organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Quinoxaline-2,3-di­yl)diphenol di­methyl­formamide solvate

aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, People's Republic of China
*Correspondence e-mail: youzhonglu@lnnu.edu.cn

(Received 14 December 2009; accepted 16 December 2009; online 16 January 2010)

In the title compound, C20H14N2O2·C3H7NO, the quinoxaline ring forms dihedral angles of 64.9 (2) and 30.9 (2)° with the two substituted benzene rings, which are themselves inclined at 58.4 (2)°. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds.

Related literature

For details of cyanide-catalysed cyclizations via aldimine coupling, see: Reich et al. (2004[Reich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357-1359.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N2O2·C3H7NO

  • Mr = 387.43

  • Orthorhombic, P 21 21 21

  • a = 9.759 (2) Å

  • b = 10.672 (2) Å

  • c = 19.049 (4) Å

  • V = 1983.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.983

  • 11593 measured reflections

  • 4322 independent reflections

  • 3434 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.102

  • S = 1.05

  • 4322 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.81 2.6172 (19) 168
O1—H1⋯N1 0.82 1.94 2.647 (2) 144
Symmetry code: (i) x+1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Reich and co-workers have reported a series of compounds with the cyanide-catalyzed cyclizations via aldimine coupling (Reich et al., 2004), including the crystal structure of 2,2'-(quinoxaline-2,3-diyl)diphenol. In this paper, the title compound, Fig. 1, 2,2'-(quinoxaline-2,3-diyl)diphenol as the N,Ndimethylformamide solvate is formed in an aldimine coupling reaction and its structure is reported here.

In the compound, the dimethylformamide molecule is linked to the 2,2'-(quinoxaline-2,3-diyl)diphenol molecule through an intermolecular O2—H2···O3 hydrogen bond (Table 1 and Fig. 2). The quinoxaline ring forms dihedral angles of 64.9 (2) and 30.9 (2)°, respectively, with the two substituted benzene rings C9-C14 and C15-C20. The dihedral angle between the two substituted benzene rings is 58.4 (2)°. An intramolecular O1—H1···N1 hydrogen bond (Table 1) is observed in the 2,2'-(quinoxaline-2,3-diyl)diphenol molecule.

Related literature top

For details of cyanide-catalysed cyclizations via aldimine coupling, see: Reich et al. (2004).

Experimental top

The compound was prepared according to a literature procedure (Reich et al., 2004). Yellow block-shaped crystals suitable for X-ray structural determination were obtained by slow diffusion of diethyl ether into a N,Ndimethylformamide solution.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93-0.96 Å, O—H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O). In the absence of significant anomalous scattering effects, 1843 Friedel opposites were merged in the final refinement.

Structure description top

Reich and co-workers have reported a series of compounds with the cyanide-catalyzed cyclizations via aldimine coupling (Reich et al., 2004), including the crystal structure of 2,2'-(quinoxaline-2,3-diyl)diphenol. In this paper, the title compound, Fig. 1, 2,2'-(quinoxaline-2,3-diyl)diphenol as the N,Ndimethylformamide solvate is formed in an aldimine coupling reaction and its structure is reported here.

In the compound, the dimethylformamide molecule is linked to the 2,2'-(quinoxaline-2,3-diyl)diphenol molecule through an intermolecular O2—H2···O3 hydrogen bond (Table 1 and Fig. 2). The quinoxaline ring forms dihedral angles of 64.9 (2) and 30.9 (2)°, respectively, with the two substituted benzene rings C9-C14 and C15-C20. The dihedral angle between the two substituted benzene rings is 58.4 (2)°. An intramolecular O1—H1···N1 hydrogen bond (Table 1) is observed in the 2,2'-(quinoxaline-2,3-diyl)diphenol molecule.

For details of cyanide-catalysed cyclizations via aldimine coupling, see: Reich et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are drawn as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
2,2'-(Quinoxaline-2,3-diyl)diphenol dimethylformamide solvate top
Crystal data top
C20H14N2O2·C3H7NOF(000) = 816
Mr = 387.43Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4283 reflections
a = 9.759 (2) Åθ = 2.2–25.9°
b = 10.672 (2) ŵ = 0.09 mm1
c = 19.049 (4) ÅT = 298 K
V = 1983.9 (7) Å3Block, yellow
Z = 40.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4322 independent reflections
Radiation source: fine-focus sealed tube3434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.980, Tmax = 0.983k = 1310
11593 measured reflectionsl = 2419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.0554P]
where P = (Fo2 + 2Fc2)/3
4322 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H14N2O2·C3H7NOV = 1983.9 (7) Å3
Mr = 387.43Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.759 (2) ŵ = 0.09 mm1
b = 10.672 (2) ÅT = 298 K
c = 19.049 (4) Å0.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4322 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3434 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.028
11593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
4322 reflectionsΔρmin = 0.22 e Å3
266 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.87527 (15)0.67113 (14)0.14671 (8)0.0496 (3)
N20.61529 (14)0.78228 (13)0.14710 (8)0.0494 (4)
N30.22105 (17)0.28969 (17)0.15246 (8)0.0639 (4)
O11.13645 (14)0.73589 (16)0.15603 (8)0.0771 (4)
H11.06730.69790.16810.116*
O20.83600 (16)1.05141 (12)0.16631 (7)0.0695 (4)
H20.87921.11620.17310.104*
O30.00473 (16)0.23971 (15)0.18290 (9)0.0795 (5)
C10.76781 (19)0.61476 (16)0.18052 (9)0.0483 (4)
C20.63779 (19)0.66962 (16)0.18002 (9)0.0486 (4)
C30.5287 (2)0.61110 (19)0.21599 (11)0.0639 (5)
H30.44190.64720.21630.077*
C40.5521 (3)0.5016 (2)0.25004 (11)0.0711 (6)
H40.48080.46350.27440.085*
C50.6807 (2)0.4452 (2)0.24920 (11)0.0721 (6)
H50.69350.36910.27210.087*
C60.7878 (2)0.49954 (18)0.21537 (11)0.0641 (5)
H60.87350.46130.21520.077*
C70.85364 (16)0.77757 (15)0.11304 (8)0.0430 (4)
C80.71927 (17)0.83557 (15)0.11509 (8)0.0433 (4)
C90.68921 (17)0.96032 (16)0.08390 (9)0.0464 (4)
C100.75162 (19)1.06703 (16)0.11096 (9)0.0528 (5)
C110.7215 (2)1.18364 (17)0.08143 (11)0.0638 (5)
H110.76191.25570.09940.077*
C120.6323 (2)1.1920 (2)0.02580 (12)0.0684 (6)
H120.61531.26970.00550.082*
C130.5678 (2)1.0874 (2)0.00042 (12)0.0676 (5)
H130.50621.09430.03750.081*
C140.59580 (18)0.97191 (18)0.02901 (11)0.0550 (5)
H140.55170.90090.01190.066*
C150.97327 (16)0.83049 (16)0.07577 (9)0.0453 (4)
C161.10760 (18)0.80861 (18)0.09958 (9)0.0529 (4)
C171.2185 (2)0.8622 (2)0.06566 (11)0.0625 (5)
H171.30650.84960.08300.075*
C181.1996 (2)0.9338 (2)0.00648 (10)0.0633 (5)
H181.27460.97010.01570.076*
C191.0700 (2)0.95219 (19)0.02002 (10)0.0615 (5)
H191.05760.99910.06070.074*
C200.95835 (19)0.90080 (18)0.01386 (9)0.0523 (4)
H200.87120.91300.00470.063*
C210.2074 (3)0.4182 (2)0.17613 (15)0.0940 (8)
H21A0.25270.47310.14360.141*
H21B0.24830.42680.22170.141*
H21C0.11200.43990.17870.141*
C220.3494 (2)0.2530 (3)0.11988 (14)0.0951 (8)
H22A0.34730.16490.10950.143*
H22B0.42380.27040.15140.143*
H22C0.36190.29930.07720.143*
C230.1181 (2)0.2123 (2)0.15743 (10)0.0660 (5)
H230.13030.13110.14080.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0505 (8)0.0416 (8)0.0568 (8)0.0064 (7)0.0007 (7)0.0007 (7)
N20.0512 (8)0.0368 (8)0.0601 (8)0.0058 (6)0.0123 (7)0.0042 (6)
N30.0591 (10)0.0707 (11)0.0620 (9)0.0009 (9)0.0025 (8)0.0038 (8)
O10.0513 (8)0.0915 (11)0.0886 (10)0.0128 (8)0.0080 (7)0.0264 (9)
O20.0955 (11)0.0479 (8)0.0652 (8)0.0194 (7)0.0054 (7)0.0031 (6)
O30.0707 (10)0.0683 (10)0.0996 (11)0.0145 (8)0.0137 (9)0.0173 (8)
C10.0572 (10)0.0390 (8)0.0486 (9)0.0130 (8)0.0007 (8)0.0009 (7)
C20.0576 (10)0.0378 (9)0.0504 (9)0.0130 (9)0.0080 (8)0.0041 (7)
C30.0657 (12)0.0562 (12)0.0697 (12)0.0169 (10)0.0190 (10)0.0010 (9)
C40.0841 (16)0.0620 (13)0.0673 (13)0.0310 (12)0.0107 (12)0.0086 (10)
C50.0904 (17)0.0550 (13)0.0709 (12)0.0213 (12)0.0100 (12)0.0199 (10)
C60.0700 (12)0.0502 (11)0.0721 (12)0.0085 (10)0.0075 (11)0.0112 (10)
C70.0475 (9)0.0362 (8)0.0454 (8)0.0051 (7)0.0043 (7)0.0075 (7)
C80.0478 (8)0.0343 (8)0.0478 (8)0.0065 (7)0.0088 (8)0.0061 (7)
C90.0470 (9)0.0364 (8)0.0559 (9)0.0021 (7)0.0157 (8)0.0025 (7)
C100.0645 (11)0.0408 (9)0.0530 (10)0.0061 (8)0.0175 (9)0.0023 (8)
C110.0821 (13)0.0348 (9)0.0747 (13)0.0040 (10)0.0253 (11)0.0012 (9)
C120.0776 (14)0.0490 (12)0.0786 (14)0.0106 (11)0.0244 (12)0.0142 (10)
C130.0598 (12)0.0668 (14)0.0762 (13)0.0110 (11)0.0068 (10)0.0094 (11)
C140.0470 (10)0.0502 (11)0.0679 (11)0.0005 (8)0.0102 (9)0.0015 (9)
C150.0478 (9)0.0362 (9)0.0519 (9)0.0041 (7)0.0088 (8)0.0068 (7)
C160.0544 (10)0.0481 (10)0.0564 (10)0.0085 (8)0.0057 (8)0.0063 (8)
C170.0482 (10)0.0697 (13)0.0696 (12)0.0101 (10)0.0085 (10)0.0117 (10)
C180.0584 (12)0.0635 (13)0.0681 (12)0.0121 (10)0.0250 (10)0.0117 (10)
C190.0715 (13)0.0592 (12)0.0539 (10)0.0016 (10)0.0217 (9)0.0018 (9)
C200.0548 (10)0.0509 (10)0.0513 (10)0.0036 (9)0.0120 (8)0.0033 (8)
C210.0760 (15)0.0876 (18)0.119 (2)0.0221 (15)0.0046 (15)0.0334 (16)
C220.0715 (15)0.128 (2)0.0853 (16)0.0205 (16)0.0133 (12)0.0106 (16)
C230.0809 (15)0.0573 (13)0.0598 (12)0.0019 (11)0.0001 (11)0.0042 (9)
Geometric parameters (Å, º) top
N1—C71.321 (2)C9—C141.393 (3)
N1—C11.370 (2)C10—C111.397 (3)
N2—C81.313 (2)C11—C121.374 (3)
N2—C21.374 (2)C11—H110.9300
N3—C231.304 (3)C12—C131.376 (3)
N3—C211.450 (3)C12—H120.9300
N3—C221.452 (3)C13—C141.381 (3)
O1—C161.356 (2)C13—H130.9300
O1—H10.8200C14—H140.9300
O2—C101.348 (2)C15—C201.405 (2)
O2—H20.8200C15—C161.407 (3)
O3—C231.243 (2)C16—C171.384 (3)
C1—C21.398 (3)C17—C181.375 (3)
C1—C61.411 (3)C17—H170.9300
C2—C31.412 (2)C18—C191.376 (3)
C3—C41.356 (3)C18—H180.9300
C3—H30.9300C19—C201.380 (3)
C4—C51.393 (3)C19—H190.9300
C4—H40.9300C20—H200.9300
C5—C61.358 (3)C21—H21A0.9600
C5—H50.9300C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C7—C81.451 (2)C22—H22A0.9600
C7—C151.479 (2)C22—H22B0.9600
C8—C91.487 (2)C22—H22C0.9600
C9—C101.391 (2)C23—H230.9300
C7—N1—C1118.91 (15)C11—C12—H12119.4
C8—N2—C2117.87 (15)C13—C12—H12119.4
C23—N3—C21120.37 (19)C12—C13—C14119.1 (2)
C23—N3—C22121.7 (2)C12—C13—H13120.5
C21—N3—C22117.9 (2)C14—C13—H13120.5
C16—O1—H1109.5C13—C14—C9120.89 (19)
C10—O2—H2109.5C13—C14—H14119.6
N1—C1—C2120.52 (15)C9—C14—H14119.6
N1—C1—C6119.86 (18)C20—C15—C16117.11 (15)
C2—C1—C6119.61 (17)C20—C15—C7121.67 (15)
N2—C2—C1120.99 (15)C16—C15—C7121.18 (15)
N2—C2—C3119.22 (18)O1—C16—C17116.38 (17)
C1—C2—C3119.74 (17)O1—C16—C15122.97 (16)
C4—C3—C2119.1 (2)C17—C16—C15120.65 (17)
C4—C3—H3120.4C18—C17—C16120.49 (19)
C2—C3—H3120.4C18—C17—H17119.8
C3—C4—C5121.28 (19)C16—C17—H17119.8
C3—C4—H4119.4C17—C18—C19120.25 (18)
C5—C4—H4119.4C17—C18—H18119.9
C6—C5—C4121.0 (2)C19—C18—H18119.9
C6—C5—H5119.5C18—C19—C20119.84 (19)
C4—C5—H5119.5C18—C19—H19120.1
C5—C6—C1119.3 (2)C20—C19—H19120.1
C5—C6—H6120.4C19—C20—C15121.53 (18)
C1—C6—H6120.4C19—C20—H20119.2
N1—C7—C8119.88 (14)C15—C20—H20119.2
N1—C7—C15115.80 (15)N3—C21—H21A109.5
C8—C7—C15124.31 (15)N3—C21—H21B109.5
N2—C8—C7121.74 (15)H21A—C21—H21B109.5
N2—C8—C9114.88 (15)N3—C21—H21C109.5
C7—C8—C9123.34 (14)H21A—C21—H21C109.5
C10—C9—C14119.49 (17)H21B—C21—H21C109.5
C10—C9—C8119.91 (16)N3—C22—H22A109.5
C14—C9—C8120.57 (15)N3—C22—H22B109.5
O2—C10—C9117.14 (15)H22A—C22—H22B109.5
O2—C10—C11123.62 (17)N3—C22—H22C109.5
C9—C10—C11119.22 (18)H22A—C22—H22C109.5
C12—C11—C10120.10 (19)H22B—C22—H22C109.5
C12—C11—H11120.0O3—C23—N3124.4 (2)
C10—C11—H11120.0O3—C23—H23117.8
C11—C12—C13121.16 (19)N3—C23—H23117.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.812.6172 (19)168
O1—H1···N10.821.942.647 (2)144
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H14N2O2·C3H7NO
Mr387.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.759 (2), 10.672 (2), 19.049 (4)
V3)1983.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
11593, 4322, 3434
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.102, 1.05
No. of reflections4322
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.812.6172 (19)168.1
O1—H1···N10.821.942.647 (2)144.1
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The author acknowledges Dalian University of Technology for financial support.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationReich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357–1359.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds