) | 0.0016 (4) |
C4 | 0.0226 (4) | 0.0355 (5) | 0.0298 (5) | −0.0006 (4) | −0.0011 (4) | 0.0022 (4) |
C5 | 0.0246 (4) | 0.0220 (4) | 0.0345 (5) | 0.0042 (3) | −0.0010 (4) | −0.0040 (4) |
C6 | 0.0262 (4) | 0.0242 (4) | 0.0302 (5) | 0.0032 (4) | −0.0005 (4) | −0.0051 (4) |
C7 | 0.0341 (6) | 0.0395 (6) | 0.0399 (7) | −0.0022 (5) | −0.0028 (5) | 0.0025 (5) |
N1 | 0.0547 (8) | 0.0579 (8) | 0.0388 (7) | −0.0176 (6) | −0.0058 (6) | 0.0040 (5) |
N2 | 0.0531 (7) | 0.0576 (8) | 0.0534 (8) | −0.0190 (6) | −0.0043 (6) | 0.0139 (6) |
N3 | 0.0586 (8) | 0.0594 (8) | 0.0436 (7) | −0.0202 (7) | −0.0091 (6) | 0.0033 (6) |
O1W | 0.0347 (5) | 0.0645 (7) | 0.0585 (7) | 0.0026 (5) | 0.0055 (5) | 0.0105 (6) |
O2W | 0.0571 (6) | 0.0320 (4) | 0.0284 (4) | −0.0179 (4) | 0.0093 (4) | −0.0048 (3) |
O3W | 0.0321 (4) | 0.0257 (3) | 0.0332 (4) | −0.0030 (3) | 0.0009 (3) | −0.0003 (3) |
Zn1—O2W | 2.0036 (9) | C3—H3B | 0.9700 |
Zn1—O3W | 2.0653 (8) | C5—C6 | 1.5123 (15) |
Zn1—O1 | 2.0953 (9) | C5—H5A | 0.9700 |
Zn1—O6i | 2.1071 (9) | C5—H5B | 0.9700 |
Zn1—O4 | 2.1259 (9) | C7—N2 | 1.3135 (18) |
Zn1—O3 | 2.1436 (8) | C7—N1 | 1.3250 (19) |
O1—C1 | 1.2624 (12) | C7—N3 | 1.3305 (18) |
O2—C1 | 1.2430 (13) | N1—H1N1 | 0.8653 |
O3—C2 | 1.4382 (12) | N1—H2N1 | 0.9161 |
O3—H1O3 | 0.9125 | N2—H1N2 | 0.8782 |
O4—C4 | 1.2757 (15) | N2—H2N2 | 0.8767 |
O5—C4 | 1.2389 (14) | N3—H1N3 | 0.8616 |
O6—C6 | 1.2669 (12) | N3—H2N3 | 0.8455 |
O6—Zn1i | 2.1071 (9) | O1W—H1W1 | 0.7969 |
O7—C6 | 1.2498 (13) | O1W—H2W1 | 0.8189 |
C1—C2 | 1.5510 (14) | O2W—H1W2 | 0.8432 |
C2—C3 | 1.5302 (14) | O2W—H2W2 | 0.7641 |
C2—C5 | 1.5355 (14) | O3W—H1W3 | 0.8481 |
C3—C4 | 1.5237 (16) | O3W—H2W3 | 0.7377 |
C3—H3A | 0.9700 | ||
O2W—Zn1—O3W | 93.79 (3) | C2—C3—H3B | 107.8 |
O2W—Zn1—O1 | 171.26 (3) | H3A—C3—H3B | 107.2 |
O3W—Zn1—O1 | 94.55 (3) | O5—C4—O4 | 122.94 (11) |
O2W—Zn1—O6i | 95.68 (4) | O5—C4—C3 | 116.42 (11) |
O3W—Zn1—O6i | 93.63 (3) | O4—C4—C3 | 120.64 (9) |
O1—Zn1—O6i | 86.38 (4) | C6—C5—C2 | 115.82 (8) |
O2W—Zn1—O4 | 91.59 (4) | C6—C5—H5A | 108.3 |
O3W—Zn1—O4 | 94.00 (4) | C2—C5—H5A | 108.3 |
O1—Zn1—O4 | 85.24 (4) | C6—C5—H5B | 108.3 |
O6i—Zn1—O4 | 169.08 (3) | C2—C5—H5B | 108.3 |
O2W—Zn1—O3 | 94.25 (3) | H5A—C5—H5B | 107.4 |
O3W—Zn1—O3 | 171.92 (3) | O7—C6—O6 | 123.51 (10) |
O1—Zn1—O3 | 77.38 (3) | O7—C6—C5 | 117.91 (9) |
O6i—Zn1—O3 | 86.39 (3) | O6—C6—C5 | 118.54 (9) |
O4—Zn1—O3 | 84.96 (3) | N2—C7—N1 | 120.18 (13) |
C1—O1—Zn1 | 113.29 (7) | N2—C7—N3 | 120.45 (14) |
C2—O3—Zn1 | 106.65 (6) | N1—C7—N3 | 119.36 (13) |
C2—O3—H1O3 | 106.7 | C7—N1—H1N1 | 124.8 |
Zn1—O3—H1O3 | 105.3 | C7—N1—H2N1 | 123.6 |
C4—O4—Zn1 | 127.79 (7) | H1N1—N1—H2N1 | 111.5 |
C6—O6—Zn1i | 125.31 (7) | C7—N2—H1N2 | 121.7 |
O2—C1—O1 | 124.51 (10) | C7—N2—H2N2 | 117.8 |
O2—C1—C2 | 117.97 (9) | H1N2—N2—H2N2 | 119.7 |
O1—C1—C2 | 117.48 (9) | C7—N3—H1N3 | 111.4 |
O3—C2—C3 | 106.41 (8) | C7—N3—H2N3 | 120.1 |
O3—C2—C5 | 110.47 (8) | H1N3—N3—H2N3 | 124.1 |
C3—C2—C5 | 109.15 (8) | H1W1—O1W—H2W1 | 102.7 |
O3—C2—C1 | 110.03 (7) | Zn1—O2W—H1W2 | 121.5 |
C3—C2—C1 | 110.05 (9) | Zn1—O2W—H2W2 | 124.3 |
C5—C2—C1 | 110.64 (9) | H1W2—O2W—H2W2 | 108.4 |
C4—C3—C2 | 117.86 (9) | Zn1—O3W—H1W3 | 116.0 |
C4—C3—H3A | 107.8 | Zn1—O3W—H2W3 | 95.9 |
C2—C3—H3A | 107.8 | H1W3—O3W—H2W3 | 110.5 |
C4—C3—H3B | 107.8 | ||
O3W—Zn1—O1—C1 | 150.43 (8) | O1—C1—C2—O3 | 12.55 (13) |
O6i—Zn1—O1—C1 | −116.20 (9) | O2—C1—C2—C3 | 73.57 (12) |
O4—Zn1—O1—C1 | 56.79 (8) | O1—C1—C2—C3 | −104.39 (11) |
O3—Zn1—O1—C1 | −29.10 (8) | O2—C1—C2—C5 | −47.13 (12) |
O2W—Zn1—O3—C2 | −143.52 (7) | O1—C1—C2—C5 | 134.91 (10) |
O1—Zn1—O3—C2 | 33.95 (6) | O3—C2—C3—C4 | −56.32 (12) |
O6i—Zn1—O3—C2 | 121.05 (6) | C5—C2—C3—C4 | −175.54 (10) |
O4—Zn1—O3—C2 | −52.29 (6) | C1—C2—C3—C4 | 62.86 (12) |
O2W—Zn1—O4—C4 | 91.34 (10) | Zn1—O4—C4—O5 | −150.02 (10) |
O3W—Zn1—O4—C4 | −174.75 (10) | Zn1—O4—C4—C3 | 30.55 (16) |
O1—Zn1—O4—C4 | −80.50 (10) | C2—C3—C4—O5 | 174.68 (11) |
O6i—Zn1—O4—C4 | −40.5 (3) | C2—C3—C4—O4 | −5.86 (17) |
O3—Zn1—O4—C4 | −2.78 (10) | O3—C2—C5—C6 | 45.40 (12) |
Zn1—O1—C1—O2 | −160.08 (9) | C3—C2—C5—C6 | 162.07 (10) |
Zn1—O1—C1—C2 | 17.74 (12) | C1—C2—C5—C6 | −76.69 (12) |
Zn1—O3—C2—C3 | 84.83 (8) | Zn1i—O6—C6—O7 | −4.75 (18) |
Zn1—O3—C2—C5 | −156.82 (6) | Zn1i—O6—C6—C5 | 177.29 (8) |
Zn1—O3—C2—C1 | −34.36 (9) | C2—C5—C6—O7 | −174.40 (11) |
O2—C1—C2—O3 | −169.49 (9) | C2—C5—C6—O6 | 3.68 (16) |
Symmetry code: (i) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O6 | 0.91 | 1.87 | 2.6445 (13) | 142 |
N1—H1N1···O1W | 0.86 | 2.38 | 3.1607 (19) | 150 |
N1—H2N1···O4 | 0.92 | 2.10 | 2.9855 (17) | 161 |
N2—H1N2···O5ii | 0.88 | 2.12 | 2.9351 (18) | 154 |
N2—H2N2···O1Wiii | 0.88 | 2.05 | 2.9077 (19) | 166 |
N3—H1N3···O4ii | 0.86 | 2.29 | 3.1011 (18) | 156 |
N3—H1N3···O5ii | 0.86 | 2.55 | 3.3221 (18) | 150 |
N3—H2N3···O1 | 0.85 | 2.36 | 3.1788 (18) | 162 |
O1W—H1W1···O2iv | 0.80 | 1.97 | 2.7640 (15) | 177 |
O1W—H2W1···O5v | 0.82 | 2.05 | 2.8568 (17) | 170 |
O2W—H1W2···O1iv | 0.84 | 1.88 | 2.7172 (12) | 171 |
O2W—H2W2···O7vi | 0.76 | 1.86 | 2.6116 (13) | 167 |
O3W—H1W3···O2iv | 0.85 | 1.90 | 2.7215 (12) | 163 |
O3W—H2W3···O7i | 0.74 | 1.92 | 2.6424 (12) | 166 |
C5—H5B···O3Wvii | 0.97 | 2.53 | 3.4943 (13) | 172 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) x, −y+1, z−1/2; (iii) −x+1, y, −z+3/2; (iv) x, −y+1, z+1/2; (v) x, y+1, z; (vi) x, −y, z+1/2; (vii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | (CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2O |
Mr | 737.21 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 28.9405 (4), 8.5708 (1), 11.3395 (2) |
β (°) | 95.249 (1) |
V (Å3) | 2800.89 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.81 |
Crystal size (mm) | 0.32 × 0.30 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.593, 0.734 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32332, 7693, 5495 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.871 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.084, 1.05 |
No. of reflections | 7693 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.29 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O6 | 0.9100 | 1.8700 | 2.6445 (13) | 142.00 |
N1—H1N1···O1W | 0.8600 | 2.3800 | 3.1607 (19) | 150.00 |
N1—H2N1···O4 | 0.9200 | 2.1000 | 2.9855 (17) | 161.00 |
N2—H1N2···O5i | 0.8800 | 2.1200 | 2.9351 (18) | 154.00 |
N2—H2N2···O1Wii | 0.8800 | 2.0500 | 2.9077 (19) | 166.00 |
N3—H1N3···O4i | 0.8600 | 2.2900 | 3.1011 (18) | 156.00 |
N3—H1N3···O5i | 0.8600 | 2.5500 | 3.3221 (18) | 150.00 |
N3—H2N3···O1 | 0.8500 | 2.3600 | 3.1788 (18) | 162.00 |
O1W—H1W1···O2iii | 0.8000 | 1.9700 | 2.7640 (15) | 177.00 |
O1W—H2W1···O5iv | 0.8200 | 2.0500 | 2.8568 (17) | 170.00 |
O2W—H1W2···O1iii | 0.8400 | 1.8800 | 2.7172 (12) | 171.00 |
O2W—H2W2···O7v | 0.7600 | 1.8600 | 2.6116 (13) | 167.00 |
O3W—H1W3···O2iii | 0.8500 | 1.9000 | 2.7215 (12) | 163.00 |
O3W—H2W3···O7vi | 0.7400 | 1.9200 | 2.6424 (12) | 166.00 |
C5—H5B···O3Wvii | 0.9700 | 2.5300 | 3.4943 (13) | 172.00 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, y, −z+3/2; (iii) x, −y+1, z+1/2; (iv) x, y+1, z; (v) x, −y, z+1/2; (vi) −x+1/2, −y+1/2, −z+1; (vii) x, y−1, z. |
Acknowledgements
HHA gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811142). HKF thanks USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.
References
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009a). Acta Cryst. E65, o2508–o2509. Web of Science CSD CrossRef IUCr Journals Google Scholar
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, m1540–m1541. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blair, G., Staal, P., Haarmann & Reimer Corporation (1991). Citric Acid, in Encyclopedia of Chemical Technology, edited by J. I. Kroschwitz & M. Howe-Grant, pp. 354–380. New York: John Wiley & Sons Inc. Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jiang, Q., Song, L. J., Zhao, Y., Lu, X. Y., Zhu, T. Y., Qian, L., Ren, X. M. & Cai, Y. D. (2007). Mater. Lett. 61, 2749–2752. Web of Science CrossRef CAS Google Scholar
Raczyńska, E. D., Cyrański, M. K., Gutowski, M., Rak, J., Gal, J.-F., Maria, P.-C., Darowska, M. & Duczmal, K. (2003). J. Phys. Org. Chem. 16, 91–106. Google Scholar
Schuck, C. (1934). J. Nutrit. 7, 679–684. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sherman, C. C., Mendel, L. B. & Smith, A. H. (1936). J. Biol. Chem. 113, 247–254. CAS Google Scholar
Sigman, D. S., Mazumder, A. & Perrin, D. M. (1993). Chem. Rev. 93, 2295–2316. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, T., Liu, X., Englert, U., Darowska, M. & Duczmal, K. (2009). Chem. Eur. J. 15, 5651–5655. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid contains three carboxyl groups. It is found in the literature that an organism has the ability to synthesize citric acid. (Schuck, 1934; Sherman et al., 1936). Citric acid has many applications including use in the manufacture of detergents, shampoos, cosmetics and in chemical cleaning (Blair et al., 1991). It can also be used for the preparation of the catalyst LaNiO3 for the preparation of carbon nanotubes (Jiang et al., 2007).
Guanidine can be formed by the oxidation of guanine as a final product of the protein metabolism (Raczyńska et al., 2003; Yamada et al., 2009; Sigman et al., 1993).
The asymmetric unit of title compound contains one half of a dizinc(II) complex anion, one guanidinium cation and one water solvent molecule (Fig. 1). The anion lies across a crystallographic inversion center, the other half is symmetry generated [symmetry code: 1/2 - x, 1/2 - y, 1 - z]. The Zn1 and Zn2 ions are coordinated to four O atoms from two citrate anions and two water molecules to form a distorted octahedral geometry. Two citric acid molecules are deprotonated and two guanidine molecules protonated to yield the cation and anion. The geometrical parameters of the guanidinium cations agree with those previously reported (Al-Dajani et al., 2009a,b). An intramolecular O3—H1O3···O6 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).
In crystal structure (Fig. 2), the ZnII complex anion and water molecules are linked into sheets parallel to the bc plane via intermoleculer O1W—H1W1···O2, O1W—H2W1···O5, O2W—H1W2···O1, O2W—H2W2···O7, O3W—H1W3···O2, O3W—H2W3···O7 and C5—H5B···O3W hydrogen bonds. The guanidinium cations are linked these sheets generating a three-dimensional framework through N—H···O hydrogen bonds (Table 1).