organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination and absolute configuration of atalaphylline

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 14 December 2009; accepted 17 December 2009; online 9 January 2010)

The title acridone alkaloid [systematic name: 1,3,5-trihydr­oxy-2,4-bis­(3-methyl­but-2-en­yl)acridin-9(10H)-one], C23H25NO4, has previously been reported as crystallizing in the chiral ortho­rhom­bic space group P212121 [Chantrapromma et al. (2010[Chantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o81-o82.]). Acta Cryst. E66, o81–o82] but the absolute configuration could not be determined from data collected with Mo radiation. The absolute configuration has now been determined by refinement of the Flack parameter with data collected using Cu radiation. All features of the mol­ecule and its crystal packing are similar to those previously described.

Related literature

For details of acridone alkaloids see: Basu & Basa (1972[Basu, D. & Basa, S. C. (1972). J. Org. Chem. 37, 3035-3036.]). For the previous structure determination, see: Chantrapromma et al. (2010[Chantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o81-o82.]). For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25NO4

  • Mr = 379.44

  • Orthorhombic, P 21 21 21

  • a = 5.0838 (1) Å

  • b = 15.0262 (3) Å

  • c = 24.6412 (4) Å

  • V = 1882.35 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 150 K

  • 0.40 × 0.21 × 0.04 mm

Data collection
  • Bruker APEX Duo CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.970

  • 11768 measured reflections

  • 3145 independent reflections

  • 3099 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.06

  • 3145 reflections

  • 354 parameters

  • All H-atom parameters refined

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.10 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1280 Friedel pairs

  • Flack parameter: 0.05 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.915 (19) 1.699 (19) 2.5528 (13) 154.1 (17)
O3—H1O3⋯O2i 0.845 (19) 1.923 (19) 2.7501 (12) 165.9 (19)
N1—H1N1⋯O3 0.880 (18) 2.333 (18) 2.6893 (13) 104.3 (13)
C8—H8A⋯O2i 0.991 (19) 2.565 (18) 3.2918 (16) 130.1 (13)
C14—H14A⋯O4 0.969 (19) 2.254 (17) 2.7752 (16) 112.6 (12)
C19—H19A⋯O1 0.957 (16) 2.352 (15) 2.8197 (17) 109.6 (11)
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title acridone alkaloid (I) known as atalaphylline (Basu & Basa, 1972), was isolated from the roots of Atalantia monophylla Corrêa, a mangrove plant which was collected from Trang province in the southern part of Thailand. Although (I) has been previously reported (Chantrapromma et al., 2010), the absolute configuration could not be determined due to insufficient anomalous dispersion from the light atoms using the data set collected with Mo radiation. The data of the same sample was recollected using Cu radiation with our newly-installed Bruker Apex-Duo CCD diffractometer and the absolute configulation was determined by making use of the large anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.05 (13). We report herein the crystal structure of (I) with data collected using Cu radiation.

Fig. 1 shows the molecular structure of (I), bond lengths and angles are closely similar to those previously described (Chantrapromma et al., 2010). (I) is chiral even though it has no chiral center because its mirror image cannot be superposed onto itself. This is due to the arrangements of the two 3-methylbut-2-enyl side-chains at atoms C1 and C12. (I) crystallized as a single enantiomer in chiral orthorhombic P212121 space group. The current structure determination represents a significant improvement compared with the structure determined from the data taken with Mo radiation and it confirmed the absolute conformation of the side-chains for (I). To be precise the two 3-methyl-2-enyl groups at C1 and C12 are attached in such a way that these two side-chains are below the acridone molecular plane indicating the (-)-anticlinal conformation with the torsion angles C2–C1–C19–C20 and C13–C12–C14–C15 are -102.65 (13) and -119.77 (33)°, respectively.

Fig. 2 shows the crystal packing of (I). Intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) linked the molecules into infinite one dimensional screw-chains along the [0 1 0] direction. These features are similar to those of the previous report by Chantrapromma et al. (2010) except there is an additional weak intermolecular C—H···O interaction and a ππ interaction with a Cg1···Cg2 distance of 3.7643 (7) Å (symmetry code: -1+x, y, z); Cg1 and Cg2 are the centroids of C3–C5/C10–C11/N1 and C5–C10 rings, respectively . These differences are due to the fact that all the hydrogen atoms are refined freely whereas in previous report by Chantrapromma et al. (2010), the hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms.

Related literature top

For details of acridone alkaloids see: Basu & Basa (1972). For the previous structure determination, see: Chantrapromma et al. (2010). For hydrogen-bond motifs, see Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The compound was isolated and crystal grown as reported by Chantrapromma et al. (2010).

Refinement top

All H atoms were located from the difference map and isotropically refined. The highest residual electron density peak is located at 0.66 Å from C3 and the deepest hole is located at 0.84 Å from H1N1. 1280 Friedel pairs were used to find the absolute configuration.

Structure description top

The title acridone alkaloid (I) known as atalaphylline (Basu & Basa, 1972), was isolated from the roots of Atalantia monophylla Corrêa, a mangrove plant which was collected from Trang province in the southern part of Thailand. Although (I) has been previously reported (Chantrapromma et al., 2010), the absolute configuration could not be determined due to insufficient anomalous dispersion from the light atoms using the data set collected with Mo radiation. The data of the same sample was recollected using Cu radiation with our newly-installed Bruker Apex-Duo CCD diffractometer and the absolute configulation was determined by making use of the large anomalous scattering of Cu Kα X-radiation with the Flack parameter being refined to 0.05 (13). We report herein the crystal structure of (I) with data collected using Cu radiation.

Fig. 1 shows the molecular structure of (I), bond lengths and angles are closely similar to those previously described (Chantrapromma et al., 2010). (I) is chiral even though it has no chiral center because its mirror image cannot be superposed onto itself. This is due to the arrangements of the two 3-methylbut-2-enyl side-chains at atoms C1 and C12. (I) crystallized as a single enantiomer in chiral orthorhombic P212121 space group. The current structure determination represents a significant improvement compared with the structure determined from the data taken with Mo radiation and it confirmed the absolute conformation of the side-chains for (I). To be precise the two 3-methyl-2-enyl groups at C1 and C12 are attached in such a way that these two side-chains are below the acridone molecular plane indicating the (-)-anticlinal conformation with the torsion angles C2–C1–C19–C20 and C13–C12–C14–C15 are -102.65 (13) and -119.77 (33)°, respectively.

Fig. 2 shows the crystal packing of (I). Intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1) linked the molecules into infinite one dimensional screw-chains along the [0 1 0] direction. These features are similar to those of the previous report by Chantrapromma et al. (2010) except there is an additional weak intermolecular C—H···O interaction and a ππ interaction with a Cg1···Cg2 distance of 3.7643 (7) Å (symmetry code: -1+x, y, z); Cg1 and Cg2 are the centroids of C3–C5/C10–C11/N1 and C5–C10 rings, respectively . These differences are due to the fact that all the hydrogen atoms are refined freely whereas in previous report by Chantrapromma et al. (2010), the hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms.

For details of acridone alkaloids see: Basu & Basa (1972). For the previous structure determination, see: Chantrapromma et al. (2010). For hydrogen-bond motifs, see Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis, showing screw chains along the [0 1 0] direction. Hydrogen bonds are shown as dashed lines.
1,3,5-trihydroxy-2,4-bis(3-methylbut-2-enyl)acridin-9(10H)-one top
Crystal data top
C23H25NO4F(000) = 808
Mr = 379.44Dx = 1.339 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 3145 reflections
a = 5.0838 (1) Åθ = 6.1–64.9°
b = 15.0262 (3) ŵ = 0.74 mm1
c = 24.6412 (4) ÅT = 150 K
V = 1882.35 (6) Å3Plate, brown
Z = 40.40 × 0.21 × 0.04 mm
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
3145 independent reflections
Radiation source: sealed tube3099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 64.9°, θmin = 6.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.755, Tmax = 0.970k = 1717
11768 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.1806P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.12 e Å3
3145 reflectionsΔρmin = 0.10 e Å3
354 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0020 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1280 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (13)
Crystal data top
C23H25NO4V = 1882.35 (6) Å3
Mr = 379.44Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.0838 (1) ŵ = 0.74 mm1
b = 15.0262 (3) ÅT = 150 K
c = 24.6412 (4) Å0.40 × 0.21 × 0.04 mm
Data collection top
Bruker APEX Duo CCD area-detector
diffractometer
3145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3099 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.970Rint = 0.017
11768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.068Δρmax = 0.12 e Å3
S = 1.06Δρmin = 0.10 e Å3
3145 reflectionsAbsolute structure: Flack (1983), 1280 Friedel pairs
354 parametersAbsolute structure parameter: 0.05 (13)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 150.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33887 (19)0.33672 (5)0.16257 (4)0.0319 (2)
H1O10.469 (4)0.3351 (12)0.1882 (7)0.049 (5)*
O20.72372 (18)0.37879 (5)0.22397 (3)0.0312 (2)
O30.90459 (19)0.77102 (5)0.22853 (3)0.0318 (2)
H1O30.997 (4)0.8077 (12)0.2462 (7)0.044 (4)*
O40.06425 (19)0.56721 (6)0.06026 (4)0.0361 (2)
H1O40.139 (5)0.5215 (14)0.0460 (8)0.063 (6)*
N10.6200 (2)0.63969 (6)0.18325 (4)0.0264 (2)
H1N10.606 (4)0.6957 (12)0.1732 (6)0.038 (4)*
C10.1336 (2)0.44827 (8)0.11088 (5)0.0273 (3)
C20.3211 (2)0.42334 (8)0.14856 (5)0.0261 (3)
C30.4921 (2)0.48690 (7)0.17304 (4)0.0251 (3)
C40.6888 (2)0.46022 (8)0.21176 (5)0.0262 (3)
C50.8448 (3)0.52966 (8)0.23719 (5)0.0269 (3)
C61.0361 (3)0.50956 (8)0.27663 (5)0.0331 (3)
H6A1.074 (3)0.4477 (10)0.2852 (6)0.030 (3)*
C71.1787 (3)0.57660 (9)0.29998 (6)0.0381 (3)
H7A1.318 (4)0.5600 (11)0.3267 (7)0.045 (4)*
C81.1372 (3)0.66535 (9)0.28512 (5)0.0343 (3)
H8A1.240 (4)0.7140 (12)0.3021 (7)0.057 (5)*
C90.9535 (3)0.68681 (8)0.24628 (5)0.0281 (3)
C100.8034 (2)0.61840 (8)0.22173 (5)0.0259 (3)
C110.4625 (2)0.57783 (7)0.15855 (5)0.0255 (2)
C120.2744 (2)0.60509 (8)0.12029 (5)0.0274 (3)
C130.1178 (2)0.53936 (8)0.09727 (5)0.0277 (3)
C140.2289 (3)0.70240 (8)0.10748 (6)0.0319 (3)
H14A0.081 (4)0.7041 (11)0.0827 (7)0.049 (5)*
H14B0.184 (3)0.7325 (11)0.1402 (7)0.040 (4)*
C150.4574 (3)0.74968 (8)0.08153 (5)0.0313 (3)
H15A0.544 (3)0.7170 (10)0.0517 (6)0.041 (4)*
C160.5452 (3)0.83055 (8)0.09368 (5)0.0346 (3)
C170.7648 (4)0.87331 (12)0.06276 (8)0.0536 (4)
H17A0.917 (5)0.8886 (16)0.0890 (10)0.087 (7)*
H17B0.829 (4)0.8328 (14)0.0332 (8)0.065 (6)*
H17C0.715 (4)0.9270 (13)0.0451 (7)0.053 (5)*
C180.4364 (4)0.88686 (9)0.13869 (7)0.0469 (4)
H18A0.281 (5)0.8592 (14)0.1596 (9)0.071 (6)*
H18B0.563 (6)0.8967 (17)0.1648 (10)0.096 (8)*
H18C0.371 (4)0.9448 (14)0.1242 (8)0.063 (5)*
C190.0548 (3)0.38053 (8)0.08652 (5)0.0301 (3)
H19A0.048 (3)0.3304 (11)0.1104 (6)0.039 (4)*
H19B0.240 (4)0.4055 (10)0.0883 (6)0.042 (4)*
C200.0167 (3)0.35223 (7)0.02981 (5)0.0312 (3)
H20A0.179 (3)0.3171 (10)0.0264 (6)0.037 (4)*
C210.1104 (3)0.37003 (8)0.01615 (5)0.0351 (3)
C220.0091 (4)0.33621 (11)0.06969 (6)0.0509 (4)
H22A0.149 (5)0.3035 (14)0.0897 (8)0.069 (6)*
H22B0.043 (4)0.3915 (13)0.0939 (8)0.061 (5)*
H22C0.179 (5)0.2984 (15)0.0653 (9)0.080 (7)*
C230.3525 (3)0.42646 (13)0.02079 (7)0.0520 (4)
H23A0.490 (5)0.3962 (16)0.0444 (9)0.083 (7)*
H23B0.312 (6)0.4882 (19)0.0386 (10)0.099 (8)*
H23C0.438 (4)0.4365 (11)0.0152 (8)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (5)0.0218 (4)0.0370 (5)0.0033 (3)0.0036 (4)0.0006 (3)
O20.0342 (5)0.0199 (4)0.0395 (5)0.0001 (4)0.0059 (4)0.0012 (3)
O30.0387 (5)0.0210 (4)0.0357 (4)0.0020 (4)0.0080 (4)0.0015 (3)
O40.0340 (5)0.0337 (5)0.0406 (5)0.0034 (4)0.0116 (4)0.0020 (4)
N10.0280 (5)0.0194 (5)0.0318 (5)0.0012 (4)0.0023 (4)0.0003 (4)
C10.0269 (6)0.0283 (6)0.0266 (5)0.0036 (5)0.0034 (5)0.0033 (4)
C20.0280 (6)0.0228 (5)0.0275 (5)0.0009 (5)0.0051 (5)0.0020 (4)
C30.0253 (6)0.0234 (5)0.0266 (5)0.0007 (5)0.0032 (5)0.0022 (4)
C40.0271 (6)0.0234 (5)0.0280 (5)0.0009 (4)0.0023 (5)0.0008 (4)
C50.0286 (6)0.0229 (6)0.0290 (6)0.0007 (5)0.0010 (5)0.0014 (4)
C60.0396 (7)0.0238 (6)0.0358 (6)0.0027 (5)0.0084 (6)0.0009 (5)
C70.0438 (8)0.0299 (6)0.0405 (7)0.0008 (6)0.0164 (6)0.0005 (5)
C80.0402 (7)0.0271 (6)0.0356 (7)0.0038 (5)0.0096 (6)0.0039 (5)
C90.0324 (7)0.0222 (5)0.0298 (6)0.0015 (5)0.0004 (5)0.0027 (4)
C100.0261 (6)0.0254 (6)0.0263 (6)0.0013 (5)0.0012 (5)0.0011 (4)
C110.0245 (6)0.0234 (5)0.0285 (6)0.0012 (5)0.0028 (5)0.0016 (4)
C120.0254 (6)0.0261 (6)0.0306 (6)0.0000 (5)0.0001 (5)0.0003 (5)
C130.0255 (6)0.0295 (6)0.0281 (5)0.0004 (5)0.0012 (5)0.0012 (5)
C140.0286 (7)0.0269 (6)0.0403 (7)0.0007 (5)0.0047 (6)0.0011 (5)
C150.0329 (7)0.0300 (6)0.0310 (6)0.0029 (6)0.0039 (5)0.0032 (5)
C160.0325 (7)0.0297 (6)0.0414 (7)0.0017 (5)0.0116 (6)0.0106 (5)
C170.0408 (8)0.0440 (8)0.0759 (12)0.0058 (7)0.0023 (8)0.0237 (8)
C180.0621 (10)0.0288 (6)0.0497 (8)0.0040 (7)0.0127 (8)0.0037 (6)
C190.0311 (7)0.0291 (6)0.0300 (6)0.0058 (6)0.0005 (5)0.0009 (5)
C200.0338 (7)0.0245 (5)0.0353 (6)0.0031 (5)0.0022 (5)0.0027 (5)
C210.0413 (7)0.0318 (6)0.0323 (6)0.0113 (6)0.0007 (6)0.0002 (5)
C220.0705 (11)0.0481 (8)0.0341 (7)0.0124 (8)0.0028 (7)0.0042 (6)
C230.0417 (8)0.0680 (11)0.0465 (9)0.0000 (8)0.0128 (7)0.0005 (8)
Geometric parameters (Å, º) top
O1—C21.3497 (15)C12—C141.5137 (16)
O1—H1O10.92 (2)C14—C151.5045 (18)
O2—C41.2725 (14)C14—H14A0.97 (2)
O3—C91.3617 (14)C14—H14B0.954 (16)
O3—H1O30.845 (19)C15—C161.3285 (18)
O4—C131.3651 (15)C15—H15A0.986 (16)
O4—H1O40.86 (2)C16—C171.497 (2)
N1—C101.3679 (16)C16—C181.501 (2)
N1—C111.3695 (15)C17—H17A1.03 (3)
N1—H1N10.880 (17)C17—H17B1.00 (2)
C1—C21.3825 (18)C17—H17C0.95 (2)
C1—C131.4114 (17)C18—H18A1.03 (2)
C1—C191.5209 (16)C18—H18B0.92 (3)
C2—C31.4254 (16)C18—H18C1.00 (2)
C3—C111.4203 (16)C19—C201.5051 (17)
C3—C41.4393 (17)C19—H19A0.957 (16)
C4—C51.4525 (16)C19—H19B1.015 (19)
C5—C101.4026 (17)C20—C211.3311 (19)
C5—C61.4078 (18)C20—H20A0.982 (17)
C6—C71.3679 (19)C21—C231.499 (2)
C6—H6A0.973 (15)C21—C221.505 (2)
C7—C81.3990 (19)C22—H22A0.99 (2)
C7—H7A0.997 (18)C22—H22B1.06 (2)
C8—C91.3754 (18)C22—H22C1.12 (3)
C8—H8A0.99 (2)C23—H23A1.02 (3)
C9—C101.4159 (17)C23—H23B1.05 (3)
C11—C121.4041 (17)C23—H23C0.999 (19)
C12—C131.3895 (17)
C2—O1—H1O1104.5 (11)C12—C14—H14A106.0 (10)
C9—O3—H1O3109.9 (12)C15—C14—H14B108.8 (10)
C13—O4—H1O4109.2 (14)C12—C14—H14B108.6 (10)
C10—N1—C11123.22 (10)H14A—C14—H14B109.5 (14)
C10—N1—H1N1118.3 (11)C16—C15—C14126.55 (13)
C11—N1—H1N1118.5 (11)C16—C15—H15A118.3 (10)
C2—C1—C13117.48 (11)C14—C15—H15A115.1 (9)
C2—C1—C19121.19 (11)C15—C16—C17121.91 (15)
C13—C1—C19121.29 (11)C15—C16—C18123.95 (13)
O1—C2—C1118.64 (10)C17—C16—C18114.14 (14)
O1—C2—C3119.81 (11)C16—C17—H17A109.5 (14)
C1—C2—C3121.55 (11)C16—C17—H17B110.5 (12)
C11—C3—C2118.26 (10)H17A—C17—H17B110.4 (19)
C11—C3—C4120.55 (10)C16—C17—H17C113.6 (12)
C2—C3—C4121.18 (10)H17A—C17—H17C107.3 (17)
O2—C4—C3121.43 (11)H17B—C17—H17C105.5 (16)
O2—C4—C5120.84 (11)C16—C18—H18A115.1 (12)
C3—C4—C5117.72 (10)C16—C18—H18B110.4 (17)
C10—C5—C6119.67 (11)H18A—C18—H18B104.6 (18)
C10—C5—C4118.94 (11)C16—C18—H18C110.5 (11)
C6—C5—C4121.39 (11)H18A—C18—H18C105.9 (17)
C7—C6—C5119.90 (12)H18B—C18—H18C110 (2)
C7—C6—H6A120.5 (9)C20—C19—C1113.79 (10)
C5—C6—H6A119.5 (9)C20—C19—H19A109.9 (9)
C6—C7—C8120.79 (12)C1—C19—H19A105.1 (10)
C6—C7—H7A118.0 (10)C20—C19—H19B111.7 (9)
C8—C7—H7A121.2 (10)C1—C19—H19B108.6 (9)
C9—C8—C7120.54 (12)H19A—C19—H19B107.4 (14)
C9—C8—H8A118.7 (11)C21—C20—C19128.01 (13)
C7—C8—H8A120.8 (11)C21—C20—H20A116.2 (9)
O3—C9—C8124.42 (11)C19—C20—H20A115.8 (9)
O3—C9—C10116.04 (11)C20—C21—C23125.26 (13)
C8—C9—C10119.53 (11)C20—C21—C22120.79 (14)
N1—C10—C5120.86 (11)C23—C21—C22113.91 (14)
N1—C10—C9119.58 (11)C21—C22—H22A110.9 (12)
C5—C10—C9119.56 (11)C21—C22—H22B108.4 (10)
N1—C11—C12119.91 (10)H22A—C22—H22B106.7 (15)
N1—C11—C3118.64 (11)C21—C22—H22C112.3 (11)
C12—C11—C3121.44 (10)H22A—C22—H22C114.1 (16)
C13—C12—C11117.19 (11)H22B—C22—H22C103.9 (16)
C13—C12—C14120.93 (11)C21—C23—H23A110.8 (14)
C11—C12—C14121.73 (11)C21—C23—H23B111.8 (17)
O4—C13—C12116.30 (11)H23A—C23—H23B107 (2)
O4—C13—C1119.64 (11)C21—C23—H23C112.1 (11)
C12—C13—C1124.04 (11)H23A—C23—H23C106.0 (17)
C15—C14—C12115.26 (11)H23B—C23—H23C108.9 (17)
C15—C14—H14A108.6 (10)
C13—C1—C2—O1179.51 (10)O3—C9—C10—C5179.04 (11)
C19—C1—C2—O11.60 (17)C8—C9—C10—C50.24 (18)
C13—C1—C2—C30.19 (17)C10—N1—C11—C12178.53 (10)
C19—C1—C2—C3177.72 (10)C10—N1—C11—C30.68 (17)
O1—C2—C3—C11178.11 (10)C2—C3—C11—N1177.81 (10)
C1—C2—C3—C111.20 (17)C4—C3—C11—N11.72 (16)
O1—C2—C3—C41.42 (16)C2—C3—C11—C121.39 (16)
C1—C2—C3—C4179.27 (11)C4—C3—C11—C12179.08 (11)
C11—C3—C4—O2177.79 (11)N1—C11—C12—C13179.03 (11)
C2—C3—C4—O22.69 (17)C3—C11—C12—C130.16 (17)
C11—C3—C4—C53.05 (16)N1—C11—C12—C143.44 (17)
C2—C3—C4—C5176.47 (10)C3—C11—C12—C14175.74 (11)
O2—C4—C5—C10178.75 (11)C11—C12—C13—O4179.87 (10)
C3—C4—C5—C102.09 (16)C14—C12—C13—O44.25 (17)
O2—C4—C5—C61.00 (18)C11—C12—C13—C11.35 (18)
C3—C4—C5—C6178.17 (12)C14—C12—C13—C1174.27 (11)
C10—C5—C6—C70.6 (2)C2—C1—C13—O4180.00 (10)
C4—C5—C6—C7179.67 (12)C19—C1—C13—O42.10 (17)
C5—C6—C7—C80.1 (2)C2—C1—C13—C121.53 (18)
C6—C7—C8—C90.6 (2)C19—C1—C13—C12176.37 (11)
C7—C8—C9—O3178.45 (13)C13—C12—C14—C15119.77 (13)
C7—C8—C9—C100.8 (2)C11—C12—C14—C1564.81 (16)
C11—N1—C10—C51.65 (17)C12—C14—C15—C16136.97 (13)
C11—N1—C10—C9178.35 (11)C14—C15—C16—C17176.18 (13)
C6—C5—C10—N1179.57 (11)C14—C15—C16—C183.8 (2)
C4—C5—C10—N10.18 (17)C2—C1—C19—C20102.65 (13)
C6—C5—C10—C90.43 (18)C13—C1—C19—C2079.52 (15)
C4—C5—C10—C9179.82 (11)C1—C19—C20—C21111.01 (15)
O3—C9—C10—N10.96 (16)C19—C20—C21—C232.4 (2)
C8—C9—C10—N1179.75 (11)C19—C20—C21—C22179.80 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.915 (19)1.699 (19)2.5528 (13)154.1 (17)
O3—H1O3···O2i0.845 (19)1.923 (19)2.7501 (12)165.9 (19)
N1—H1N1···O30.880 (18)2.333 (18)2.6893 (13)104.3 (13)
C8—H8A···O2i0.991 (19)2.565 (18)3.2918 (16)130.1 (13)
C14—H14A···O40.969 (19)2.254 (17)2.7752 (16)112.6 (12)
C19—H19A···O10.957 (16)2.352 (15)2.8197 (17)109.6 (11)
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H25NO4
Mr379.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)5.0838 (1), 15.0262 (3), 24.6412 (4)
V3)1882.35 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.40 × 0.21 × 0.04
Data collection
DiffractometerBruker APEX Duo CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.755, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
11768, 3145, 3099
Rint0.017
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.06
No. of reflections3145
No. of parameters354
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.12, 0.10
Absolute structureFlack (1983), 1280 Friedel pairs
Absolute structure parameter0.05 (13)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.915 (19)1.699 (19)2.5528 (13)154.1 (17)
O3—H1O3···O2i0.845 (19)1.923 (19)2.7501 (12)165.9 (19)
N1—H1N1···O30.880 (18)2.333 (18)2.6893 (13)104.3 (13)
C8—H8A···O2i0.991 (19)2.565 (18)3.2918 (16)130.1 (13)
C14—H14A···O40.969 (19)2.254 (17)2.7752 (16)112.6 (12)
C19—H19A···O10.957 (16)2.352 (15)2.8197 (17)109.6 (11)
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank the Malaysian Government and the Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. Mr Nawong Boonnak is acknowledged for supplying the atalaphylline crystal. CSY thanks USM for the award of a USM Fellowship. SC thanks Prince of Songkla University for financial support through the Crystal Materials Research Unit.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBasu, D. & Basa, S. C. (1972). J. Org. Chem. 37, 3035–3036.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Boonnak, N., Razak, I. A. & Fun, H.-K. (2010). Acta Cryst. E66, o81–o82.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds