organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second ortho­rhom­bic polymorph of (Z)-3-(9-anthr­yl)-1-(2-thien­yl)prop-2-en-1-one1

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 19 December 2009; accepted 1 January 2010; online 9 January 2010)

The title heteroaryl chalcone, C21H14OS, is a second ortho­rhom­bic polymorph which crystallizes in the space group P212121. The structure was previously reported [Fun et al. (2009[Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168-o2169.]). Acta Cryst. E65, o2168-o2169] in the space group Pna21. The bond distances and angles are similar in both structures. In contrast, the overall crystal packing is different from that in the first ortho­rhom­bic Pna21 polymorph in which mol­ecules were stacked into columns along the b axis and the thio­phene units of two adjacent columns were stacked in a head to tail fashion. In the present polymorph, mol­ecules are found to dimerize through a weak S⋯S inter­action [3.6513 (7) Å] and these dimers are arranged into sheets parallel to the bc plane. There are no classical hydrogen bonds in the packing which features short C⋯O [3.2832 (2)–3.6251 (9) Å], C⋯S [3.4879 (17)–3.6251 (19) Å] and S⋯O [2.9948 (16) Å] contacts, together with C—H⋯π inter­actions. Similar contacts were found in the other polymorph.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the structure of the first polymorph, see: Fun et al. (2009[Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168-o2169.]). For background to and applications of chalcones, see: Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]); Saydam et al. (2003[Saydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omay, S. B. (2003). Leuk. Res. 27, 57-64.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420-o421.]); Svetlichny et al. (2007[Svetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13-26.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14OS

  • Mr = 314.38

  • Orthorhombic, P 21 21 21

  • a = 5.5116 (1) Å

  • b = 14.8497 (2) Å

  • c = 18.3625 (3) Å

  • V = 1502.89 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.50 × 0.19 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.977

  • 14062 measured reflections

  • 4354 independent reflections

  • 4035 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.05

  • 4354 reflections

  • 254 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1830 Friedel pairs

  • Flack parameter: 0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the S1/C18–C21, C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg1i 0.91 (3) 2.64 (3) 3.443 (2) 149 (2)
C15—H15ACg2ii 0.95 (2) 2.74 (2) 3.565 (2) 146.4 (17)
C21—H21ACg3iii 1.04 (3) 2.91 (3) 3.711 (2) 134.4 (19)
Symmetry codes: (i) [x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [-x, y+{\script{3\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our study of chalcone derivatives (Chantrapromma et al., 2009; Fun et al., 2009; Suwunwong et al., 2009) which can be used for non-linear optical (NLO) materials (Patil & Dharmaprakash, 2008), fluorescent materials (Svetlichny et al., 2007) and bioactive compounds (Saydam et al., 2003), the title heteroaryl chalcone (I) was synthesized and its crystal structure was previously reported in the orthorhombic space group Pna21 (Fun et al., 2009). In the present work, the compound crystallized in the orthorhombic space group P212121 from an ethanol/acetone (1:1) solvent mixture, while the crystal of the Pna21 form crystallized from hot ethanol. (I) exhibits fluorescence with the maximum emission at 402 nm when the compound is excited at 335 nm.

The molecule of (I) (Fig. 1) exists in an Z configuration with respect to the C15C16 double bond and the torsion angle C14–C15–C16–C17 = -2.9 (3)° [compared to -3.7 (7)° in one molecule and -4.0 (7)° in the other in the Pna21 polymorph which contains two molecules in an asymmetric unit]. The molecule of the present polymorph is less twisted as indicated by the interplanar angles between thiophene and anthracene rings being 56.36 (7)° and the least squares plane through the prop-2-en-1-one unit (C15–C17/O1) makes interplanar angles of 12.2 and 68.00 (11)° with the thiophene and anthracene rings, respectively [the corresponding values are 75.07 (17), 13.1 (3) and 71.2 (3)° in one molecule and 76.32 (17), 15.2 (3) and 72.3 (3)° in the other for the Pna21 polymorph]. Bond distances are within normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), molecules are found to dimerize through a non-bonding S···S interaction [S···S = 3.6513 (7) Å]. The dimers are arranged into sheets parallel to the bc plane. These sheets are stacked along the a axis. The intermolecular interactions and short contacts are almost similar in both polymorph. There is no classic hydrogen bond and the crystal is consolidated by short C···O [3.2832 (2)–3.6251 (9) Å], C···S [3.4879 (17)–3.6251 (19) Å] and S···O [2.9948 (16) Å] contacts, as well as C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of the S1/C18–C21, C1–C6 and C8–C13 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For the structure of the first polymorph, see: Fun et al. (2009). For background to and applications of chalcones, see: Chantrapromma et al. (2009); Patil & Dharmaprakash (2008); Saydam et al. (2003); Suwunwong et al. (2009); Svetlichny et al. (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized as reported by Fun et al. (2009). Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from ethanol/acetone (1:1 v/v) by slow evaporation of the solvent at room temperature over several days, Mp. 400–401 K.

Refinement top

The H atom attached to C19 was placed in a calculated position, with d(C—H) = 0.93 Å, Uiso = 1.2Ueq(C). The remaining H atoms were located from the difference maps and refined isotropically. The highest residual electron density peak is located at 0.04 Å from C19 and the deepest hole is 0.07 Å from C20. A total of 1830 Friedel pairs were used to determine the absolute configuration.

Structure description top

In continuation of our study of chalcone derivatives (Chantrapromma et al., 2009; Fun et al., 2009; Suwunwong et al., 2009) which can be used for non-linear optical (NLO) materials (Patil & Dharmaprakash, 2008), fluorescent materials (Svetlichny et al., 2007) and bioactive compounds (Saydam et al., 2003), the title heteroaryl chalcone (I) was synthesized and its crystal structure was previously reported in the orthorhombic space group Pna21 (Fun et al., 2009). In the present work, the compound crystallized in the orthorhombic space group P212121 from an ethanol/acetone (1:1) solvent mixture, while the crystal of the Pna21 form crystallized from hot ethanol. (I) exhibits fluorescence with the maximum emission at 402 nm when the compound is excited at 335 nm.

The molecule of (I) (Fig. 1) exists in an Z configuration with respect to the C15C16 double bond and the torsion angle C14–C15–C16–C17 = -2.9 (3)° [compared to -3.7 (7)° in one molecule and -4.0 (7)° in the other in the Pna21 polymorph which contains two molecules in an asymmetric unit]. The molecule of the present polymorph is less twisted as indicated by the interplanar angles between thiophene and anthracene rings being 56.36 (7)° and the least squares plane through the prop-2-en-1-one unit (C15–C17/O1) makes interplanar angles of 12.2 and 68.00 (11)° with the thiophene and anthracene rings, respectively [the corresponding values are 75.07 (17), 13.1 (3) and 71.2 (3)° in one molecule and 76.32 (17), 15.2 (3) and 72.3 (3)° in the other for the Pna21 polymorph]. Bond distances are within normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), molecules are found to dimerize through a non-bonding S···S interaction [S···S = 3.6513 (7) Å]. The dimers are arranged into sheets parallel to the bc plane. These sheets are stacked along the a axis. The intermolecular interactions and short contacts are almost similar in both polymorph. There is no classic hydrogen bond and the crystal is consolidated by short C···O [3.2832 (2)–3.6251 (9) Å], C···S [3.4879 (17)–3.6251 (19) Å] and S···O [2.9948 (16) Å] contacts, as well as C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of the S1/C18–C21, C1–C6 and C8–C13 rings, respectively.

For bond-length data, see: Allen et al. (1987). For the structure of the first polymorph, see: Fun et al. (2009). For background to and applications of chalcones, see: Chantrapromma et al. (2009); Patil & Dharmaprakash (2008); Saydam et al. (2003); Suwunwong et al. (2009); Svetlichny et al. (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. S···S contacts are shown as dashed lines.
(Z)-3-(9-anthryl)-1-(2-thienyl)prop-2-en-1-one top
Crystal data top
C21H14OSDx = 1.390 Mg m3
Mr = 314.38Melting point = 400–401 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4354 reflections
a = 5.5116 (1) Åθ = 1.8–30.0°
b = 14.8497 (2) ŵ = 0.22 mm1
c = 18.3625 (3) ÅT = 100 K
V = 1502.89 (4) Å3Block, yellow
Z = 40.50 × 0.19 × 0.11 mm
F(000) = 656
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4354 independent reflections
Radiation source: sealed tube4035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 75
Tmin = 0.900, Tmax = 0.977k = 1720
14062 measured reflectionsl = 2518
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.8977P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4354 reflectionsΔρmax = 0.79 e Å3
254 parametersΔρmin = 0.62 e Å3
0 restraintsAbsolute structure: Flack (1983), 1830 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C21H14OSV = 1502.89 (4) Å3
Mr = 314.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5116 (1) ŵ = 0.22 mm1
b = 14.8497 (2) ÅT = 100 K
c = 18.3625 (3) Å0.50 × 0.19 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4035 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.977Rint = 0.025
14062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.79 e Å3
S = 1.05Δρmin = 0.62 e Å3
4354 reflectionsAbsolute structure: Flack (1983), 1830 Friedel pairs
254 parametersAbsolute structure parameter: 0.04 (8)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79023 (9)0.82740 (3)0.98167 (3)0.01920 (11)
O10.6379 (3)0.74101 (10)0.84157 (8)0.0208 (3)
C10.6215 (3)0.62511 (12)0.66251 (10)0.0142 (3)
C20.6199 (4)0.69201 (13)0.60656 (10)0.0176 (4)
H2A0.747 (4)0.7404 (15)0.6071 (12)0.019 (6)*
C30.4549 (4)0.68828 (13)0.55096 (10)0.0193 (4)
H3A0.459 (4)0.7304 (16)0.5132 (14)0.022 (6)*
C40.2761 (4)0.61930 (13)0.54827 (11)0.0198 (4)
H4A0.150 (5)0.6169 (17)0.5090 (13)0.026 (6)*
C50.2685 (4)0.55527 (13)0.60124 (10)0.0184 (4)
H5A0.155 (5)0.5111 (18)0.6021 (14)0.033 (7)*
C60.4394 (3)0.55565 (12)0.65992 (10)0.0146 (3)
C70.4332 (4)0.49043 (12)0.71450 (10)0.0169 (4)
H7A0.311 (4)0.4456 (14)0.7129 (11)0.010 (5)*
C80.6064 (4)0.48855 (12)0.76949 (10)0.0159 (4)
C90.6059 (4)0.41897 (13)0.82390 (11)0.0213 (4)
H9A0.479 (4)0.3744 (16)0.8218 (13)0.019 (6)*
C100.7811 (4)0.41528 (14)0.87607 (11)0.0240 (4)
H10A0.788 (5)0.3656 (16)0.9099 (13)0.022 (6)*
C110.9682 (4)0.48106 (15)0.87753 (11)0.0222 (4)
H11A1.103 (5)0.4744 (16)0.9123 (13)0.023 (6)*
C120.9731 (4)0.54951 (14)0.82813 (10)0.0189 (4)
H12A1.091 (5)0.5966 (17)0.8299 (13)0.027 (7)*
C130.7917 (4)0.55659 (12)0.77254 (9)0.0156 (3)
C140.7917 (3)0.62627 (12)0.72009 (9)0.0143 (3)
C150.9746 (4)0.69969 (13)0.72208 (10)0.0172 (4)
H15A1.077 (4)0.7024 (15)0.6807 (12)0.016 (6)*
C161.0028 (4)0.76158 (13)0.77411 (10)0.0178 (4)
H16A1.138 (5)0.8035 (17)0.7711 (13)0.026 (6)*
C170.8452 (3)0.77098 (12)0.83955 (10)0.0153 (3)
C180.9491 (3)0.82083 (12)0.90132 (9)0.0146 (3)
C191.1727 (3)0.86783 (12)0.90518 (10)0.0146 (2)
H19A1.28630.87140.86780.018*
C201.1971 (3)0.90888 (11)0.97520 (10)0.0146 (2)
H20A1.351 (5)0.9445 (17)0.9876 (14)0.031 (7)*
C211.0083 (4)0.89174 (13)1.02086 (11)0.0198 (4)
H21A0.993 (5)0.9095 (18)1.0753 (15)0.034 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0185 (2)0.0204 (2)0.0188 (2)0.00094 (17)0.00214 (18)0.00059 (18)
O10.0163 (6)0.0219 (7)0.0243 (7)0.0038 (6)0.0037 (6)0.0053 (6)
C10.0159 (8)0.0132 (8)0.0136 (8)0.0006 (7)0.0018 (6)0.0028 (6)
C20.0200 (9)0.0167 (8)0.0162 (8)0.0000 (7)0.0013 (7)0.0014 (7)
C30.0234 (9)0.0181 (9)0.0163 (8)0.0033 (7)0.0002 (7)0.0009 (7)
C40.0211 (9)0.0210 (9)0.0174 (8)0.0038 (8)0.0038 (8)0.0049 (7)
C50.0182 (9)0.0167 (8)0.0204 (8)0.0001 (7)0.0007 (8)0.0057 (7)
C60.0140 (8)0.0143 (8)0.0155 (8)0.0007 (7)0.0001 (7)0.0056 (7)
C70.0187 (9)0.0131 (8)0.0188 (8)0.0010 (7)0.0030 (7)0.0038 (7)
C80.0192 (9)0.0142 (8)0.0143 (8)0.0023 (7)0.0050 (7)0.0007 (7)
C90.0279 (11)0.0152 (9)0.0208 (9)0.0012 (8)0.0065 (8)0.0002 (7)
C100.0325 (11)0.0215 (9)0.0179 (8)0.0078 (9)0.0061 (9)0.0032 (7)
C110.0254 (10)0.0262 (10)0.0149 (8)0.0088 (9)0.0012 (8)0.0007 (8)
C120.0182 (9)0.0219 (9)0.0166 (8)0.0029 (8)0.0016 (7)0.0013 (7)
C130.0164 (8)0.0170 (8)0.0133 (7)0.0038 (7)0.0036 (7)0.0019 (6)
C140.0146 (7)0.0144 (8)0.0141 (7)0.0014 (7)0.0019 (7)0.0028 (6)
C150.0163 (8)0.0213 (9)0.0141 (8)0.0014 (7)0.0026 (7)0.0002 (7)
C160.0170 (9)0.0198 (9)0.0165 (8)0.0033 (7)0.0013 (7)0.0000 (7)
C170.0173 (9)0.0118 (8)0.0167 (8)0.0001 (7)0.0011 (7)0.0010 (6)
C180.0161 (8)0.0151 (8)0.0125 (7)0.0021 (7)0.0022 (6)0.0003 (7)
C190.0125 (5)0.0149 (5)0.0164 (6)0.0005 (5)0.0024 (5)0.0019 (5)
C200.0125 (5)0.0149 (5)0.0164 (6)0.0005 (5)0.0024 (5)0.0019 (5)
C210.0243 (9)0.0190 (8)0.0161 (8)0.0040 (7)0.0012 (8)0.0017 (7)
Geometric parameters (Å, º) top
S1—C211.696 (2)C9—H9A0.96 (3)
S1—C181.7184 (18)C10—C111.421 (3)
O1—C171.227 (2)C10—H10A0.97 (2)
C1—C141.414 (3)C11—C121.363 (3)
C1—C21.429 (3)C11—H11A0.98 (3)
C1—C61.440 (3)C12—C131.433 (3)
C2—C31.368 (3)C12—H12A0.96 (3)
C2—H2A1.00 (2)C13—C141.414 (2)
C3—C41.422 (3)C14—C151.485 (3)
C3—H3A0.93 (2)C15—C161.335 (3)
C4—C51.361 (3)C15—H15A0.95 (2)
C4—H4A1.00 (3)C16—C171.489 (3)
C5—C61.431 (3)C16—H16A0.97 (3)
C5—H5A0.91 (3)C17—C181.470 (3)
C6—C71.394 (3)C18—C191.418 (3)
C7—C81.390 (3)C19—C201.429 (2)
C7—H7A0.95 (2)C19—H19A0.9300
C8—C91.437 (3)C20—C211.360 (3)
C8—C131.438 (3)C20—H20A1.02 (3)
C9—C101.361 (3)C21—H21A1.04 (3)
C21—S1—C1892.02 (10)C12—C11—H11A119.5 (15)
C14—C1—C2122.21 (17)C10—C11—H11A119.4 (14)
C14—C1—C6119.73 (17)C11—C12—C13121.0 (2)
C2—C1—C6118.05 (17)C11—C12—H12A122.4 (16)
C3—C2—C1120.81 (18)C13—C12—H12A116.5 (16)
C3—C2—H2A120.0 (13)C14—C13—C12122.62 (18)
C1—C2—H2A119.1 (13)C14—C13—C8119.20 (17)
C2—C3—C4121.04 (18)C12—C13—C8118.16 (17)
C2—C3—H3A120.8 (15)C13—C14—C1120.04 (17)
C4—C3—H3A118.2 (15)C13—C14—C15121.37 (16)
C5—C4—C3119.99 (18)C1—C14—C15118.55 (16)
C5—C4—H4A118.0 (15)C16—C15—C14127.01 (17)
C3—C4—H4A122.0 (15)C16—C15—H15A118.3 (14)
C4—C5—C6120.99 (19)C14—C15—H15A114.7 (14)
C4—C5—H5A122.6 (17)C15—C16—C17125.05 (17)
C6—C5—H5A116.4 (17)C15—C16—H16A119.3 (15)
C7—C6—C5121.47 (17)C17—C16—H16A115.6 (15)
C7—C6—C1119.43 (17)O1—C17—C18121.46 (17)
C5—C6—C1119.10 (17)O1—C17—C16122.25 (17)
C8—C7—C6121.27 (17)C18—C17—C16116.26 (16)
C8—C7—H7A119.8 (13)C19—C18—C17128.65 (16)
C6—C7—H7A118.9 (13)C19—C18—S1111.83 (13)
C7—C8—C9121.21 (18)C17—C18—S1119.51 (14)
C7—C8—C13120.14 (17)C18—C19—C20109.67 (16)
C9—C8—C13118.65 (18)C18—C19—H19A125.2
C10—C9—C8121.1 (2)C20—C19—H19A125.2
C10—C9—H9A121.0 (14)C21—C20—C19113.75 (16)
C8—C9—H9A117.8 (14)C21—C20—H20A126.4 (15)
C9—C10—C11120.04 (18)C19—C20—H20A119.8 (15)
C9—C10—H10A120.8 (16)C20—C21—S1112.71 (15)
C11—C10—H10A119.0 (16)C20—C21—H21A127.5 (16)
C12—C11—C10121.0 (2)S1—C21—H21A119.7 (16)
C14—C1—C2—C3179.06 (17)C9—C8—C13—C122.5 (3)
C6—C1—C2—C32.1 (3)C12—C13—C14—C1174.11 (17)
C1—C2—C3—C41.7 (3)C8—C13—C14—C14.4 (3)
C2—C3—C4—C50.5 (3)C12—C13—C14—C153.3 (3)
C3—C4—C5—C60.4 (3)C8—C13—C14—C15178.18 (16)
C4—C5—C6—C7179.95 (18)C2—C1—C14—C13177.53 (17)
C4—C5—C6—C10.0 (3)C6—C1—C14—C133.6 (3)
C14—C1—C6—C70.2 (3)C2—C1—C14—C150.0 (3)
C2—C1—C6—C7178.75 (17)C6—C1—C14—C15178.90 (16)
C14—C1—C6—C5179.92 (16)C13—C14—C15—C1664.2 (3)
C2—C1—C6—C51.2 (3)C1—C14—C15—C16118.4 (2)
C5—C6—C7—C8176.94 (17)C14—C15—C16—C172.9 (3)
C1—C6—C7—C83.1 (3)C15—C16—C17—O121.8 (3)
C6—C7—C8—C9177.26 (17)C15—C16—C17—C18160.02 (19)
C6—C7—C8—C132.3 (3)O1—C17—C18—C19172.54 (18)
C7—C8—C9—C10177.47 (19)C16—C17—C18—C195.7 (3)
C13—C8—C9—C102.1 (3)O1—C17—C18—S16.9 (2)
C8—C9—C10—C110.2 (3)C16—C17—C18—S1174.86 (13)
C9—C10—C11—C121.3 (3)C21—S1—C18—C190.62 (15)
C10—C11—C12—C130.9 (3)C21—S1—C18—C17178.93 (15)
C11—C12—C13—C14179.56 (18)C17—C18—C19—C20178.21 (17)
C11—C12—C13—C81.0 (3)S1—C18—C19—C201.30 (19)
C7—C8—C13—C141.5 (3)C18—C19—C20—C211.5 (2)
C9—C8—C13—C14178.92 (17)C19—C20—C21—S11.1 (2)
C7—C8—C13—C12177.10 (17)C18—S1—C21—C200.27 (15)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S1/C18–C21, C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.91 (3)2.64 (3)3.443 (2)149 (2)
C15—H15A···Cg2ii0.95 (2)2.74 (2)3.565 (2)146.4 (17)
C21—H21A···Cg3iii1.04 (3)2.91 (3)3.711 (2)134.4 (19)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+1, y, z; (iii) x, y+3/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC21H14OS
Mr314.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.5116 (1), 14.8497 (2), 18.3625 (3)
V3)1502.89 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.19 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.900, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
14062, 4354, 4035
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.05
No. of reflections4354
No. of parameters254
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.62
Absolute structureFlack (1983), 1830 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the S1/C18–C21, C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···Cg1i0.91 (3)2.64 (3)3.443 (2)149 (2)
C15—H15A···Cg2ii0.95 (2)2.74 (2)3.565 (2)146.4 (17)
C21—H21A···Cg3iii1.04 (3)2.91 (3)3.711 (2)134.4 (19)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+1, y, z; (iii) x, y+3/2, z+5/2.
 

Footnotes

1This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) for his sustainable development of the country.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSaydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omay, S. B. (2003). Leuk. Res. 27, 57–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSvetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13–26.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds