metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{[μ-bis­­(di­phenyl­arsino)methane-1:2κ2As:As′]nona­carbonyl-1κ3C,2κ3C,3κ3C-[tris­­(4-meth­oxy­phen­yl)arsine-3κAs]-triangulo-triruthenium(0)} di­chloro­methane solvate

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 2 December 2009; accepted 10 December 2009; online 16 January 2010)

The asymmetric unit of the title triangulo-triruthenium compound, 2[Ru3(C25H22As2)(C21H21AsO3)(CO)9]·CH2Cl2, contains one triangulo-triruthenium complex mol­ecule and one half of the dichloro­methane solvent. The dichloro­methane solvent lies across a crystallographic inversion center leading to the mol­ecule being disordered over two positions of equal occupancy. The bis­(diphenyl­arsino)methane ligand bridges an Ru—Ru bond and the monodentate arsine ligand bonds to the third Ru atom. Both the arsine ligands are equatorial with respect to the Ru3 triangle. In addition, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The trimethoxy­phenyl­arsino benzene rings make dihedral angles of 83.01 (8), 65.81 (8) and 76.20 (8)° with each other. The dihedral angles between the two benzene rings are 82.69 (9) and 78.83 (9)° for the two diphenyl­arsino groups. In the crystal packing, the mol­ecules are stacked along the a axis and weak inter­molecular C—H⋯π inter­actions stabilize the crystal structure.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin. & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.], 1988a[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181-205.],b[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207-235.]). For related structures, see: Shawkataly et al. (1998[Shawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211-1216.], 2004[Shawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387-394.], 2009[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1620-m1621.], 2010[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m30-m31.]). For the synthesis of tris­(4-methoxy­phen­yl)arsine, see: Blicke & Cataline (1938[Blicke, F. F. & Cataline, E. L. (1938). J. Am. Chem. Soc. 60, 419-422.]). For the synthesis of μ-bis­(diphenyl­arsino)methane­deca­carbonyl­tri­ruth­enium(0), see: Bruce et al. (1983[Bruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321-343.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2[Ru3(C25H22As2)(C21H21AsO3)(CO)9]·CH2Cl2

  • Mr = 2932.65

  • Triclinic, [P \overline 1]

  • a = 10.7669 (1) Å

  • b = 12.8159 (2) Å

  • c = 20.7167 (2) Å

  • α = 95.997 (1)°

  • β = 101.259 (1)°

  • γ = 103.451 (1)°

  • V = 2692.85 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 100 K

  • 0.32 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.472, Tmax = 0.631

  • 90976 measured reflections

  • 19440 independent reflections

  • 17122 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.052

  • S = 1.01

  • 19440 reflections

  • 679 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg1i 0.93 2.92 3.813 (2) 161
C22—H22ACg2ii 0.93 2.89 3.5863 (19) 133
C54—H54CCg3iii 0.96 2.87 3.710 (2) 147
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z. Cg1 Cg2 and Cg3 are the centroids of the C38–C43, C26–C31 and C32–C37 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L=15 group ligand) have been reported (Bruce et al., 1985, 1988a,b). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2009,2010). Herein, we report the synthesis and structure of title compound.

The asymmetric unit consists of one molecule of the triangulo-triruthenium complex and half a molecule of dichloromethane solvent (Fig. 1). The dichloromethane solvent lies across a crystallographic inversion center leading to the molecule being disordered over two positions of equal occupancy. The bond lengths and angles of title compound are comparable to those found in related structure (Shawkataly et al., 2009,2010). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate arsine ligand bonds to the Ru3 atom. Both the arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The trimethoxyphenylarsino benzene rings make dihedral angles (C26–C31/C32–C37, C26–C31/C38–C43 and C32–C37/C38–C43) of 83.01 (8), 65.81 (8) and 76.20 (8)° with each other, respectively. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 82.69 (9) and 78.83 (9)° for the two diphenylarsino groups, respectively.

In the crystal packing (Fig. 2), the molecules are stacked along a axis and weak intermolecular C—H···π interactions stabilize the crystal structure (Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009, 2010). For the synthesis of tris(4-methoxyphenyl)arsine, see: Blicke et al. (1938). For the synthesis of bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The reactions were conducted under a atmosphere of high purity nitrogen using standard Schlenk techniques and hexane-dried over sodium metal. Tris(4-methoxyphenyl)arsine (Blicke et al., 1938) and bis(diphenylarsino)methanedecacarbonyltriruthenium(0) (Bruce et al., 1983) were prepared by reported procedures. The title compound was obtained by refluxing equimolar quantities of Ru3(CO)10(µ-Ph2AsCH2AsPh2) (105.5 mg, 0.1 mmol) and tris(4-methoxyphenyl)arsine (39.63 mg, 0.1 mmol) in hexane under nitrogen atmosphere. Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH3OH into CHCl3.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied for the methyl groups. The dichloromethane solvent lies across a crystallographic inversion center leading to the molecule being disordered over two positions of equal occupancy. The maximum and minimum residual electron density peaks of 0.73 and -1.73 eÅ-3, respectively, were located 0.84 Å and 0.56 Å from the Cl1 atom.

Structure description top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L=15 group ligand) have been reported (Bruce et al., 1985, 1988a,b). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2009,2010). Herein, we report the synthesis and structure of title compound.

The asymmetric unit consists of one molecule of the triangulo-triruthenium complex and half a molecule of dichloromethane solvent (Fig. 1). The dichloromethane solvent lies across a crystallographic inversion center leading to the molecule being disordered over two positions of equal occupancy. The bond lengths and angles of title compound are comparable to those found in related structure (Shawkataly et al., 2009,2010). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate arsine ligand bonds to the Ru3 atom. Both the arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The trimethoxyphenylarsino benzene rings make dihedral angles (C26–C31/C32–C37, C26–C31/C38–C43 and C32–C37/C38–C43) of 83.01 (8), 65.81 (8) and 76.20 (8)° with each other, respectively. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 82.69 (9) and 78.83 (9)° for the two diphenylarsino groups, respectively.

In the crystal packing (Fig. 2), the molecules are stacked along a axis and weak intermolecular C—H···π interactions stabilize the crystal structure (Table 1).

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009, 2010). For the synthesis of tris(4-methoxyphenyl)arsine, see: Blicke et al. (1938). For the synthesis of bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids for non-H atoms. Atoms with suffix A are generated by the symmetry operation (1 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules stacked along a axis. The solvent molecules have been omitted for clarity.
Bis[µ-bis(diphenylarsino)methane-1:2κ2As:As']nonacarbonyl- 1κ3C,2κ3C,3κ3C- [tris(4-methoxyphenyl)arsine-3κAs]-triangulo-triruthenium(0) dichloromethane solvatene-3κAs]-triangulo-triruthenium(0)} dichloromethane solvate top
Crystal data top
2[Ru3(C25H22As2)(C21H21As)(CO)9]·CH2Cl2Z = 1
Mr = 2932.65F(000) = 1442
Triclinic, P1Dx = 1.808 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7669 (1) ÅCell parameters from 9265 reflections
b = 12.8159 (2) Åθ = 2.4–35.3°
c = 20.7167 (2) ŵ = 2.77 mm1
α = 95.997 (1)°T = 100 K
β = 101.259 (1)°Block, purple
γ = 103.451 (1)°0.32 × 0.25 × 0.18 mm
V = 2692.85 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
19440 independent reflections
Radiation source: fine-focus sealed tube17122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 32.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.472, Tmax = 0.631k = 1919
90976 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0223P)2 + 2.0523P]
where P = (Fo2 + 2Fc2)/3
19440 reflections(Δ/σ)max = 0.002
679 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 1.73 e Å3
Crystal data top
2[Ru3(C25H22As2)(C21H21As)(CO)9]·CH2Cl2γ = 103.451 (1)°
Mr = 2932.65V = 2692.85 (6) Å3
Triclinic, P1Z = 1
a = 10.7669 (1) ÅMo Kα radiation
b = 12.8159 (2) ŵ = 2.77 mm1
c = 20.7167 (2) ÅT = 100 K
α = 95.997 (1)°0.32 × 0.25 × 0.18 mm
β = 101.259 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
19440 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
17122 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.631Rint = 0.025
90976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.01Δρmax = 0.73 e Å3
19440 reflectionsΔρmin = 1.73 e Å3
679 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.748217 (11)0.570966 (9)0.225464 (6)0.01353 (2)
Ru20.923559 (11)0.508430 (9)0.327473 (5)0.01269 (2)
Ru30.691165 (11)0.354235 (9)0.257861 (6)0.01359 (2)
As10.850968 (14)0.763617 (12)0.262954 (7)0.01454 (3)
As21.092347 (14)0.673703 (12)0.332126 (7)0.01360 (3)
As30.464318 (14)0.251824 (12)0.208703 (7)0.01442 (3)
O10.53976 (12)0.57997 (11)0.30693 (7)0.0276 (3)
O20.57004 (12)0.59551 (11)0.09838 (6)0.0274 (3)
O30.95014 (12)0.53629 (10)0.14399 (6)0.0227 (2)
O41.02873 (12)0.36228 (10)0.23643 (6)0.0255 (2)
O51.03705 (14)0.40670 (12)0.44375 (7)0.0312 (3)
O60.80068 (12)0.63916 (10)0.41856 (6)0.0243 (2)
O70.60368 (13)0.40703 (10)0.38771 (6)0.0254 (2)
O80.80348 (14)0.17286 (11)0.30517 (7)0.0299 (3)
O90.76267 (13)0.31181 (11)0.12285 (6)0.0281 (3)
O100.09041 (12)0.38956 (11)0.00395 (6)0.0268 (3)
O110.38176 (14)0.16804 (10)0.01920 (6)0.0294 (3)
O120.15856 (13)0.08073 (10)0.41159 (6)0.0268 (3)
C10.89112 (15)0.85813 (13)0.19751 (8)0.0192 (3)
C20.92364 (18)0.97072 (14)0.21647 (10)0.0271 (3)
H2A0.92951.00020.26030.033*
C30.9473 (2)1.03876 (15)0.16951 (11)0.0341 (4)
H3A0.96881.11370.18200.041*
C40.9387 (2)0.99484 (17)0.10422 (10)0.0345 (4)
H4A0.95491.04050.07310.041*
C50.9062 (2)0.88321 (16)0.08523 (10)0.0321 (4)
H5A0.90030.85420.04130.038*
C60.88232 (17)0.81427 (14)0.13187 (8)0.0243 (3)
H6A0.86060.73930.11910.029*
C70.75040 (15)0.84464 (12)0.30631 (8)0.0180 (3)
C80.80015 (17)0.91164 (14)0.36772 (9)0.0246 (3)
H8A0.88580.91860.39060.029*
C90.72189 (19)0.96824 (16)0.39495 (10)0.0296 (4)
H9A0.75491.01240.43620.036*
C100.59524 (18)0.95882 (15)0.36063 (11)0.0300 (4)
H10A0.54310.99680.37880.036*
C110.54584 (17)0.89312 (15)0.29933 (11)0.0300 (4)
H11A0.46070.88740.27620.036*
C120.62267 (16)0.83559 (14)0.27205 (9)0.0245 (3)
H12A0.58880.79100.23090.029*
C131.01597 (14)0.79804 (12)0.33037 (8)0.0175 (3)
H13A1.07740.85940.32060.021*
H13B1.00000.81830.37380.021*
C141.22911 (15)0.72635 (12)0.41276 (7)0.0174 (3)
C151.19085 (17)0.72494 (14)0.47329 (8)0.0230 (3)
H15A1.10290.69900.47380.028*
C161.28408 (19)0.76219 (15)0.53279 (8)0.0281 (4)
H16A1.25840.76200.57310.034*
C171.41483 (19)0.79953 (16)0.53228 (9)0.0314 (4)
H17A1.47730.82300.57230.038*
C181.45289 (19)0.80199 (18)0.47264 (10)0.0360 (4)
H18A1.54090.82840.47250.043*
C191.36012 (17)0.76501 (16)0.41236 (9)0.0284 (4)
H19A1.38620.76630.37220.034*
C201.18625 (14)0.68358 (13)0.26161 (7)0.0171 (3)
C211.24764 (15)0.60231 (13)0.24738 (8)0.0204 (3)
H21A1.24840.54790.27370.024*
C221.30791 (16)0.60245 (15)0.19368 (8)0.0245 (3)
H22A1.34820.54780.18400.029*
C231.30788 (17)0.68386 (17)0.15467 (8)0.0278 (4)
H23A1.34810.68380.11880.033*
C241.24798 (17)0.76539 (16)0.16906 (9)0.0278 (4)
H24A1.24860.82020.14290.033*
C251.18693 (15)0.76580 (14)0.22238 (8)0.0211 (3)
H25A1.14670.82060.23180.025*
C260.34264 (14)0.31040 (12)0.15043 (7)0.0162 (3)
C270.38765 (15)0.36185 (12)0.10008 (8)0.0188 (3)
H27A0.47660.37850.10050.023*
C280.30132 (17)0.38827 (14)0.04953 (8)0.0218 (3)
H28A0.33230.42220.01610.026*
C290.16790 (16)0.36393 (13)0.04880 (8)0.0198 (3)
C300.12182 (16)0.31616 (13)0.10001 (8)0.0204 (3)
H30A0.03340.30240.10070.024*
C310.20998 (15)0.28927 (13)0.15017 (8)0.0191 (3)
H31A0.17950.25660.18410.023*
C320.44377 (15)0.11738 (12)0.14984 (7)0.0172 (3)
C330.32017 (16)0.06402 (13)0.10922 (8)0.0212 (3)
H33A0.24860.09210.11160.025*
C340.30393 (18)0.02992 (13)0.06566 (9)0.0248 (3)
H34A0.22170.06460.03870.030*
C350.41039 (18)0.07291 (13)0.06199 (8)0.0218 (3)
C360.53369 (17)0.02054 (13)0.10135 (8)0.0229 (3)
H36A0.60530.04840.09870.027*
C370.54874 (16)0.07457 (13)0.14493 (8)0.0215 (3)
H37A0.63130.10990.17130.026*
C380.36401 (14)0.20005 (12)0.27262 (7)0.0162 (3)
C390.31161 (16)0.26948 (13)0.30952 (8)0.0206 (3)
H39A0.32420.34160.30300.025*
C400.24104 (17)0.23255 (13)0.35581 (8)0.0222 (3)
H40A0.20430.27900.37900.027*
C410.22564 (15)0.12585 (13)0.36729 (8)0.0195 (3)
C420.28230 (15)0.05689 (13)0.33270 (8)0.0195 (3)
H42A0.27540.01360.34170.023*
C430.34871 (15)0.09347 (12)0.28500 (8)0.0180 (3)
H43A0.38340.04640.26100.022*
C440.61826 (15)0.57114 (13)0.27824 (8)0.0195 (3)
C450.63364 (15)0.58388 (13)0.14722 (8)0.0191 (3)
C460.87797 (15)0.54744 (12)0.17636 (7)0.0184 (3)
C470.98557 (14)0.41806 (13)0.26738 (8)0.0180 (3)
C480.99577 (15)0.44521 (13)0.39973 (8)0.0193 (3)
C490.84055 (14)0.58853 (12)0.38269 (7)0.0173 (3)
C500.64039 (15)0.39241 (12)0.34029 (8)0.0191 (3)
C510.75530 (16)0.23904 (13)0.28797 (8)0.0200 (3)
C520.73926 (15)0.33497 (13)0.17343 (8)0.0198 (3)
C530.04799 (18)0.36350 (16)0.00756 (9)0.0295 (4)
H53A0.09150.38660.04640.044*
H53B0.06430.40010.03160.044*
H53C0.08070.28640.01020.044*
C540.4875 (2)0.21280 (16)0.01151 (10)0.0334 (4)
H54A0.45430.28220.01670.050*
H54B0.53350.22160.05440.050*
H54C0.54630.16490.00840.050*
C550.0980 (2)0.14896 (17)0.44722 (10)0.0350 (4)
H55A0.05180.10840.47560.052*
H55B0.03750.17420.41610.052*
H55C0.16410.21010.47380.052*
Cl10.62312 (7)0.49780 (6)0.54517 (3)0.05626 (16)
C560.5351 (4)0.5640 (3)0.4957 (2)0.0337 (8)0.50
H56A0.58280.58560.46260.040*0.50
H56B0.53420.62940.52250.040*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01293 (5)0.01240 (5)0.01399 (5)0.00233 (4)0.00091 (4)0.00267 (4)
Ru20.01146 (5)0.01378 (5)0.01296 (5)0.00336 (4)0.00268 (3)0.00265 (4)
Ru30.01337 (5)0.01205 (5)0.01495 (5)0.00242 (4)0.00324 (4)0.00227 (4)
As10.01342 (6)0.01264 (6)0.01655 (7)0.00272 (5)0.00162 (5)0.00260 (5)
As20.01158 (6)0.01491 (6)0.01367 (6)0.00274 (5)0.00211 (5)0.00245 (5)
As30.01369 (6)0.01293 (6)0.01654 (7)0.00316 (5)0.00390 (5)0.00164 (5)
O10.0234 (6)0.0346 (7)0.0321 (7)0.0141 (5)0.0114 (5)0.0130 (5)
O20.0247 (6)0.0316 (7)0.0235 (6)0.0055 (5)0.0014 (5)0.0109 (5)
O30.0221 (5)0.0258 (6)0.0201 (5)0.0050 (4)0.0060 (4)0.0041 (4)
O40.0235 (6)0.0281 (6)0.0275 (6)0.0106 (5)0.0093 (5)0.0001 (5)
O50.0327 (7)0.0376 (7)0.0278 (6)0.0150 (6)0.0047 (5)0.0159 (6)
O60.0228 (6)0.0276 (6)0.0225 (6)0.0088 (5)0.0061 (4)0.0021 (5)
O70.0303 (6)0.0244 (6)0.0229 (6)0.0057 (5)0.0108 (5)0.0035 (5)
O80.0374 (7)0.0268 (6)0.0316 (7)0.0172 (6)0.0086 (5)0.0103 (5)
O90.0308 (7)0.0271 (6)0.0225 (6)0.0012 (5)0.0106 (5)0.0023 (5)
O100.0256 (6)0.0345 (7)0.0203 (6)0.0103 (5)0.0006 (4)0.0072 (5)
O110.0428 (8)0.0188 (6)0.0239 (6)0.0087 (5)0.0048 (5)0.0046 (5)
O120.0318 (7)0.0243 (6)0.0263 (6)0.0031 (5)0.0150 (5)0.0061 (5)
C10.0158 (6)0.0177 (7)0.0235 (7)0.0025 (5)0.0033 (5)0.0072 (5)
C20.0295 (9)0.0183 (7)0.0322 (9)0.0021 (6)0.0073 (7)0.0064 (6)
C30.0380 (10)0.0196 (8)0.0442 (11)0.0012 (7)0.0114 (8)0.0132 (8)
C40.0358 (10)0.0317 (10)0.0367 (10)0.0030 (8)0.0095 (8)0.0189 (8)
C50.0375 (10)0.0328 (9)0.0252 (8)0.0047 (8)0.0072 (7)0.0114 (7)
C60.0274 (8)0.0214 (7)0.0233 (8)0.0042 (6)0.0048 (6)0.0065 (6)
C70.0169 (6)0.0143 (6)0.0240 (7)0.0051 (5)0.0050 (5)0.0048 (5)
C80.0224 (7)0.0255 (8)0.0258 (8)0.0112 (6)0.0017 (6)0.0004 (6)
C90.0305 (9)0.0294 (9)0.0307 (9)0.0142 (7)0.0067 (7)0.0019 (7)
C100.0249 (8)0.0229 (8)0.0472 (11)0.0118 (7)0.0132 (8)0.0055 (7)
C110.0181 (7)0.0226 (8)0.0485 (11)0.0078 (6)0.0035 (7)0.0034 (7)
C120.0183 (7)0.0205 (7)0.0322 (9)0.0056 (6)0.0009 (6)0.0006 (6)
C130.0147 (6)0.0159 (6)0.0197 (7)0.0035 (5)0.0006 (5)0.0007 (5)
C140.0170 (6)0.0171 (6)0.0155 (6)0.0022 (5)0.0002 (5)0.0026 (5)
C150.0219 (7)0.0282 (8)0.0188 (7)0.0084 (6)0.0028 (6)0.0020 (6)
C160.0344 (9)0.0320 (9)0.0165 (7)0.0123 (7)0.0002 (6)0.0002 (6)
C170.0315 (9)0.0297 (9)0.0232 (8)0.0036 (7)0.0087 (7)0.0015 (7)
C180.0201 (8)0.0460 (12)0.0313 (9)0.0044 (8)0.0041 (7)0.0080 (8)
C190.0177 (7)0.0407 (10)0.0216 (8)0.0009 (7)0.0007 (6)0.0078 (7)
C200.0135 (6)0.0206 (7)0.0157 (6)0.0019 (5)0.0032 (5)0.0026 (5)
C210.0172 (7)0.0237 (7)0.0214 (7)0.0059 (6)0.0058 (5)0.0047 (6)
C220.0177 (7)0.0325 (9)0.0221 (7)0.0054 (6)0.0058 (6)0.0013 (6)
C230.0188 (7)0.0452 (11)0.0180 (7)0.0040 (7)0.0058 (6)0.0052 (7)
C240.0234 (8)0.0380 (10)0.0228 (8)0.0043 (7)0.0065 (6)0.0143 (7)
C250.0172 (7)0.0246 (8)0.0209 (7)0.0031 (6)0.0038 (5)0.0070 (6)
C260.0170 (6)0.0151 (6)0.0166 (6)0.0044 (5)0.0041 (5)0.0019 (5)
C270.0181 (7)0.0183 (7)0.0201 (7)0.0037 (5)0.0065 (5)0.0022 (5)
C280.0249 (8)0.0239 (7)0.0177 (7)0.0057 (6)0.0072 (6)0.0046 (6)
C290.0225 (7)0.0201 (7)0.0164 (6)0.0073 (6)0.0018 (5)0.0017 (5)
C300.0175 (7)0.0232 (7)0.0213 (7)0.0069 (6)0.0042 (5)0.0038 (6)
C310.0185 (7)0.0204 (7)0.0204 (7)0.0064 (5)0.0065 (5)0.0060 (5)
C320.0188 (6)0.0150 (6)0.0174 (6)0.0036 (5)0.0049 (5)0.0016 (5)
C330.0202 (7)0.0173 (7)0.0240 (7)0.0049 (5)0.0011 (6)0.0009 (6)
C340.0260 (8)0.0183 (7)0.0250 (8)0.0038 (6)0.0021 (6)0.0008 (6)
C350.0322 (8)0.0149 (6)0.0182 (7)0.0047 (6)0.0073 (6)0.0020 (5)
C360.0257 (8)0.0190 (7)0.0256 (8)0.0066 (6)0.0101 (6)0.0014 (6)
C370.0193 (7)0.0190 (7)0.0251 (7)0.0042 (5)0.0059 (6)0.0008 (6)
C380.0151 (6)0.0154 (6)0.0172 (6)0.0026 (5)0.0036 (5)0.0021 (5)
C390.0238 (7)0.0158 (6)0.0234 (7)0.0048 (5)0.0087 (6)0.0041 (5)
C400.0251 (8)0.0204 (7)0.0225 (7)0.0062 (6)0.0091 (6)0.0023 (6)
C410.0177 (7)0.0203 (7)0.0186 (7)0.0002 (5)0.0051 (5)0.0031 (5)
C420.0194 (7)0.0156 (6)0.0219 (7)0.0017 (5)0.0038 (5)0.0036 (5)
C430.0164 (6)0.0161 (6)0.0211 (7)0.0040 (5)0.0038 (5)0.0031 (5)
C440.0171 (6)0.0201 (7)0.0210 (7)0.0053 (5)0.0013 (5)0.0074 (5)
C450.0180 (7)0.0176 (7)0.0208 (7)0.0032 (5)0.0033 (5)0.0042 (5)
C460.0192 (7)0.0166 (6)0.0171 (6)0.0026 (5)0.0005 (5)0.0037 (5)
C470.0151 (6)0.0191 (7)0.0194 (7)0.0042 (5)0.0029 (5)0.0036 (5)
C480.0180 (7)0.0205 (7)0.0199 (7)0.0049 (5)0.0052 (5)0.0042 (5)
C490.0150 (6)0.0183 (7)0.0169 (6)0.0023 (5)0.0019 (5)0.0032 (5)
C500.0203 (7)0.0143 (6)0.0216 (7)0.0033 (5)0.0035 (5)0.0032 (5)
C510.0214 (7)0.0198 (7)0.0193 (7)0.0048 (6)0.0061 (5)0.0031 (5)
C520.0165 (6)0.0188 (7)0.0209 (7)0.0003 (5)0.0031 (5)0.0018 (5)
C530.0239 (8)0.0348 (9)0.0262 (8)0.0080 (7)0.0030 (6)0.0049 (7)
C540.0530 (12)0.0236 (8)0.0268 (9)0.0149 (8)0.0134 (8)0.0011 (7)
C550.0458 (11)0.0329 (10)0.0303 (9)0.0063 (8)0.0239 (8)0.0037 (8)
Cl10.0548 (4)0.0621 (4)0.0490 (3)0.0249 (3)0.0048 (3)0.0132 (3)
C560.035 (2)0.0289 (18)0.039 (2)0.0057 (15)0.0161 (16)0.0012 (16)
Geometric parameters (Å, º) top
Ru1—C451.8834 (16)C15—C161.388 (2)
Ru1—C441.9369 (16)C15—H15A0.9300
Ru1—C461.9402 (16)C16—C171.380 (3)
Ru1—As12.4323 (2)C16—H16A0.9300
Ru1—Ru22.8587 (2)C17—C181.377 (3)
Ru1—Ru32.8809 (2)C17—H17A0.9300
Ru2—C481.8958 (16)C18—C191.397 (2)
Ru2—C471.9288 (16)C18—H18A0.9300
Ru2—C491.9344 (15)C19—H19A0.9300
Ru2—As22.4283 (2)C20—C211.393 (2)
Ru2—Ru32.8180 (2)C20—C251.396 (2)
Ru3—C511.8825 (16)C21—C221.393 (2)
Ru3—C521.9265 (16)C21—H21A0.9300
Ru3—C501.9413 (16)C22—C231.385 (3)
Ru3—As32.4461 (2)C22—H22A0.9300
As1—C71.9404 (15)C23—C241.386 (3)
As1—C11.9546 (15)C23—H23A0.9300
As1—C131.9594 (15)C24—C251.391 (2)
As2—C201.9309 (15)C24—H24A0.9300
As2—C141.9380 (15)C25—H25A0.9300
As2—C131.9562 (15)C26—C311.389 (2)
As3—C261.9408 (15)C26—C271.396 (2)
As3—C381.9413 (14)C27—C281.384 (2)
As3—C321.9450 (15)C27—H27A0.9300
O1—C441.143 (2)C28—C291.394 (2)
O2—C451.1502 (19)C28—H28A0.9300
O3—C461.1442 (19)C29—C301.395 (2)
O4—C471.1458 (19)C30—C311.393 (2)
O5—C481.145 (2)C30—H30A0.9300
O6—C491.1449 (19)C31—H31A0.9300
O7—C501.1419 (19)C32—C371.382 (2)
O8—C511.145 (2)C32—C331.402 (2)
O9—C521.150 (2)C33—C341.381 (2)
O10—C291.3582 (19)C33—H33A0.9300
O10—C531.434 (2)C34—C351.394 (2)
O11—C351.3639 (19)C34—H34A0.9300
O11—C541.416 (2)C35—C361.388 (2)
O12—C411.3688 (19)C36—C371.396 (2)
O12—C551.433 (2)C36—H36A0.9300
C1—C61.393 (2)C37—H37A0.9300
C1—C21.397 (2)C38—C431.394 (2)
C2—C31.394 (3)C38—C391.398 (2)
C2—H2A0.9300C39—C401.390 (2)
C3—C41.387 (3)C39—H39A0.9300
C3—H3A0.9300C40—C411.390 (2)
C4—C51.385 (3)C40—H40A0.9300
C4—H4A0.9300C41—C421.399 (2)
C5—C61.396 (2)C42—C431.387 (2)
C5—H5A0.9300C42—H42A0.9300
C6—H6A0.9300C43—H43A0.9300
C7—C81.391 (2)C53—H53A0.9600
C7—C121.391 (2)C53—H53B0.9600
C8—C91.392 (2)C53—H53C0.9600
C8—H8A0.9300C54—H54A0.9600
C9—C101.381 (3)C54—H54B0.9600
C9—H9A0.9300C54—H54C0.9600
C10—C111.382 (3)C55—H55A0.9600
C10—H10A0.9300C55—H55B0.9600
C11—C121.388 (2)C55—H55C0.9600
C11—H11A0.9300Cl1—C561.687 (4)
C12—H12A0.9300Cl1—C56i1.707 (4)
C13—H13A0.9700C56—C56i1.682 (8)
C13—H13B0.9700C56—Cl1i1.707 (4)
C14—C191.384 (2)C56—H56A0.9601
C14—C151.395 (2)C56—H56B0.9599
C45—Ru1—C4492.98 (7)C18—C17—H17A120.0
C45—Ru1—C4691.58 (7)C16—C17—H17A120.0
C44—Ru1—C46170.65 (6)C17—C18—C19120.41 (18)
C45—Ru1—As197.62 (5)C17—C18—H18A119.8
C44—Ru1—As192.39 (5)C19—C18—H18A119.8
C46—Ru1—As195.09 (4)C14—C19—C18119.64 (17)
C45—Ru1—Ru2167.46 (5)C14—C19—H19A120.2
C44—Ru1—Ru293.41 (4)C18—C19—H19A120.2
C46—Ru1—Ru280.64 (4)C21—C20—C25119.72 (14)
As1—Ru1—Ru292.883 (6)C21—C20—As2118.52 (11)
C45—Ru1—Ru3112.52 (5)C25—C20—As2121.64 (12)
C44—Ru1—Ru376.37 (5)C22—C21—C20120.06 (15)
C46—Ru1—Ru394.34 (4)C22—C21—H21A120.0
As1—Ru1—Ru3148.088 (6)C20—C21—H21A120.0
Ru2—Ru1—Ru358.806 (4)C23—C22—C21120.08 (16)
C48—Ru2—C4790.02 (7)C23—C22—H22A120.0
C48—Ru2—C4992.26 (6)C21—C22—H22A120.0
C47—Ru2—C49173.16 (6)C22—C23—C24120.02 (15)
C48—Ru2—As2103.42 (5)C22—C23—H23A120.0
C47—Ru2—As295.92 (5)C24—C23—H23A120.0
C49—Ru2—As289.82 (4)C23—C24—C25120.41 (16)
C48—Ru2—Ru3106.08 (5)C23—C24—H24A119.8
C47—Ru2—Ru377.30 (4)C25—C24—H24A119.8
C49—Ru2—Ru395.87 (4)C24—C25—C20119.71 (16)
As2—Ru2—Ru3149.666 (6)C24—C25—H25A120.1
C48—Ru2—Ru1164.14 (5)C20—C25—H25A120.1
C47—Ru2—Ru195.47 (4)C31—C26—C27118.82 (14)
C49—Ru2—Ru180.70 (4)C31—C26—As3123.03 (11)
As2—Ru2—Ru190.831 (6)C27—C26—As3117.42 (11)
Ru3—Ru2—Ru160.990 (4)C28—C27—C26120.76 (14)
C51—Ru3—C5293.67 (7)C28—C27—H27A119.6
C51—Ru3—C5093.66 (7)C26—C27—H27A119.6
C52—Ru3—C50172.38 (7)C27—C28—C29119.88 (15)
C51—Ru3—As398.10 (5)C27—C28—H28A120.1
C52—Ru3—As391.69 (5)C29—C28—H28A120.1
C50—Ru3—As389.31 (5)O10—C29—C28115.59 (14)
C51—Ru3—Ru291.66 (5)O10—C29—C30124.26 (15)
C52—Ru3—Ru297.43 (4)C28—C29—C30120.15 (14)
C50—Ru3—Ru280.30 (5)C31—C30—C29119.14 (14)
As3—Ru3—Ru2166.195 (7)C31—C30—H30A120.4
C51—Ru3—Ru1148.00 (5)C29—C30—H30A120.4
C52—Ru3—Ru176.72 (5)C26—C31—C30121.20 (14)
C50—Ru3—Ru195.92 (4)C26—C31—H31A119.4
As3—Ru3—Ru1112.451 (6)C30—C31—H31A119.4
Ru2—Ru3—Ru160.204 (4)C37—C32—C33118.66 (14)
C7—As1—C198.44 (7)C37—C32—As3121.90 (12)
C7—As1—C13101.20 (6)C33—C32—As3119.40 (11)
C1—As1—C13103.56 (6)C34—C33—C32120.45 (15)
C7—As1—Ru1116.04 (4)C34—C33—H33A119.8
C1—As1—Ru1119.41 (5)C32—C33—H33A119.8
C13—As1—Ru1115.32 (4)C33—C34—C35120.18 (16)
C20—As2—C14103.87 (6)C33—C34—H34A119.9
C20—As2—C13103.95 (7)C35—C34—H34A119.9
C14—As2—C1399.26 (6)O11—C35—C36124.82 (16)
C20—As2—Ru2118.46 (5)O11—C35—C34115.04 (15)
C14—As2—Ru2118.68 (4)C36—C35—C34120.13 (15)
C13—As2—Ru2110.06 (4)C35—C36—C37119.06 (15)
C26—As3—C38102.24 (6)C35—C36—H36A120.5
C26—As3—C3297.67 (6)C37—C36—H36A120.5
C38—As3—C32101.39 (6)C32—C37—C36121.52 (15)
C26—As3—Ru3122.47 (4)C32—C37—H37A119.2
C38—As3—Ru3114.66 (4)C36—C37—H37A119.2
C32—As3—Ru3115.14 (5)C43—C38—C39118.62 (14)
C29—O10—C53117.47 (14)C43—C38—As3120.13 (11)
C35—O11—C54117.28 (15)C39—C38—As3121.17 (11)
C41—O12—C55116.78 (14)C40—C39—C38121.08 (14)
C6—C1—C2119.99 (15)C40—C39—H39A119.5
C6—C1—As1120.64 (12)C38—C39—H39A119.5
C2—C1—As1119.32 (13)C41—C40—C39119.66 (15)
C3—C2—C1119.77 (18)C41—C40—H40A120.2
C3—C2—H2A120.1C39—C40—H40A120.2
C1—C2—H2A120.1O12—C41—C40124.78 (15)
C4—C3—C2120.10 (18)O12—C41—C42115.45 (14)
C4—C3—H3A120.0C40—C41—C42119.76 (14)
C2—C3—H3A120.0C43—C42—C41120.07 (14)
C5—C4—C3120.27 (17)C43—C42—H42A120.0
C5—C4—H4A119.9C41—C42—H42A120.0
C3—C4—H4A119.9C42—C43—C38120.71 (14)
C4—C5—C6120.12 (18)C42—C43—H43A119.6
C4—C5—H5A119.9C38—C43—H43A119.6
C6—C5—H5A119.9O1—C44—Ru1173.41 (14)
C1—C6—C5119.75 (16)O2—C45—Ru1175.91 (14)
C1—C6—H6A120.1O3—C46—Ru1175.41 (13)
C5—C6—H6A120.1O4—C47—Ru2174.12 (14)
C8—C7—C12119.57 (15)O5—C48—Ru2178.63 (14)
C8—C7—As1123.70 (12)O6—C49—Ru2174.76 (13)
C12—C7—As1116.71 (12)O7—C50—Ru3174.62 (14)
C7—C8—C9120.07 (16)O8—C51—Ru3174.61 (15)
C7—C8—H8A120.0O9—C52—Ru3172.70 (14)
C9—C8—H8A120.0O10—C53—H53A109.5
C10—C9—C8119.99 (17)O10—C53—H53B109.5
C10—C9—H9A120.0H53A—C53—H53B109.5
C8—C9—H9A120.0O10—C53—H53C109.5
C9—C10—C11120.13 (17)H53A—C53—H53C109.5
C9—C10—H10A119.9H53B—C53—H53C109.5
C11—C10—H10A119.9O11—C54—H54A109.5
C10—C11—C12120.32 (17)O11—C54—H54B109.5
C10—C11—H11A119.8H54A—C54—H54B109.5
C12—C11—H11A119.8O11—C54—H54C109.5
C11—C12—C7119.92 (16)H54A—C54—H54C109.5
C11—C12—H12A120.0H54B—C54—H54C109.5
C7—C12—H12A120.0O12—C55—H55A109.5
As2—C13—As1111.05 (7)O12—C55—H55B109.5
As2—C13—H13A109.4H55A—C55—H55B109.5
As1—C13—H13A109.4O12—C55—H55C109.5
As2—C13—H13B109.4H55A—C55—H55C109.5
As1—C13—H13B109.4H55B—C55—H55C109.5
H13A—C13—H13B108.0C56—Cl1—C56i59.4 (2)
C19—C14—C15119.75 (14)C56i—C56—Cl160.9 (3)
C19—C14—As2123.05 (12)C56i—C56—Cl1i59.7 (3)
C15—C14—As2117.19 (11)Cl1—C56—Cl1i120.6 (2)
C16—C15—C14119.96 (16)C56i—C56—H56A126.6
C16—C15—H15A120.0Cl1—C56—H56A107.2
C14—C15—H15A120.0Cl1i—C56—H56A107.2
C17—C16—C15120.17 (17)C56i—C56—H56B126.6
C17—C16—H16A119.9Cl1—C56—H56B107.2
C15—C16—H16A119.9Cl1i—C56—H56B107.2
C18—C17—C16120.05 (16)H56A—C56—H56B106.8
C45—Ru1—Ru2—C4886.2 (3)C7—As1—C1—C6137.28 (14)
C44—Ru1—Ru2—C4834.25 (18)C13—As1—C1—C6118.97 (14)
C46—Ru1—Ru2—C48138.49 (18)Ru1—As1—C1—C610.90 (15)
As1—Ru1—Ru2—C48126.82 (18)C7—As1—C1—C240.08 (14)
Ru3—Ru1—Ru2—C4837.56 (18)C13—As1—C1—C263.68 (14)
C45—Ru1—Ru2—C4723.5 (2)Ru1—As1—C1—C2166.45 (12)
C44—Ru1—Ru2—C47144.02 (7)C6—C1—C2—C30.0 (3)
C46—Ru1—Ru2—C4728.72 (6)As1—C1—C2—C3177.41 (15)
As1—Ru1—Ru2—C47123.41 (5)C1—C2—C3—C40.1 (3)
Ru3—Ru1—Ru2—C4772.21 (5)C2—C3—C4—C50.3 (3)
C45—Ru1—Ru2—C49150.8 (2)C3—C4—C5—C60.2 (3)
C44—Ru1—Ru2—C4930.26 (7)C2—C1—C6—C50.0 (3)
C46—Ru1—Ru2—C49157.00 (6)As1—C1—C6—C5177.38 (14)
As1—Ru1—Ru2—C4962.30 (4)C4—C5—C6—C10.1 (3)
Ru3—Ru1—Ru2—C49102.08 (4)C1—As1—C7—C8102.24 (14)
C45—Ru1—Ru2—As2119.5 (2)C13—As1—C7—C83.48 (15)
C44—Ru1—Ru2—As2119.95 (5)Ru1—As1—C7—C8129.08 (13)
C46—Ru1—Ru2—As267.31 (5)C1—As1—C7—C1276.16 (13)
As1—Ru1—Ru2—As227.382 (7)C13—As1—C7—C12178.11 (13)
Ru3—Ru1—Ru2—As2168.231 (6)Ru1—As1—C7—C1252.52 (13)
C45—Ru1—Ru2—Ru348.7 (2)C12—C7—C8—C90.7 (3)
C44—Ru1—Ru2—Ru371.82 (5)As1—C7—C8—C9179.07 (14)
C46—Ru1—Ru2—Ru3100.92 (5)C7—C8—C9—C100.7 (3)
As1—Ru1—Ru2—Ru3164.387 (6)C8—C9—C10—C110.1 (3)
C48—Ru2—Ru3—C5126.04 (7)C9—C10—C11—C120.5 (3)
C47—Ru2—Ru3—C5160.26 (7)C10—C11—C12—C70.5 (3)
C49—Ru2—Ru3—C51120.10 (6)C8—C7—C12—C110.1 (3)
As2—Ru2—Ru3—C51140.13 (5)As1—C7—C12—C11178.59 (14)
Ru1—Ru2—Ru3—C51163.95 (5)C20—As2—C13—As183.43 (8)
C48—Ru2—Ru3—C52119.96 (7)C14—As2—C13—As1169.67 (8)
C47—Ru2—Ru3—C5233.67 (7)Ru2—As2—C13—As144.41 (8)
C49—Ru2—Ru3—C52145.97 (7)C7—As1—C13—As2144.77 (8)
As2—Ru2—Ru3—C5246.21 (5)C1—As1—C13—As2113.60 (8)
Ru1—Ru2—Ru3—C5270.03 (5)Ru1—As1—C13—As218.69 (9)
C48—Ru2—Ru3—C5067.39 (7)C20—As2—C14—C192.79 (16)
C47—Ru2—Ru3—C50153.69 (7)C13—As2—C14—C19104.18 (15)
C49—Ru2—Ru3—C5026.67 (6)Ru2—As2—C14—C19136.78 (14)
As2—Ru2—Ru3—C50126.44 (5)C20—As2—C14—C15177.63 (12)
Ru1—Ru2—Ru3—C50102.62 (5)C13—As2—C14—C1575.40 (13)
C48—Ru2—Ru3—As3109.10 (6)Ru2—As2—C14—C1543.63 (14)
C47—Ru2—Ru3—As3164.60 (5)C19—C14—C15—C160.0 (3)
C49—Ru2—Ru3—As315.04 (5)As2—C14—C15—C16179.62 (13)
As2—Ru2—Ru3—As384.73 (3)C14—C15—C16—C170.7 (3)
Ru1—Ru2—Ru3—As360.91 (3)C15—C16—C17—C181.3 (3)
C48—Ru2—Ru3—Ru1170.01 (5)C16—C17—C18—C191.2 (3)
C47—Ru2—Ru3—Ru1103.69 (5)C15—C14—C19—C180.2 (3)
C49—Ru2—Ru3—Ru175.95 (4)As2—C14—C19—C18179.75 (16)
As2—Ru2—Ru3—Ru123.816 (12)C17—C18—C19—C140.4 (3)
C45—Ru1—Ru3—C51138.41 (10)C14—As2—C20—C2179.70 (13)
C44—Ru1—Ru3—C51134.04 (10)C13—As2—C20—C21176.88 (12)
C46—Ru1—Ru3—C5144.88 (10)Ru2—As2—C20—C2154.42 (13)
As1—Ru1—Ru3—C5161.99 (9)C14—As2—C20—C25104.31 (13)
Ru2—Ru1—Ru3—C5131.43 (9)C13—As2—C20—C250.89 (14)
C45—Ru1—Ru3—C5263.08 (7)Ru2—As2—C20—C25121.56 (12)
C44—Ru1—Ru3—C52150.64 (7)C25—C20—C21—C220.8 (2)
C46—Ru1—Ru3—C5230.44 (7)As2—C20—C21—C22175.23 (12)
As1—Ru1—Ru3—C52137.32 (5)C20—C21—C22—C230.5 (2)
Ru2—Ru1—Ru3—C52106.75 (5)C21—C22—C23—C240.1 (3)
C45—Ru1—Ru3—C50114.91 (7)C22—C23—C24—C250.4 (3)
C44—Ru1—Ru3—C5027.36 (7)C23—C24—C25—C200.1 (3)
C46—Ru1—Ru3—C50151.56 (6)C21—C20—C25—C240.5 (2)
As1—Ru1—Ru3—C5044.69 (5)As2—C20—C25—C24175.41 (13)
Ru2—Ru1—Ru3—C5075.25 (5)C38—As3—C26—C3114.08 (14)
C45—Ru1—Ru3—As323.20 (5)C32—As3—C26—C3189.40 (13)
C44—Ru1—Ru3—As364.35 (5)Ru3—As3—C26—C31144.18 (11)
C46—Ru1—Ru3—As3116.73 (4)C38—As3—C26—C27175.92 (12)
As1—Ru1—Ru3—As3136.396 (12)C32—As3—C26—C2780.60 (12)
Ru2—Ru1—Ru3—As3166.961 (7)Ru3—As3—C26—C2745.83 (13)
C45—Ru1—Ru3—Ru2169.84 (5)C31—C26—C27—C282.1 (2)
C44—Ru1—Ru3—Ru2102.61 (5)As3—C26—C27—C28168.36 (12)
C46—Ru1—Ru3—Ru276.31 (4)C26—C27—C28—C290.3 (2)
As1—Ru1—Ru3—Ru230.564 (12)C53—O10—C29—C28178.52 (15)
C45—Ru1—As1—C778.69 (7)C53—O10—C29—C301.3 (2)
C44—Ru1—As1—C714.63 (7)C27—C28—C29—O10177.84 (15)
C46—Ru1—As1—C7170.98 (7)C27—C28—C29—C302.0 (2)
Ru2—Ru1—As1—C7108.17 (5)O10—C29—C30—C31177.28 (15)
Ru3—Ru1—As1—C782.35 (5)C28—C29—C30—C312.6 (2)
C45—Ru1—As1—C138.88 (7)C27—C26—C31—C301.5 (2)
C44—Ru1—As1—C1132.21 (7)As3—C26—C31—C30168.36 (12)
C46—Ru1—As1—C153.41 (7)C29—C30—C31—C260.8 (2)
Ru2—Ru1—As1—C1134.26 (5)C26—As3—C32—C37141.49 (13)
Ru3—Ru1—As1—C1160.07 (5)C38—As3—C32—C37114.31 (13)
C45—Ru1—As1—C13163.25 (7)Ru3—As3—C32—C3710.07 (15)
C44—Ru1—As1—C13103.43 (7)C26—As3—C32—C3336.08 (13)
C46—Ru1—As1—C1370.96 (7)C38—As3—C32—C3368.13 (13)
Ru2—Ru1—As1—C139.89 (5)Ru3—As3—C32—C33167.49 (11)
Ru3—Ru1—As1—C1335.71 (5)C37—C32—C33—C340.5 (2)
C48—Ru2—As2—C20111.52 (7)As3—C32—C33—C34178.18 (13)
C47—Ru2—As2—C2020.08 (7)C32—C33—C34—C350.4 (3)
C49—Ru2—As2—C20156.20 (7)C54—O11—C35—C364.1 (2)
Ru3—Ru2—As2—C2054.83 (5)C54—O11—C35—C34177.41 (15)
Ru1—Ru2—As2—C2075.51 (5)C33—C34—C35—O11177.55 (15)
C48—Ru2—As2—C1415.89 (7)C33—C34—C35—C361.0 (3)
C47—Ru2—As2—C14107.32 (7)O11—C35—C36—C37177.68 (16)
C49—Ru2—As2—C1476.40 (7)C34—C35—C36—C370.8 (2)
Ru3—Ru2—As2—C14177.77 (5)C33—C32—C37—C360.8 (2)
Ru1—Ru2—As2—C14157.09 (5)As3—C32—C37—C36178.41 (13)
C48—Ru2—As2—C13129.15 (7)C35—C36—C37—C320.2 (3)
C47—Ru2—As2—C13139.41 (7)C26—As3—C38—C43127.25 (12)
C49—Ru2—As2—C1336.87 (7)C32—As3—C38—C4326.71 (13)
Ru3—Ru2—As2—C1364.51 (5)Ru3—As3—C38—C4397.99 (12)
Ru1—Ru2—As2—C1343.83 (5)C26—As3—C38—C3956.06 (14)
C51—Ru3—As3—C26166.95 (7)C32—As3—C38—C39156.61 (13)
C52—Ru3—As3—C2673.00 (7)Ru3—As3—C38—C3978.69 (13)
C50—Ru3—As3—C2699.45 (7)C43—C38—C39—C402.5 (2)
Ru2—Ru3—As3—C2658.46 (6)As3—C38—C39—C40179.28 (13)
Ru1—Ru3—As3—C263.32 (5)C38—C39—C40—C412.1 (3)
C51—Ru3—As3—C3868.39 (7)C55—O12—C41—C401.5 (2)
C52—Ru3—As3—C38162.35 (7)C55—O12—C41—C42179.25 (16)
C50—Ru3—As3—C3825.20 (7)C39—C40—C41—O12179.91 (16)
Ru2—Ru3—As3—C3866.19 (6)C39—C40—C41—C420.6 (2)
Ru1—Ru3—As3—C38121.33 (5)O12—C41—C42—C43177.84 (14)
C51—Ru3—As3—C3248.70 (7)C40—C41—C42—C432.8 (2)
C52—Ru3—As3—C3245.25 (7)C41—C42—C43—C382.3 (2)
C50—Ru3—As3—C32142.30 (7)C39—C38—C43—C420.3 (2)
Ru2—Ru3—As3—C32176.71 (5)As3—C38—C43—C42177.09 (12)
Ru1—Ru3—As3—C32121.57 (5)C56i—Cl1—C56—Cl1i0.003 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 Cg2 and Cg3 are the centroids of the C38–C43, C26–C31 and C32–C37 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg1ii0.932.923.813 (2)161
C22—H22A···Cg2iii0.932.893.5863 (19)133
C54—H54C···Cg3iv0.962.873.710 (2)147
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula2[Ru3(C25H22As2)(C21H21As)(CO)9]·CH2Cl2
Mr2932.65
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.7669 (1), 12.8159 (2), 20.7167 (2)
α, β, γ (°)95.997 (1), 101.259 (1), 103.451 (1)
V3)2692.85 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.32 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.472, 0.631
No. of measured, independent and
observed [I > 2σ(I)] reflections
90976, 19440, 17122
Rint0.025
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.052, 1.01
No. of reflections19440
No. of parameters679
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 1.73

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 Cg2 and Cg3 are the centroids of the C38–C43, C26–C31 and C32–C37 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg1i0.932.923.813 (2)161
C22—H22A···Cg2ii0.932.893.5863 (19)133
C54—H54C···Cg3iii0.962.873.710 (2)147
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y, z.
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. IAK is grateful to USM for a Postdoctoral Fellowship and to Gokhale Centenary College, Ankola, Karnataka, India, for postdoctoral study leave. HKF thanks USM for the Research University Golden Goose grant 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship.

References

First citationBlicke, F. F. & Cataline, E. L. (1938). J. Am. Chem. Soc. 60, 419–422.  CrossRef CAS Google Scholar
First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321–343.  CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Shawkataly, O. bin. & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1620–m1621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m30–m31.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387–394.  Web of Science CSD CrossRef Google Scholar
First citationShawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211–1216.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds