organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-[4-(4-Fluoro­phen­yl)-2-methyl­sulfanyl-1H-imidazol-5-yl]tetra­zolo[1,5-a]pyridine

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, bUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and cc-a-i-r biosciences GmbH, Paul-Ehrlich-Strasse 15, 72076 Tübingen, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 14 January 2010; accepted 21 January 2010; online 27 January 2010)

The crystal structure of the title compound, C15H11FN6S, forms a three-dimensional network stabilized by ππ inter­actions between the imidazole core and the tetra­zole ring of the tetra­zolopyridine­unit; the centroid–centroid distance is 3.627 (1) Å. The crystal structure also displays bifurcated N—H⋯(N,N) hydrogen bonding and C—H⋯F inter­actions. The former involve the NH H atom of the imidazole core and the tetra­zolopyridine N atoms, while the latter involve a methyl H atom, of the methyl­sulfanyl group, and the 4-fluoro­phenyl F atom. In the mol­ecule, the imidazole ring makes dihedral angles of 40.45 (9) and 17.09 (8)°, respectively, with the 4-fluoro­phenyl ring and the tetra­zolopyridine ring mean plane.

Related literature

For the biological relevance and the development of p38 MAP kinase inhibitors, see: see: Peifer et al. (2006[Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113-149.]). For the preparation of 2-fluoro-4-[4-(4-fluoro­phen­yl)-2-(methyl­thio)-1H-imidazol-5-yl]pyridine, see: Laufer & Liedtke (2006[Laufer, S. & Liedtke, A. (2006). Tetrahedron Lett. 47, 7199-7203.]). For the preparation of tetra­zolopyridines, see: Capelli et al. (2008[Capelli, A., Giuliani, G., Anzini, M., Riitano, D., Giorgi, G. & Vomero, S. (2008). Bioorg. Med. Chem. 16, 6850-6859.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FN6S

  • Mr = 326.36

  • Monoclinic, P 21 /c

  • a = 9.8342 (7) Å

  • b = 18.1908 (6) Å

  • c = 8.2374 (7) Å

  • β = 100.292 (3)°

  • V = 1449.89 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.17 mm−1

  • T = 193 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.866, Tmax = 0.999

  • 5760 measured reflections

  • 2733 independent reflections

  • 2403 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.06

  • 2733 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯N1i 0.92 2.06 2.9703 (19) 174
N10—H10⋯N2i 0.92 2.60 3.423 (2) 151
C21—H21B⋯F19ii 0.98 2.44 3.286 (3) 144
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Pyridylimidazoles like SB203580 are well known p38 MAP kinase inhibitors (Peifer et al., 2006). The function of the pyridine moiety is to accept a hydrogen bond from the backbone of Met109 in the Hinge region. In the course of our studies we have tried to modify this acceptor system by using the title tetrazolopyridine (Capelli et al., 2008).

The molecular structure of the title compound is given in Fig. 1, and the geometrical parameters are available in the Supplementary information and the archived CIF. The imidazole ring mean plane makes dihedral angles of 40.45 (9)° and 17.09 (8)° with the 4-fluorophenyl ring and the tetrazolopyridine ring mean plane, respectively.

The crystal structure displays asymmetric bifurcated N—H···N hydrogen bonds involving the tetrazolopyridine N-atoms and the NH H-atom of the the imidazole core (Table 1). There is also a C-H···F interaction involving the methylsulfanyl group and the 4-fluorophenyl F-atom (Table 1). The crystal structure of the title compound forms a three dimensional network stabilized by π-π interactions between the imidazole core and the tetrazole moiety of the tetrazolopyridine group; the centroid···centroid distance is 3.627 (1) Å (Table 1).

Related literature top

For the biological relevance and the development of p38 MAP kinase inhibitors, see: see: Peifer et al. (2006). For the preparation of 2-fluoro-4-[4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl]pyridine, see: Laufer & Liedtke (2006). For the preparation of tetrazolopyridines, see: Capelli et al. (2008).

Experimental top

A mixture of 300 mg 2-fluoro-4-[4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5- yl]pyridine (Laufer & Liedtke, 2006) in anhydrous DMF with 100 mg sodium azide was heated at 353 K for 12 h. The solvent was then removed under reduced pressure and the residue was diluted with ethylacetate. The organic phase was washed with water and concentrated under reduced pressure. The residue was purified by flash chromatography with ethyl acetate/hexane (1/1) to yield 153 mg (47%) of the title compound. Crystals suitable for X-ray analysis were obtained by crystallization from methanol.

Refinement top

The H atom attached to N10 was located in a difference Fourier map and refined with a distance restraint of 0.92 (2) Å and Uiso(H) = 1.2Ueq(N). The C-bound H-atoms were placed in calculated positions and refined in the riding-model approximation: C-H = 0.95 - 0.98 Å with Uiso(H) = k × Ueq(C), where k = 1.2 for H-aromatic and 1.5 for H-methyl.

Structure description top

Pyridylimidazoles like SB203580 are well known p38 MAP kinase inhibitors (Peifer et al., 2006). The function of the pyridine moiety is to accept a hydrogen bond from the backbone of Met109 in the Hinge region. In the course of our studies we have tried to modify this acceptor system by using the title tetrazolopyridine (Capelli et al., 2008).

The molecular structure of the title compound is given in Fig. 1, and the geometrical parameters are available in the Supplementary information and the archived CIF. The imidazole ring mean plane makes dihedral angles of 40.45 (9)° and 17.09 (8)° with the 4-fluorophenyl ring and the tetrazolopyridine ring mean plane, respectively.

The crystal structure displays asymmetric bifurcated N—H···N hydrogen bonds involving the tetrazolopyridine N-atoms and the NH H-atom of the the imidazole core (Table 1). There is also a C-H···F interaction involving the methylsulfanyl group and the 4-fluorophenyl F-atom (Table 1). The crystal structure of the title compound forms a three dimensional network stabilized by π-π interactions between the imidazole core and the tetrazole moiety of the tetrazolopyridine group; the centroid···centroid distance is 3.627 (1) Å (Table 1).

For the biological relevance and the development of p38 MAP kinase inhibitors, see: see: Peifer et al. (2006). For the preparation of 2-fluoro-4-[4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl]pyridine, see: Laufer & Liedtke (2006). For the preparation of tetrazolopyridines, see: Capelli et al. (2008).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound. the displacement ellipsoids are drawn at the 50% probability level.
7-[4-(4-Fluorophenyl)-2-methylsulfanyl-1H-imidazol- 5-yl]tetrazolo[1,5-a]pyridine top
Crystal data top
C15H11FN6SF(000) = 672
Mr = 326.36Dx = 1.495 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.8342 (7) Åθ = 65–70°
b = 18.1908 (6) ŵ = 2.17 mm1
c = 8.2374 (7) ÅT = 193 K
β = 100.292 (3)°Plate, colourless
V = 1449.89 (17) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2403 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.056
Graphite monochromatorθmax = 69.9°, θmin = 4.6°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 2222
Tmin = 0.866, Tmax = 0.999l = 100
5760 measured reflections3 standard reflections every 60 min
2733 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.051P)2 + 0.5315P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2733 reflectionsΔρmax = 0.37 e Å3
210 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (2)
Crystal data top
C15H11FN6SV = 1449.89 (17) Å3
Mr = 326.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.8342 (7) ŵ = 2.17 mm1
b = 18.1908 (6) ÅT = 193 K
c = 8.2374 (7) Å0.30 × 0.20 × 0.10 mm
β = 100.292 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2403 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.056
Tmin = 0.866, Tmax = 0.9993 standard reflections every 60 min
5760 measured reflections intensity decay: 3%
2733 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.37 e Å3
2733 reflectionsΔρmin = 0.30 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R- factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S200.84423 (5)0.32567 (2)0.15709 (8)0.0423 (2)
F190.09192 (12)0.08344 (6)0.37488 (16)0.0442 (4)
N10.29691 (15)0.61704 (7)0.31439 (19)0.0284 (4)
N20.18289 (15)0.63452 (8)0.3762 (2)0.0315 (4)
N30.12953 (15)0.57831 (8)0.4381 (2)0.0304 (4)
N3A0.21213 (13)0.52053 (7)0.41594 (17)0.0232 (4)
N80.62050 (14)0.39105 (8)0.25381 (18)0.0265 (4)
N100.61319 (14)0.26910 (7)0.24463 (18)0.0271 (4)
C40.20076 (17)0.44913 (9)0.4666 (2)0.0267 (5)
C50.29443 (17)0.40040 (9)0.4318 (2)0.0264 (5)
C60.40054 (16)0.42075 (8)0.3415 (2)0.0221 (4)
C70.41195 (16)0.49369 (9)0.2991 (2)0.0231 (4)
C7A0.31553 (16)0.54434 (9)0.3388 (2)0.0230 (4)
C90.68541 (17)0.33087 (9)0.2239 (2)0.0275 (5)
C110.49088 (16)0.29071 (9)0.2895 (2)0.0239 (5)
C120.49810 (16)0.36671 (9)0.2974 (2)0.0233 (5)
C130.38534 (16)0.23580 (9)0.3073 (2)0.0241 (5)
C140.24524 (17)0.24835 (9)0.2461 (2)0.0286 (5)
C150.14573 (18)0.19732 (10)0.2673 (2)0.0313 (5)
C160.18916 (19)0.13307 (9)0.3491 (2)0.0301 (5)
C170.32598 (19)0.11634 (9)0.4043 (2)0.0297 (5)
C180.42396 (18)0.16837 (9)0.3835 (2)0.0266 (5)
C210.8749 (2)0.42202 (11)0.1351 (3)0.0420 (7)
H40.129400.434700.523900.0320*
H50.290100.351000.468200.0320*
H70.483900.509300.243900.0280*
H100.645900.222700.232200.0320*
H140.217900.292800.188900.0340*
H150.050500.206300.226900.0380*
H170.352400.070400.455200.0360*
H180.519000.158200.421600.0320*
H21A0.802500.442700.050100.0630*
H21B0.965200.429100.102800.0630*
H21C0.873800.446900.240300.0630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S200.0311 (3)0.0261 (3)0.0757 (4)0.0036 (2)0.0258 (2)0.0011 (2)
F190.0400 (6)0.0307 (6)0.0661 (8)0.0095 (5)0.0210 (6)0.0042 (5)
N10.0261 (7)0.0188 (7)0.0413 (8)0.0027 (5)0.0087 (6)0.0029 (6)
N20.0264 (7)0.0217 (7)0.0478 (9)0.0046 (6)0.0104 (6)0.0033 (6)
N30.0264 (7)0.0230 (7)0.0436 (9)0.0066 (6)0.0112 (6)0.0017 (6)
N3A0.0207 (6)0.0193 (6)0.0304 (7)0.0018 (5)0.0066 (5)0.0006 (5)
N80.0218 (7)0.0208 (7)0.0377 (8)0.0005 (5)0.0073 (6)0.0022 (6)
N100.0239 (7)0.0182 (6)0.0395 (8)0.0026 (5)0.0067 (6)0.0020 (6)
C40.0273 (8)0.0208 (8)0.0342 (9)0.0014 (6)0.0113 (7)0.0034 (7)
C50.0304 (8)0.0185 (8)0.0311 (9)0.0003 (6)0.0076 (7)0.0027 (7)
C60.0209 (7)0.0192 (7)0.0255 (8)0.0000 (6)0.0019 (6)0.0016 (6)
C70.0202 (7)0.0204 (7)0.0293 (8)0.0014 (6)0.0059 (6)0.0012 (6)
C7A0.0211 (7)0.0191 (7)0.0286 (8)0.0018 (6)0.0037 (6)0.0000 (6)
C90.0219 (8)0.0219 (8)0.0390 (9)0.0005 (6)0.0062 (7)0.0014 (7)
C110.0228 (8)0.0194 (8)0.0287 (8)0.0020 (6)0.0027 (6)0.0015 (6)
C120.0221 (8)0.0198 (8)0.0275 (8)0.0007 (6)0.0031 (6)0.0004 (6)
C130.0265 (8)0.0193 (8)0.0262 (8)0.0003 (6)0.0043 (6)0.0028 (6)
C140.0283 (9)0.0198 (8)0.0364 (10)0.0018 (7)0.0022 (7)0.0005 (7)
C150.0246 (8)0.0256 (8)0.0432 (10)0.0009 (7)0.0044 (7)0.0034 (8)
C160.0320 (9)0.0227 (8)0.0382 (9)0.0057 (7)0.0133 (7)0.0041 (7)
C170.0389 (10)0.0212 (8)0.0299 (9)0.0016 (7)0.0088 (7)0.0025 (7)
C180.0280 (8)0.0222 (8)0.0288 (8)0.0027 (6)0.0026 (7)0.0005 (6)
C210.0417 (11)0.0295 (10)0.0608 (13)0.0047 (8)0.0255 (10)0.0009 (9)
Geometric parameters (Å, º) top
S20—C91.7488 (18)C11—C121.385 (2)
S20—C211.793 (2)C11—C131.467 (2)
F19—C161.359 (2)C13—C181.399 (2)
N1—N21.350 (2)C13—C141.399 (2)
N1—C7A1.345 (2)C14—C151.382 (2)
N2—N31.295 (2)C15—C161.378 (2)
N3—N3A1.361 (2)C16—C171.375 (3)
N3A—C41.375 (2)C17—C181.383 (2)
N3A—C7A1.362 (2)C4—H40.9500
N8—C91.313 (2)C5—H50.9500
N8—C121.389 (2)C7—H70.9500
N10—C91.356 (2)C14—H140.9500
N10—C111.377 (2)C15—H150.9500
N10—H100.9200C17—H170.9500
C4—C51.346 (2)C18—H180.9500
C5—C61.434 (2)C21—H21A0.9800
C6—C71.382 (2)C21—H21B0.9800
C6—C121.464 (2)C21—H21C0.9800
C7—C7A1.402 (2)
C9—S20—C2198.90 (9)C11—C13—C14121.46 (15)
N2—N1—C7A105.98 (13)C11—C13—C18120.11 (15)
N1—N2—N3112.64 (14)C13—C14—C15121.26 (15)
N2—N3—N3A105.28 (14)C14—C15—C16117.82 (16)
N3—N3A—C4127.32 (14)F19—C16—C17118.39 (15)
N3—N3A—C7A109.28 (13)F19—C16—C15118.32 (16)
C4—N3A—C7A123.36 (14)C15—C16—C17123.28 (17)
C9—N8—C12104.82 (14)C16—C17—C18118.02 (15)
C9—N10—C11107.42 (13)C13—C18—C17121.08 (16)
C11—N10—H10129.00N3A—C4—H4121.00
C9—N10—H10123.00C5—C4—H4121.00
N3A—C4—C5117.50 (15)C4—C5—H5119.00
C4—C5—C6121.98 (15)C6—C5—H5119.00
C5—C6—C7118.59 (14)C6—C7—H7121.00
C5—C6—C12121.68 (14)C7A—C7—H7121.00
C7—C6—C12119.71 (14)C13—C14—H14119.00
C6—C7—C7A118.90 (15)C15—C14—H14119.00
N3A—C7A—C7119.48 (14)C14—C15—H15121.00
N1—C7A—N3A106.81 (14)C16—C15—H15121.00
N1—C7A—C7133.70 (15)C16—C17—H17121.00
S20—C9—N8126.57 (13)C18—C17—H17121.00
S20—C9—N10120.80 (12)C13—C18—H18119.00
N8—C9—N10112.59 (15)C17—C18—H18119.00
N10—C11—C12104.93 (14)S20—C21—H21A109.00
C12—C11—C13134.93 (15)S20—C21—H21B109.00
N10—C11—C13120.00 (14)S20—C21—H21C109.00
N8—C12—C11110.22 (14)H21A—C21—H21B109.00
C6—C12—C11130.65 (15)H21A—C21—H21C109.00
N8—C12—C6119.13 (14)H21B—C21—H21C109.00
C14—C13—C18118.41 (15)
C21—S20—C9—N83.16 (18)C5—C6—C12—C1118.8 (3)
C21—S20—C9—N10174.43 (15)C7—C6—C12—N816.8 (2)
N2—N1—C7A—C7178.07 (18)C7—C6—C12—C11162.78 (17)
N2—N1—C7A—N3A0.43 (18)C5—C6—C12—N8161.63 (15)
C7A—N1—N2—N30.4 (2)C12—C6—C7—C7A178.46 (15)
N1—N2—N3—N3A0.1 (2)C6—C7—C7A—N3A0.9 (2)
N2—N3—N3A—C7A0.15 (18)C6—C7—C7A—N1179.22 (18)
N2—N3—N3A—C4177.50 (16)N10—C11—C12—N81.62 (18)
N3—N3A—C7A—N10.37 (18)N10—C11—C12—C6178.74 (16)
N3—N3A—C4—C5179.88 (15)C13—C11—C12—N8173.91 (17)
C7A—N3A—C4—C52.5 (2)C13—C11—C12—C65.7 (3)
C4—N3A—C7A—C73.9 (2)N10—C11—C13—C14136.99 (17)
N3—N3A—C7A—C7178.39 (15)N10—C11—C13—C1841.5 (2)
C4—N3A—C7A—N1177.39 (15)C12—C11—C13—C1438.0 (3)
C12—N8—C9—S20177.95 (13)C12—C11—C13—C18143.46 (19)
C9—N8—C12—C111.15 (18)C11—C13—C14—C15178.13 (15)
C12—N8—C9—N100.20 (19)C18—C13—C14—C153.3 (2)
C9—N8—C12—C6179.17 (15)C11—C13—C18—C17178.80 (15)
C9—N10—C11—C121.45 (18)C14—C13—C18—C172.6 (2)
C9—N10—C11—C13174.90 (15)C13—C14—C15—C160.8 (2)
C11—N10—C9—S20177.08 (12)C14—C15—C16—F19178.12 (15)
C11—N10—C9—N80.82 (19)C14—C15—C16—C172.6 (3)
N3A—C4—C5—C61.7 (2)F19—C16—C17—C18177.45 (15)
C4—C5—C6—C74.4 (2)C15—C16—C17—C183.3 (3)
C4—C5—C6—C12177.10 (16)C16—C17—C18—C130.6 (2)
C5—C6—C7—C7A3.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···N1i0.922.062.9703 (19)174
N10—H10···N2i0.922.603.423 (2)151
C7—H7···N80.952.532.847 (2)100
C21—H21B···F19ii0.982.443.286 (3)144
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H11FN6S
Mr326.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)9.8342 (7), 18.1908 (6), 8.2374 (7)
β (°) 100.292 (3)
V3)1449.89 (17)
Z4
Radiation typeCu Kα
µ (mm1)2.17
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.866, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
5760, 2733, 2403
Rint0.056
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.06
No. of reflections2733
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.30

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···N1i0.922.062.9703 (19)174
N10—H10···N2i0.922.603.423 (2)151
C21—H21B···F19ii0.982.443.286 (3)144
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z1/2.
 

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany, and the Fonds der Chemischen Industrie, Germany, for their generous support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCapelli, A., Giuliani, G., Anzini, M., Riitano, D., Giorgi, G. & Vomero, S. (2008). Bioorg. Med. Chem. 16, 6850–6859.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationLaufer, S. & Liedtke, A. (2006). Tetrahedron Lett. 47, 7199–7203.  Web of Science CrossRef CAS Google Scholar
First citationPeifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds