metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-Bis(di­phenyl­arsino)methane-1:2κ2As:As′]nona­carbonyl-1κ3C,2κ3C,3κ3C-[diphen­yl(phenyl­sulfanylmeth­yl)phosphine-3κP]-triangulo-triruthenium(0) chloro­form hemisolvate

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 4 January 2010; accepted 10 January 2010; online 30 January 2010)

The asymmetric unit of the title triangulo-triruthenium cluster, [Ru3(C25H22As2)(C19H17PS)(CO)9]·0.5CHCl3, contains of one mol­ecule of the triangulo-triruthenium complex and half a mol­ecule of the disordered (two positions of equal weight) chloro­form solvent. The bis­(diphenyl­arsino)methane ligand bridges an Ru—Ru bond and the monodentate phosphine ligand bonds to the third Ru atom. Both the arsine and phosphine ligands are equatorial with respect to the Ru3 triangle. In addition, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The benzene ring of phenyl­thio­methyl is disordered over two positions with refined site occupancies of 0.788 (11) and 0.212 (11). In the crystal packing, mol­ecules are linked into chains along b axis by inter­molecular C—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯π inter­actions further stabilize the crystal structure.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.], 1988a[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181-205.],b[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207-235.]). For related structures, see: Shawkataly et al. (1998[Shawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211-1216.], 2004[Shawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387-394.], 2009[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1620-m1621.]). For the synthesis of μ-bis­(diphenyl­arsino)methane­deca­carbonyl­triruthenium(0), see: Bruce et al. (1983[Bruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321-343.]). For the synthesis of diphen­yl(phenyl­thio)methyl­phosphine, see: Sanger (1983[Sanger, A. R. (1983). Can. J. Chem. 61, 2214-2219.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C25H22As2)(C19H17PS)(CO)9]·0.5CHCl3

  • Mr = 1395.61

  • Monoclinic, P 21 /c

  • a = 23.0129 (4) Å

  • b = 11.6027 (2) Å

  • c = 20.5019 (4) Å

  • β = 92.876 (1)°

  • V = 5467.35 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 100 K

  • 0.51 × 0.16 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.399, Tmax = 0.923

  • 70928 measured reflections

  • 16008 independent reflections

  • 11323 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.158

  • S = 1.03

  • 16008 reflections

  • 678 parameters

  • 162 restraints

  • H-atom parameters constrained

  • Δρmax = 1.78 e Å−3

  • Δρmin = −3.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C39A–C44A, C14–C19 and C32–C37 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O1i 0.93 2.53 3.457 (7) 175
C29—H29A⋯O3ii 0.93 2.45 3.331 (9) 158
C3—H3ACg1iii 0.93 2.82 3.654 (9) 151
C23—H23ACg2iv 0.93 2.87 3.691 (7) 147
C44A—H44ACg3 0.93 2.76 3.526 (12) 141
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligand) have been reported (Bruce et al., 1985, 1988a,b. As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2009). Herein we report the synthesis and structure of title compound.

The asymmetric unit consists of one molecule of the triangulo-triruthenium complex and half molecule of disordered chloroform solvent (Fig. 1). The bond lengths and angles of title compound are comparable to those found in a related structure (Shawkataly et al., 2009). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate phosphine ligand bonds to the Ru3 atom. Both the phosphine and arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The phosphine-substituted benzene rings (C26–C31/C39–C44 and C32–C37/C39–C44) make dihedral angles of 51.1 (5) and 57.8 (5)° with the benzene ring of phenylthiomethyl residue for the major component whereas these values are 42 (2) and 67 (2)° for the minor component. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 78.7 (3) and 76.8 (3)° for the two diphenylarsino groups respectively.

In the crystal packing (Fig. 2), the molecules are linked into chains along b axis by intermolecular C18—H18A···O1 and C29—H29A···O3 contacts. Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009). For the synthesis of µ-bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983). For the synthesis of diphenyl(phenylthio)methylphosphine, see: Sanger (1983). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

All manipulations were performed under a dry, oxygen-free dinitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under nitrogen. Diphenyl(phenylthiomethyl)phosphine (Sanger, 1983) was used as received and µ-bis(diphenylarsino)methane-decacarbonyl-triruthenium(0) was prepared by a reported procedure (Bruce et al., 1983). The title compound was obtained by refluxing equimolar quantities of Ru3(CO)10(µ-Ph2AsCH2AsPh2) (105.5 mg, 0.1 mmol) and diphenyl(phenylthiomethyl)phosphine (30.84 mg, 0.1 mmol) in hexane under a nitrogen atmosphere. Crystals were grown by slow solvent / solvent diffusion of C6H14 into CHCl3.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C). The C39–C44 ring and the chloroform molecule are disordered over two positions. The benzene ring has refined site occupancies of 0.788 (11) and 0.212 (11) for C39–C44 ring whereas site occupancies of the chloroform molecule are fixed to 0.25 for both components at final refinement. The same Uij parameters were used for the atom pairs Cl1B/Cl3B, Cl1B/Cl1A and C41B/C39B. The disordered atoms of the ring were subjected to rigid bond and similarity restraints and the minor component is refined isotropically. The chloroform atoms were only subjected to rigid bond restraint and both components are refined isotropically. The maximum and minimum residual electron density peaks of 1.78 and -3.30 e Å-3, respectively, were located 0.77 Å and 0.07 Å from the Cl2B and Cl3B atoms, respectively.

Structure description top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L= group 15 ligand) have been reported (Bruce et al., 1985, 1988a,b. As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2009). Herein we report the synthesis and structure of title compound.

The asymmetric unit consists of one molecule of the triangulo-triruthenium complex and half molecule of disordered chloroform solvent (Fig. 1). The bond lengths and angles of title compound are comparable to those found in a related structure (Shawkataly et al., 2009). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate phosphine ligand bonds to the Ru3 atom. Both the phosphine and arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The phosphine-substituted benzene rings (C26–C31/C39–C44 and C32–C37/C39–C44) make dihedral angles of 51.1 (5) and 57.8 (5)° with the benzene ring of phenylthiomethyl residue for the major component whereas these values are 42 (2) and 67 (2)° for the minor component. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 78.7 (3) and 76.8 (3)° for the two diphenylarsino groups respectively.

In the crystal packing (Fig. 2), the molecules are linked into chains along b axis by intermolecular C18—H18A···O1 and C29—H29A···O3 contacts. Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009). For the synthesis of µ-bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983). For the synthesis of diphenyl(phenylthio)methylphosphine, see: Sanger (1983). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids for non-H atoms. All disordered components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into a chain along b axis by C–H···O contacts (dashed lines); the remaining H atoms and the solvent molecules have been deleted for reasons of clarity. Only major disordered component is shown.
[µ-Bis(diphenylarsino)methane-1:2κ2As:As']nonacarbonyl- 1κ3C,2κ3C,3κ3C- [diphenyl(phenylsulfanylmethyl)phosphine-3κP]-triangulo- triruthenium(0) chloroform hemisolvate top
Crystal data top
[Ru3(C25H22As2)(C19H17PS)(CO)9]·0.5CHCl3F(000) = 2748
Mr = 1395.61Dx = 1.695 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9929 reflections
a = 23.0129 (4) Åθ = 2.2–28.3°
b = 11.6027 (2) ŵ = 2.21 mm1
c = 20.5019 (4) ÅT = 100 K
β = 92.876 (1)°Plate, brown
V = 5467.35 (17) Å30.51 × 0.16 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
16008 independent reflections
Radiation source: fine-focus sealed tube11323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3231
Tmin = 0.399, Tmax = 0.923k = 1616
70928 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0739P)2 + 20.3511P]
where P = (Fo2 + 2Fc2)/3
16008 reflections(Δ/σ)max = 0.001
678 parametersΔρmax = 1.78 e Å3
162 restraintsΔρmin = 3.30 e Å3
Crystal data top
[Ru3(C25H22As2)(C19H17PS)(CO)9]·0.5CHCl3V = 5467.35 (17) Å3
Mr = 1395.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 23.0129 (4) ŵ = 2.21 mm1
b = 11.6027 (2) ÅT = 100 K
c = 20.5019 (4) Å0.51 × 0.16 × 0.04 mm
β = 92.876 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
16008 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
11323 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.923Rint = 0.065
70928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059162 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0739P)2 + 20.3511P]
where P = (Fo2 + 2Fc2)/3
16008 reflectionsΔρmax = 1.78 e Å3
678 parametersΔρmin = 3.30 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.752259 (18)0.04613 (3)0.46155 (2)0.02268 (10)
Ru20.638973 (17)0.11916 (3)0.49541 (2)0.02088 (10)
Ru30.716761 (18)0.02270 (3)0.59312 (2)0.02310 (10)
As10.72787 (2)0.08678 (4)0.34618 (3)0.02365 (12)
As20.61767 (2)0.22498 (4)0.39438 (3)0.02128 (12)
P10.79472 (6)0.08541 (11)0.63827 (7)0.0223 (3)
S10.92881 (7)0.10436 (16)0.65861 (10)0.0492 (5)
O10.73103 (17)0.2152 (3)0.46385 (19)0.0273 (8)
O20.8804 (2)0.0041 (5)0.4513 (3)0.0661 (17)
O30.7739 (2)0.3063 (4)0.4722 (2)0.0426 (11)
O40.6689 (2)0.3441 (4)0.5684 (2)0.0457 (12)
O50.5215 (2)0.1306 (4)0.5558 (3)0.0456 (12)
O60.60819 (17)0.1138 (3)0.4309 (2)0.0296 (9)
O70.63677 (18)0.1879 (4)0.5702 (2)0.0348 (10)
O80.6529 (2)0.0746 (5)0.7156 (3)0.0559 (15)
O90.7890 (2)0.2424 (4)0.6171 (3)0.0548 (14)
C10.7947 (2)0.1213 (5)0.2947 (3)0.0298 (12)
C20.8323 (3)0.2062 (7)0.3161 (4)0.054 (2)
H2A0.82440.24900.35290.064*
C30.8826 (3)0.2289 (7)0.2828 (4)0.059 (2)
H3A0.90750.28770.29730.070*
C40.8955 (3)0.1660 (7)0.2296 (4)0.0465 (17)
H4A0.92920.18050.20780.056*
C50.8576 (3)0.0800 (7)0.2084 (3)0.0455 (17)
H5A0.86600.03630.17200.055*
C60.8074 (3)0.0579 (6)0.2403 (3)0.0356 (13)
H6A0.78210.00020.22520.043*
C70.6829 (2)0.0168 (4)0.2886 (3)0.0246 (11)
C80.6530 (3)0.0243 (5)0.2326 (3)0.0324 (13)
H8A0.65440.10220.22210.039*
C90.6212 (3)0.0516 (6)0.1925 (3)0.0410 (15)
H9A0.60220.02470.15440.049*
C100.6175 (3)0.1666 (6)0.2088 (3)0.0356 (14)
H10A0.59470.21620.18270.043*
C110.6474 (3)0.2079 (5)0.2636 (3)0.0353 (13)
H11A0.64570.28590.27390.042*
C120.6804 (3)0.1332 (5)0.3035 (3)0.0290 (12)
H12A0.70090.16150.34030.035*
C130.6838 (2)0.2317 (4)0.3380 (3)0.0251 (11)
H13A0.70880.29610.35070.030*
H13B0.67000.24290.29290.030*
C140.5972 (2)0.3862 (4)0.4061 (3)0.0255 (11)
C150.5393 (2)0.4151 (5)0.4107 (3)0.0273 (11)
H15A0.51050.35960.40360.033*
C160.5243 (3)0.5280 (5)0.4262 (3)0.0306 (12)
H16A0.48540.54750.42960.037*
C170.5663 (3)0.6101 (5)0.4363 (3)0.0360 (14)
H17A0.55590.68500.44700.043*
C180.6231 (3)0.5827 (5)0.4310 (4)0.0505 (19)
H18A0.65150.63910.43720.061*
C190.6390 (3)0.4695 (5)0.4161 (4)0.0465 (18)
H19A0.67810.45080.41300.056*
C200.5559 (2)0.1743 (4)0.3329 (3)0.0223 (10)
C210.5464 (2)0.2288 (5)0.2732 (3)0.0281 (11)
H21A0.56840.29280.26300.034*
C220.5039 (3)0.1879 (5)0.2288 (3)0.0330 (13)
H22A0.49730.22520.18900.040*
C230.4717 (2)0.0927 (5)0.2432 (3)0.0303 (12)
H23A0.44430.06400.21250.036*
C240.4799 (3)0.0392 (5)0.3038 (3)0.0323 (13)
H24A0.45740.02410.31410.039*
C250.5218 (2)0.0806 (4)0.3486 (3)0.0258 (11)
H25A0.52720.04560.38920.031*
C260.8014 (2)0.2287 (5)0.6040 (3)0.0276 (11)
C270.7589 (3)0.3107 (5)0.6167 (3)0.0340 (13)
H27A0.72890.29230.64350.041*
C280.7618 (4)0.4194 (6)0.5891 (4)0.051 (2)
H28A0.73340.47380.59750.062*
C290.8059 (5)0.4477 (6)0.5497 (4)0.064 (3)
H29A0.80750.52110.53170.077*
C300.8473 (4)0.3685 (6)0.5370 (4)0.053 (2)
H30A0.87740.38890.51060.064*
C310.8458 (3)0.2566 (5)0.5629 (3)0.0373 (14)
H31A0.87370.20230.55290.045*
C320.7982 (2)0.1102 (6)0.7268 (3)0.0352 (14)
C330.7886 (3)0.0200 (7)0.7672 (3)0.0451 (17)
H33A0.77830.05110.74920.054*
C340.7940 (3)0.0314 (9)0.8353 (4)0.062 (2)
H34A0.78790.03170.86200.075*
C350.8082 (4)0.1367 (9)0.8621 (4)0.066 (3)
H35A0.81130.14550.90730.079*
C360.8178 (4)0.2289 (8)0.8223 (4)0.061 (2)
H36A0.82710.30020.84080.074*
C370.8138 (3)0.2173 (6)0.7544 (3)0.0407 (16)
H37A0.82140.27980.72770.049*
C380.8670 (2)0.0170 (5)0.6294 (3)0.0339 (13)
H38A0.87130.00050.58370.041*
H38B0.86800.05530.65310.041*
C39A0.9630 (4)0.0187 (8)0.7212 (6)0.049 (2)0.788 (11)
C40A1.0030 (4)0.0658 (9)0.7095 (7)0.061 (3)0.788 (11)
H40A1.01190.08290.66680.073*0.788 (11)
C41A1.0300 (6)0.1252 (11)0.7607 (9)0.070 (3)0.788 (11)
H41A1.05630.18330.75190.084*0.788 (11)
C42A1.0195 (5)0.1017 (10)0.8222 (8)0.070 (3)0.788 (11)
H42A1.03950.14070.85600.084*0.788 (11)
C43A0.9786 (5)0.0188 (10)0.8361 (6)0.070 (3)0.788 (11)
H43A0.97010.00320.87910.084*0.788 (11)
C44A0.9501 (5)0.0410 (8)0.7846 (6)0.058 (3)0.788 (11)
H44A0.92230.09630.79340.069*0.788 (11)
C39B0.971 (3)0.014 (6)0.690 (3)0.075 (8)*0.212 (11)
C40B1.0143 (19)0.029 (4)0.660 (2)0.066 (10)*0.212 (11)
H40B1.01860.00900.61710.079*0.212 (11)
C41B1.056 (2)0.106 (4)0.691 (3)0.075 (8)*0.212 (11)
H41B1.08740.12950.66760.090*0.212 (11)
C42B1.051 (3)0.140 (6)0.741 (3)0.077 (11)*0.212 (11)
H42B1.07190.20520.75390.092*0.212 (11)
C43B1.018 (3)0.092 (5)0.782 (3)0.069 (9)*0.212 (11)
H43B1.02250.10780.82650.083*0.212 (11)
C44B0.973 (2)0.013 (4)0.756 (3)0.065 (8)*0.212 (11)
H44B0.94670.01940.78330.078*0.212 (11)
C450.7361 (2)0.1166 (5)0.4646 (3)0.0236 (10)
C460.8316 (3)0.0137 (5)0.4562 (3)0.0374 (14)
C470.7636 (3)0.2091 (5)0.4722 (3)0.0326 (13)
C480.6615 (3)0.2591 (5)0.5411 (3)0.0322 (13)
C490.5659 (2)0.1267 (4)0.5333 (3)0.0279 (12)
C500.6223 (2)0.0288 (4)0.4552 (3)0.0250 (11)
C510.6668 (2)0.1098 (5)0.5754 (2)0.0256 (11)
C520.6771 (3)0.0533 (6)0.6688 (3)0.0363 (14)
C530.7619 (3)0.1615 (5)0.6044 (3)0.0356 (14)
Cl1A0.9091 (4)0.2695 (8)0.5442 (4)0.0537 (13)*0.25
Cl2A1.0368 (4)0.2562 (8)0.5737 (5)0.066 (2)*0.25
Cl3A0.9950 (5)0.1735 (10)0.4648 (5)0.088 (3)*0.25
C54A0.9738 (6)0.190 (3)0.5415 (10)0.061 (8)*0.25
H54A0.96890.11420.56190.073*0.25
Cl1B0.9122 (4)0.2591 (8)0.5652 (4)0.0537 (13)*0.25
Cl2B1.0312 (7)0.2160 (18)0.5333 (11)0.161 (7)*0.25
Cl3B0.9727 (3)0.3836 (7)0.4626 (4)0.0537 (7)*0.25
C54B0.9609 (10)0.252 (3)0.5020 (16)0.15 (2)*0.25
H54B0.94740.19440.46990.176*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0241 (2)0.01585 (18)0.0278 (2)0.00002 (14)0.00183 (16)0.00130 (16)
Ru20.02351 (19)0.01277 (17)0.0260 (2)0.00059 (14)0.00255 (16)0.00028 (15)
Ru30.0256 (2)0.01866 (19)0.0243 (2)0.00049 (15)0.00546 (16)0.00374 (16)
As10.0248 (3)0.0184 (2)0.0277 (3)0.00137 (19)0.0010 (2)0.0014 (2)
As20.0232 (2)0.0125 (2)0.0278 (3)0.00199 (18)0.0019 (2)0.0021 (2)
P10.0255 (6)0.0175 (6)0.0234 (7)0.0031 (5)0.0036 (5)0.0004 (5)
S10.0326 (8)0.0445 (10)0.0689 (13)0.0019 (7)0.0148 (8)0.0074 (9)
O10.037 (2)0.0171 (17)0.027 (2)0.0008 (15)0.0026 (16)0.0019 (15)
O20.034 (3)0.074 (4)0.091 (5)0.016 (3)0.018 (3)0.028 (3)
O30.048 (3)0.020 (2)0.059 (3)0.0072 (18)0.009 (2)0.002 (2)
O40.054 (3)0.024 (2)0.057 (3)0.0008 (19)0.013 (2)0.011 (2)
O50.038 (2)0.039 (3)0.061 (3)0.011 (2)0.021 (2)0.013 (2)
O60.033 (2)0.0163 (17)0.039 (2)0.0027 (14)0.0032 (17)0.0027 (16)
O70.041 (2)0.033 (2)0.030 (2)0.0149 (18)0.0051 (18)0.0044 (18)
O80.038 (3)0.085 (4)0.045 (3)0.005 (3)0.002 (2)0.036 (3)
O90.065 (3)0.027 (2)0.069 (4)0.014 (2)0.033 (3)0.002 (2)
C10.024 (3)0.029 (3)0.037 (3)0.000 (2)0.004 (2)0.004 (2)
C20.046 (4)0.051 (4)0.067 (5)0.022 (3)0.025 (4)0.023 (4)
C30.038 (4)0.061 (5)0.078 (6)0.014 (3)0.014 (4)0.009 (4)
C40.029 (3)0.061 (5)0.050 (4)0.003 (3)0.007 (3)0.010 (4)
C50.037 (3)0.070 (5)0.030 (3)0.007 (3)0.003 (3)0.007 (3)
C60.030 (3)0.044 (4)0.033 (3)0.001 (2)0.000 (2)0.003 (3)
C70.026 (2)0.022 (2)0.025 (3)0.0020 (19)0.001 (2)0.004 (2)
C80.033 (3)0.031 (3)0.033 (3)0.002 (2)0.002 (2)0.002 (2)
C90.038 (3)0.053 (4)0.031 (3)0.000 (3)0.009 (3)0.001 (3)
C100.033 (3)0.044 (4)0.030 (3)0.013 (3)0.004 (2)0.006 (3)
C110.045 (3)0.032 (3)0.029 (3)0.013 (3)0.004 (3)0.002 (3)
C120.036 (3)0.027 (3)0.023 (3)0.003 (2)0.001 (2)0.001 (2)
C130.026 (2)0.014 (2)0.035 (3)0.0004 (18)0.005 (2)0.006 (2)
C140.033 (3)0.013 (2)0.030 (3)0.0004 (19)0.004 (2)0.005 (2)
C150.034 (3)0.023 (3)0.024 (3)0.000 (2)0.002 (2)0.000 (2)
C160.042 (3)0.024 (3)0.025 (3)0.010 (2)0.001 (2)0.002 (2)
C170.053 (4)0.013 (2)0.042 (4)0.002 (2)0.001 (3)0.000 (2)
C180.046 (4)0.016 (3)0.089 (6)0.008 (3)0.002 (4)0.008 (3)
C190.033 (3)0.017 (3)0.089 (6)0.005 (2)0.006 (3)0.009 (3)
C200.027 (2)0.016 (2)0.024 (3)0.0016 (18)0.003 (2)0.001 (2)
C210.029 (3)0.024 (3)0.031 (3)0.001 (2)0.000 (2)0.005 (2)
C220.038 (3)0.035 (3)0.026 (3)0.005 (2)0.002 (2)0.003 (2)
C230.031 (3)0.027 (3)0.032 (3)0.002 (2)0.007 (2)0.010 (2)
C240.036 (3)0.019 (3)0.041 (3)0.004 (2)0.008 (3)0.005 (2)
C250.032 (3)0.018 (2)0.027 (3)0.0022 (19)0.003 (2)0.004 (2)
C260.032 (3)0.023 (3)0.027 (3)0.001 (2)0.008 (2)0.001 (2)
C270.050 (4)0.021 (3)0.030 (3)0.009 (2)0.007 (3)0.006 (2)
C280.088 (6)0.025 (3)0.039 (4)0.009 (3)0.026 (4)0.000 (3)
C290.116 (8)0.025 (3)0.048 (5)0.009 (4)0.038 (5)0.011 (3)
C300.073 (5)0.044 (4)0.041 (4)0.030 (4)0.015 (4)0.017 (3)
C310.045 (3)0.034 (3)0.032 (3)0.013 (3)0.007 (3)0.002 (3)
C320.026 (3)0.047 (4)0.032 (3)0.010 (2)0.010 (2)0.008 (3)
C330.033 (3)0.059 (4)0.043 (4)0.009 (3)0.009 (3)0.002 (3)
C340.046 (4)0.106 (8)0.035 (4)0.001 (4)0.001 (3)0.025 (5)
C350.062 (5)0.108 (8)0.027 (4)0.037 (5)0.009 (3)0.010 (4)
C360.084 (6)0.066 (5)0.032 (4)0.041 (5)0.018 (4)0.018 (4)
C370.054 (4)0.038 (3)0.028 (3)0.019 (3)0.013 (3)0.006 (3)
C380.026 (3)0.030 (3)0.045 (4)0.004 (2)0.007 (3)0.011 (3)
C39A0.031 (4)0.030 (4)0.082 (6)0.000 (3)0.034 (5)0.006 (5)
C40A0.045 (5)0.051 (5)0.086 (6)0.008 (4)0.019 (5)0.012 (5)
C41A0.049 (7)0.043 (6)0.115 (8)0.009 (5)0.018 (7)0.002 (6)
C42A0.056 (6)0.052 (6)0.099 (7)0.004 (4)0.046 (6)0.015 (6)
C43A0.074 (7)0.056 (6)0.077 (6)0.002 (5)0.034 (5)0.003 (5)
C44A0.054 (5)0.039 (5)0.077 (6)0.006 (4)0.025 (5)0.003 (5)
C450.028 (3)0.024 (3)0.019 (2)0.001 (2)0.001 (2)0.002 (2)
C460.039 (3)0.026 (3)0.047 (4)0.001 (2)0.003 (3)0.011 (3)
C470.033 (3)0.026 (3)0.037 (3)0.001 (2)0.007 (3)0.006 (2)
C480.035 (3)0.024 (3)0.036 (3)0.000 (2)0.008 (3)0.001 (2)
C490.034 (3)0.016 (2)0.033 (3)0.002 (2)0.002 (2)0.006 (2)
C500.027 (2)0.021 (2)0.027 (3)0.0041 (19)0.001 (2)0.005 (2)
C510.027 (3)0.037 (3)0.013 (2)0.002 (2)0.001 (2)0.001 (2)
C520.026 (3)0.043 (3)0.038 (3)0.003 (2)0.006 (3)0.018 (3)
C530.038 (3)0.023 (3)0.044 (4)0.002 (2)0.014 (3)0.002 (3)
Geometric parameters (Å, º) top
Ru1—C461.872 (7)C18—C191.401 (8)
Ru1—C471.920 (6)C18—H18A0.9300
Ru1—C451.926 (5)C19—H19A0.9300
Ru1—As12.4492 (7)C20—C211.384 (7)
Ru1—Ru22.8598 (6)C20—C251.387 (7)
Ru1—Ru32.8702 (6)C21—C221.385 (8)
Ru2—C491.890 (6)C21—H21A0.9300
Ru2—C481.932 (6)C22—C231.371 (8)
Ru2—C501.935 (5)C22—H22A0.9300
Ru2—As22.4364 (7)C23—C241.393 (9)
Ru2—Ru32.8478 (6)C23—H23A0.9300
Ru3—C521.873 (7)C24—C251.384 (7)
Ru3—C531.925 (6)C24—H24A0.9300
Ru3—C511.943 (6)C25—H25A0.9300
Ru3—P12.3415 (14)C26—C311.393 (9)
As1—C71.946 (5)C26—C271.397 (8)
As1—C11.951 (6)C27—C281.385 (9)
As1—C131.966 (5)C27—H27A0.9300
As2—C201.944 (5)C28—C291.369 (13)
As2—C141.948 (5)C28—H28A0.9300
As2—C131.959 (5)C29—C301.359 (12)
P1—C261.815 (6)C29—H29A0.9300
P1—C321.835 (6)C30—C311.404 (9)
P1—C381.861 (6)C30—H30A0.9300
S1—C39B1.55 (7)C31—H31A0.9300
S1—C39A1.775 (11)C32—C331.359 (10)
S1—C381.822 (6)C32—C371.405 (9)
O1—C451.150 (6)C33—C341.402 (10)
O2—C461.152 (8)C33—H33A0.9300
O3—C471.153 (7)C34—C351.373 (13)
O4—C481.143 (7)C34—H34A0.9300
O5—C491.143 (7)C35—C361.370 (13)
O6—C501.144 (6)C35—H35A0.9300
O7—C511.141 (7)C36—C371.398 (9)
O8—C521.159 (8)C36—H36A0.9300
O9—C531.148 (7)C37—H37A0.9300
C1—C21.369 (8)C38—H38A0.9700
C1—C61.379 (9)C38—H38B0.9700
C2—C31.396 (10)C39A—C44A1.372 (18)
C2—H2A0.9300C39A—C40A1.374 (15)
C3—C41.359 (11)C40A—C41A1.378 (18)
C3—H3A0.9300C40A—H40A0.9300
C4—C51.381 (10)C41A—C42A1.32 (2)
C4—H4A0.9300C41A—H41A0.9300
C5—C61.379 (9)C42A—C43A1.386 (18)
C5—H5A0.9300C42A—H42A0.9300
C6—H6A0.9300C43A—C44A1.398 (14)
C7—C121.386 (7)C43A—H43A0.9300
C7—C81.393 (8)C44A—H44A0.9300
C8—C91.388 (9)C39B—C40B1.30 (7)
C8—H8A0.9300C39B—C44B1.38 (7)
C9—C101.379 (9)C40B—C41B1.42 (6)
C9—H9A0.9300C40B—H40B0.9300
C10—C111.374 (9)C41B—C42B1.11 (7)
C10—H10A0.9300C41B—H41B0.9300
C11—C121.391 (8)C42B—C43B1.28 (7)
C11—H11A0.9300C42B—H42B0.9300
C12—H12A0.9300C43B—C44B1.46 (8)
C13—H13A0.9700C43B—H43B0.9300
C13—H13B0.9700C44B—H44B0.9300
C14—C191.373 (8)Cl1A—C54A1.755 (16)
C14—C151.381 (8)Cl2A—C54A1.744 (16)
C15—C161.395 (7)Cl3A—C54A1.681 (17)
C15—H15A0.9300C54A—H54A0.9800
C16—C171.366 (8)Cl1B—C54B1.756 (18)
C16—H16A0.9300Cl2B—C54B1.761 (18)
C17—C181.354 (10)Cl3B—C54B1.753 (19)
C17—H17A0.9300C54B—H54B0.9800
C46—Ru1—C4794.4 (3)C19—C18—H18A119.9
C46—Ru1—C4589.7 (2)C14—C19—C18120.1 (6)
C47—Ru1—C45170.9 (2)C14—C19—H19A119.9
C46—Ru1—As199.1 (2)C18—C19—H19A119.9
C47—Ru1—As186.75 (18)C21—C20—C25119.8 (5)
C45—Ru1—As1100.64 (15)C21—C20—As2120.8 (4)
C46—Ru1—Ru2167.7 (2)C25—C20—As2119.3 (4)
C47—Ru1—Ru278.55 (18)C20—C21—C22119.9 (5)
C45—Ru1—Ru295.89 (16)C20—C21—H21A120.0
As1—Ru1—Ru290.56 (2)C22—C21—H21A120.0
C46—Ru1—Ru3111.1 (2)C23—C22—C21120.4 (6)
C47—Ru1—Ru391.73 (19)C23—C22—H22A119.8
C45—Ru1—Ru379.18 (16)C21—C22—H22A119.8
As1—Ru1—Ru3149.72 (2)C22—C23—C24120.0 (5)
Ru2—Ru1—Ru359.602 (15)C22—C23—H23A120.0
C49—Ru2—C4889.1 (3)C24—C23—H23A120.0
C49—Ru2—C5093.1 (2)C25—C24—C23119.7 (5)
C48—Ru2—C50174.3 (2)C25—C24—H24A120.1
C49—Ru2—As2100.44 (16)C23—C24—H24A120.1
C48—Ru2—As291.48 (18)C24—C25—C20120.0 (5)
C50—Ru2—As293.30 (16)C24—C25—H25A120.0
C49—Ru2—Ru3105.65 (17)C20—C25—H25A120.0
C48—Ru2—Ru381.14 (17)C31—C26—C27119.7 (6)
C50—Ru2—Ru393.17 (15)C31—C26—P1121.7 (5)
As2—Ru2—Ru3152.70 (2)C27—C26—P1118.5 (5)
C49—Ru2—Ru1162.64 (16)C28—C27—C26119.8 (7)
C48—Ru2—Ru198.13 (18)C28—C27—H27A120.1
C50—Ru2—Ru178.30 (16)C26—C27—H27A120.1
As2—Ru2—Ru195.16 (2)C29—C28—C27120.7 (7)
Ru3—Ru2—Ru160.382 (15)C29—C28—H28A119.7
C52—Ru3—C5391.4 (3)C27—C28—H28A119.7
C52—Ru3—C5189.8 (2)C30—C29—C28120.0 (7)
C53—Ru3—C51174.6 (2)C30—C29—H29A120.0
C52—Ru3—P199.78 (19)C28—C29—H29A120.0
C53—Ru3—P190.13 (17)C29—C30—C31121.4 (8)
C51—Ru3—P194.84 (16)C29—C30—H30A119.3
C52—Ru3—Ru2101.10 (19)C31—C30—H30A119.3
C53—Ru3—Ru294.15 (17)C26—C31—C30118.4 (7)
C51—Ru3—Ru280.47 (15)C26—C31—H31A120.8
P1—Ru3—Ru2158.56 (4)C30—C31—H31A120.8
C52—Ru3—Ru1159.0 (2)C33—C32—C37118.8 (6)
C53—Ru3—Ru181.7 (2)C33—C32—P1118.8 (5)
C51—Ru3—Ru195.31 (15)C37—C32—P1122.3 (5)
P1—Ru3—Ru1100.01 (4)C32—C33—C34121.7 (7)
Ru2—Ru3—Ru160.017 (15)C32—C33—H33A119.1
C7—As1—C1102.1 (2)C34—C33—H33A119.1
C7—As1—C13102.7 (2)C35—C34—C33119.4 (8)
C1—As1—C13101.3 (2)C35—C34—H34A120.3
C7—As1—Ru1123.75 (16)C33—C34—H34A120.3
C1—As1—Ru1114.40 (17)C36—C35—C34119.9 (7)
C13—As1—Ru1109.86 (17)C36—C35—H35A120.0
C20—As2—C14101.4 (2)C34—C35—H35A120.0
C20—As2—C13101.2 (2)C35—C36—C37120.9 (8)
C14—As2—C13103.6 (2)C35—C36—H36A119.5
C20—As2—Ru2120.55 (15)C37—C36—H36A119.5
C14—As2—Ru2114.75 (17)C36—C37—C32119.3 (7)
C13—As2—Ru2113.13 (15)C36—C37—H37A120.4
C26—P1—C32103.8 (3)C32—C37—H37A120.4
C26—P1—C38105.0 (3)S1—C38—P1114.7 (3)
C32—P1—C3899.7 (3)S1—C38—H38A108.6
C26—P1—Ru3114.58 (17)P1—C38—H38A108.6
C32—P1—Ru3118.0 (2)S1—C38—H38B108.6
C38—P1—Ru3113.85 (18)P1—C38—H38B108.6
C39B—S1—C39A22 (2)H38A—C38—H38B107.6
C39B—S1—C38103 (2)C44A—C39A—C40A118.6 (11)
C39A—S1—C38103.6 (4)C44A—C39A—S1118.1 (8)
C2—C1—C6119.1 (6)C40A—C39A—S1123.3 (11)
C2—C1—As1118.5 (5)C39A—C40A—C41A120.3 (14)
C6—C1—As1122.2 (4)C39A—C40A—H40A119.9
C1—C2—C3120.3 (7)C41A—C40A—H40A119.9
C1—C2—H2A119.8C42A—C41A—C40A121.7 (14)
C3—C2—H2A119.8C42A—C41A—H41A119.1
C4—C3—C2120.7 (7)C40A—C41A—H41A119.1
C4—C3—H3A119.6C41A—C42A—C43A119.8 (12)
C2—C3—H3A119.6C41A—C42A—H42A120.1
C3—C4—C5118.7 (7)C43A—C42A—H42A120.1
C3—C4—H4A120.6C42A—C43A—C44A119.1 (13)
C5—C4—H4A120.6C42A—C43A—H43A120.4
C6—C5—C4121.0 (7)C44A—C43A—H43A120.4
C6—C5—H5A119.5C39A—C44A—C43A120.4 (11)
C4—C5—H5A119.5C39A—C44A—H44A119.8
C5—C6—C1120.1 (6)C43A—C44A—H44A119.8
C5—C6—H6A120.0C40B—C39B—C44B112 (6)
C1—C6—H6A120.0C40B—C39B—S1123 (5)
C12—C7—C8119.4 (5)C44B—C39B—S1124 (5)
C12—C7—As1119.7 (4)C39B—C40B—C41B123 (5)
C8—C7—As1120.9 (4)C39B—C40B—H40B118.3
C9—C8—C7119.6 (6)C41B—C40B—H40B118.3
C9—C8—H8A120.2C42B—C41B—C40B122 (6)
C7—C8—H8A120.2C42B—C41B—H41B119.0
C10—C9—C8120.6 (6)C40B—C41B—H41B119.0
C10—C9—H9A119.7C41B—C42B—C43B123 (7)
C8—C9—H9A119.7C41B—C42B—H42B118.5
C11—C10—C9120.0 (6)C43B—C42B—H42B118.5
C11—C10—H10A120.0C42B—C43B—C44B117 (6)
C9—C10—H10A120.0C42B—C43B—H43B121.3
C10—C11—C12120.0 (6)C44B—C43B—H43B121.3
C10—C11—H11A120.0C39B—C44B—C43B119 (5)
C12—C11—H11A120.0C39B—C44B—H44B120.3
C7—C12—C11120.4 (5)C43B—C44B—H44B120.3
C7—C12—H12A119.8O1—C45—Ru1173.9 (5)
C11—C12—H12A119.8O2—C46—Ru1178.0 (6)
As2—C13—As1109.2 (2)O3—C47—Ru1172.2 (6)
As2—C13—H13A109.8O4—C48—Ru2173.1 (5)
As1—C13—H13A109.8O5—C49—Ru2179.3 (6)
As2—C13—H13B109.8O6—C50—Ru2174.9 (5)
As1—C13—H13B109.8O7—C51—Ru3174.5 (5)
H13A—C13—H13B108.3O8—C52—Ru3178.6 (6)
C19—C14—C15119.4 (5)O9—C53—Ru3173.8 (6)
C19—C14—As2121.5 (4)Cl3A—C54A—Cl2A97.4 (11)
C15—C14—As2118.8 (4)Cl3A—C54A—Cl1A112.0 (14)
C14—C15—C16119.6 (5)Cl2A—C54A—Cl1A116.4 (14)
C14—C15—H15A120.2Cl3A—C54A—H54A110.1
C16—C15—H15A120.2Cl2A—C54A—H54A110.1
C17—C16—C15120.6 (6)Cl1A—C54A—H54A110.1
C17—C16—H16A119.7Cl3B—C54B—Cl1B114.8 (17)
C15—C16—H16A119.7Cl3B—C54B—Cl2B102.4 (15)
C18—C17—C16120.1 (5)Cl1B—C54B—Cl2B110.5 (17)
C18—C17—H17A119.9Cl3B—C54B—H54B109.6
C16—C17—H17A119.9Cl1B—C54B—H54B109.6
C17—C18—C19120.2 (6)Cl2B—C54B—H54B109.6
C17—C18—H18A119.9
C46—Ru1—Ru2—C4982.0 (11)C13—As1—C1—C264.8 (6)
C47—Ru1—Ru2—C49137.8 (6)Ru1—As1—C1—C253.3 (6)
C45—Ru1—Ru2—C4934.9 (6)C7—As1—C1—C613.9 (5)
As1—Ru1—Ru2—C49135.7 (6)C13—As1—C1—C6119.7 (5)
Ru3—Ru1—Ru2—C4938.9 (6)Ru1—As1—C1—C6122.2 (5)
C46—Ru1—Ru2—C4831.8 (9)C6—C1—C2—C30.5 (11)
C47—Ru1—Ru2—C4824.0 (3)As1—C1—C2—C3176.2 (6)
C45—Ru1—Ru2—C48148.7 (2)C1—C2—C3—C41.1 (13)
As1—Ru1—Ru2—C48110.55 (18)C2—C3—C4—C50.8 (12)
Ru3—Ru1—Ru2—C4874.92 (18)C3—C4—C5—C60.1 (11)
C46—Ru1—Ru2—C50143.6 (9)C4—C5—C6—C10.7 (10)
C47—Ru1—Ru2—C50160.6 (2)C2—C1—C6—C50.4 (10)
C45—Ru1—Ru2—C5026.7 (2)As1—C1—C6—C5175.1 (5)
As1—Ru1—Ru2—C5074.01 (16)C1—As1—C7—C12107.6 (5)
Ru3—Ru1—Ru2—C50100.53 (16)C13—As1—C7—C12147.7 (5)
C46—Ru1—Ru2—As2124.0 (9)Ru1—As1—C7—C1223.0 (5)
C47—Ru1—Ru2—As268.27 (19)C1—As1—C7—C872.4 (5)
C45—Ru1—Ru2—As2119.06 (15)C13—As1—C7—C832.3 (5)
As1—Ru1—Ru2—As218.31 (2)Ru1—As1—C7—C8157.0 (4)
Ru3—Ru1—Ru2—As2167.16 (2)C12—C7—C8—C90.2 (9)
C46—Ru1—Ru2—Ru343.1 (9)As1—C7—C8—C9179.9 (5)
C47—Ru1—Ru2—Ru398.89 (19)C7—C8—C9—C101.9 (10)
C45—Ru1—Ru2—Ru373.78 (15)C8—C9—C10—C112.8 (10)
As1—Ru1—Ru2—Ru3174.54 (2)C9—C10—C11—C121.6 (10)
C49—Ru2—Ru3—C5221.0 (3)C8—C7—C12—C111.4 (9)
C48—Ru2—Ru3—C5265.6 (3)As1—C7—C12—C11178.7 (5)
C50—Ru2—Ru3—C52115.1 (3)C10—C11—C12—C70.5 (9)
As2—Ru2—Ru3—C52141.4 (2)C20—As2—C13—As195.6 (3)
Ru1—Ru2—Ru3—C52170.2 (2)C14—As2—C13—As1159.7 (3)
C49—Ru2—Ru3—C53113.2 (3)Ru2—As2—C13—As134.8 (3)
C48—Ru2—Ru3—C5326.7 (3)C7—As1—C13—As281.0 (3)
C50—Ru2—Ru3—C53152.6 (3)C1—As1—C13—As2173.7 (3)
As2—Ru2—Ru3—C5349.1 (2)Ru1—As1—C13—As252.4 (3)
Ru1—Ru2—Ru3—C5378.0 (2)C20—As2—C14—C19145.9 (6)
C49—Ru2—Ru3—C5166.9 (2)C13—As2—C14—C1941.3 (6)
C48—Ru2—Ru3—C51153.5 (3)Ru2—As2—C14—C1982.6 (6)
C50—Ru2—Ru3—C5127.2 (2)C20—As2—C14—C1540.4 (5)
As2—Ru2—Ru3—C51130.70 (17)C13—As2—C14—C15145.0 (5)
Ru1—Ru2—Ru3—C51101.85 (16)Ru2—As2—C14—C1591.1 (4)
C49—Ru2—Ru3—P1145.8 (2)C19—C14—C15—C160.7 (9)
C48—Ru2—Ru3—P1127.7 (2)As2—C14—C15—C16173.1 (4)
C50—Ru2—Ru3—P151.6 (2)C14—C15—C16—C170.4 (9)
As2—Ru2—Ru3—P151.88 (12)C15—C16—C17—C180.5 (10)
Ru1—Ru2—Ru3—P123.03 (10)C16—C17—C18—C191.1 (12)
C49—Ru2—Ru3—Ru1168.78 (17)C15—C14—C19—C180.2 (11)
C48—Ru2—Ru3—Ru1104.7 (2)As2—C14—C19—C18173.5 (6)
C50—Ru2—Ru3—Ru174.62 (17)C17—C18—C19—C140.8 (12)
As2—Ru2—Ru3—Ru128.85 (5)C14—As2—C20—C2156.9 (5)
C46—Ru1—Ru3—C52143.3 (5)C13—As2—C20—C2149.6 (5)
C47—Ru1—Ru3—C5247.9 (5)Ru2—As2—C20—C21175.1 (4)
C45—Ru1—Ru3—C52131.2 (5)C14—As2—C20—C25124.5 (4)
As1—Ru1—Ru3—C5238.6 (5)C13—As2—C20—C25129.0 (4)
Ru2—Ru1—Ru3—C5227.8 (5)Ru2—As2—C20—C253.4 (5)
C46—Ru1—Ru3—C5371.4 (3)C25—C20—C21—C221.6 (8)
C47—Ru1—Ru3—C5324.0 (2)As2—C20—C21—C22176.9 (4)
C45—Ru1—Ru3—C53156.8 (2)C20—C21—C22—C230.8 (9)
As1—Ru1—Ru3—C53110.57 (18)C21—C22—C23—C242.5 (9)
Ru2—Ru1—Ru3—C5399.69 (17)C22—C23—C24—C251.7 (9)
C46—Ru1—Ru3—C51113.2 (3)C23—C24—C25—C200.7 (9)
C47—Ru1—Ru3—C51151.4 (2)C21—C20—C25—C242.4 (8)
C45—Ru1—Ru3—C5127.7 (2)As2—C20—C25—C24176.2 (4)
As1—Ru1—Ru3—C5164.89 (17)C32—P1—C26—C31122.1 (5)
Ru2—Ru1—Ru3—C5175.77 (16)C38—P1—C26—C3117.8 (5)
C46—Ru1—Ru3—P117.3 (2)Ru3—P1—C26—C31107.8 (4)
C47—Ru1—Ru3—P1112.71 (17)C32—P1—C26—C2761.4 (5)
C45—Ru1—Ru3—P168.16 (16)C38—P1—C26—C27165.6 (4)
As1—Ru1—Ru3—P1160.77 (5)Ru3—P1—C26—C2768.7 (5)
Ru2—Ru1—Ru3—P1171.65 (4)C31—C26—C27—C281.0 (8)
C46—Ru1—Ru3—Ru2171.0 (2)P1—C26—C27—C28177.6 (5)
C47—Ru1—Ru3—Ru275.64 (17)C26—C27—C28—C290.2 (9)
C45—Ru1—Ru3—Ru2103.49 (16)C27—C28—C29—C300.4 (11)
As1—Ru1—Ru3—Ru210.89 (4)C28—C29—C30—C310.7 (11)
C46—Ru1—As1—C7107.2 (3)C27—C26—C31—C302.0 (8)
C47—Ru1—As1—C7158.9 (3)P1—C26—C31—C30178.5 (5)
C45—Ru1—As1—C715.7 (3)C29—C30—C31—C261.9 (10)
Ru2—Ru1—As1—C780.36 (19)C26—P1—C32—C33173.6 (5)
Ru3—Ru1—As1—C771.0 (2)C38—P1—C32—C3378.1 (5)
C46—Ru1—As1—C118.2 (3)Ru3—P1—C32—C3345.6 (5)
C47—Ru1—As1—C175.7 (3)C26—P1—C32—C3710.4 (6)
C45—Ru1—As1—C1109.7 (2)C38—P1—C32—C3797.9 (5)
Ru2—Ru1—As1—C1154.23 (19)Ru3—P1—C32—C37138.4 (5)
Ru3—Ru1—As1—C1163.60 (19)C37—C32—C33—C340.1 (10)
C46—Ru1—As1—C13131.3 (2)P1—C32—C33—C34176.2 (6)
C47—Ru1—As1—C1337.4 (2)C32—C33—C34—C351.1 (11)
C45—Ru1—As1—C13137.2 (2)C33—C34—C35—C360.9 (12)
Ru2—Ru1—As1—C1341.14 (16)C34—C35—C36—C370.6 (12)
Ru3—Ru1—As1—C1350.51 (17)C35—C36—C37—C321.8 (11)
C49—Ru2—As2—C2058.0 (2)C33—C32—C37—C361.5 (10)
C48—Ru2—As2—C20147.4 (3)P1—C32—C37—C36177.5 (5)
C50—Ru2—As2—C2035.8 (2)C39B—S1—C38—P1142 (2)
Ru3—Ru2—As2—C20139.24 (18)C39A—S1—C38—P1119.5 (5)
Ru1—Ru2—As2—C20114.33 (18)C26—P1—C38—S149.4 (4)
C49—Ru2—As2—C1463.6 (2)C32—P1—C38—S157.8 (4)
C48—Ru2—As2—C1425.8 (3)Ru3—P1—C38—S1175.6 (3)
C50—Ru2—As2—C14157.4 (2)C39B—S1—C39A—C44A172 (7)
Ru3—Ru2—As2—C1499.15 (19)C38—S1—C39A—C44A97.0 (8)
Ru1—Ru2—As2—C14124.06 (18)C39B—S1—C39A—C40A6 (7)
C49—Ru2—As2—C13177.8 (2)C38—S1—C39A—C40A85.4 (9)
C48—Ru2—As2—C1392.8 (3)C44A—C39A—C40A—C41A0.9 (16)
C50—Ru2—As2—C1384.0 (2)S1—C39A—C40A—C41A176.7 (9)
Ru3—Ru2—As2—C1319.45 (18)C39A—C40A—C41A—C42A1.5 (18)
Ru1—Ru2—As2—C135.47 (17)C40A—C41A—C42A—C43A2.8 (18)
C52—Ru3—P1—C26122.3 (3)C41A—C42A—C43A—C44A1.8 (17)
C53—Ru3—P1—C26146.3 (3)C40A—C39A—C44A—C43A1.8 (15)
C51—Ru3—P1—C2631.6 (3)S1—C39A—C44A—C43A175.9 (8)
Ru2—Ru3—P1—C2644.5 (3)C42A—C43A—C44A—C39A0.5 (16)
Ru1—Ru3—P1—C2664.7 (2)C39A—S1—C39B—C40B168 (12)
C52—Ru3—P1—C320.5 (3)C38—S1—C39B—C40B98 (6)
C53—Ru3—P1—C3291.0 (3)C39A—S1—C39B—C44B0 (3)
C51—Ru3—P1—C3291.1 (3)C38—S1—C39B—C44B94 (6)
Ru2—Ru3—P1—C32167.3 (2)C44B—C39B—C40B—C41B7 (8)
Ru1—Ru3—P1—C32172.6 (2)S1—C39B—C40B—C41B176 (4)
C52—Ru3—P1—C38116.8 (3)C39B—C40B—C41B—C42B5 (9)
C53—Ru3—P1—C3825.4 (3)C40B—C41B—C42B—C43B18 (11)
C51—Ru3—P1—C38152.5 (3)C41B—C42B—C43B—C44B18 (11)
Ru2—Ru3—P1—C3876.4 (3)C40B—C39B—C44B—C43B6 (8)
Ru1—Ru3—P1—C3856.3 (2)S1—C39B—C44B—C43B175 (5)
C7—As1—C1—C2170.6 (6)C42B—C43B—C44B—C39B5 (9)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C39A–C44A, C14–C19 and C32–C37benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.932.533.457 (7)175
C29—H29A···O3ii0.932.453.331 (9)158
C3—H3A···Cg1iii0.932.823.654 (9)151
C23—H23A···Cg2iv0.932.873.691 (7)147
C44A—H44A···Cg30.932.763.526 (12)141
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y1/2, z3/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru3(C25H22As2)(C19H17PS)(CO)9]·0.5CHCl3
Mr1395.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)23.0129 (4), 11.6027 (2), 20.5019 (4)
β (°) 92.876 (1)
V3)5467.35 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.51 × 0.16 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.399, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
70928, 16008, 11323
Rint0.065
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.158, 1.03
No. of reflections16008
No. of parameters678
No. of restraints162
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0739P)2 + 20.3511P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.78, 3.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C39A–C44A, C14–C19 and C32–C37benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.93002.53003.457 (7)175.00
C29—H29A···O3ii0.93002.45003.331 (9)158.00
C3—H3A···Cg1iii0.93002.82003.654 (9)151.00
C23—H23A···Cg2iv0.93002.87003.691 (7)147.00
C44A—H44A···Cg30.93002.76003.526 (12)141.00
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y1/2, z3/2; (iv) x+1, y1/2, z+1/2.
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. IAK is grateful to USM for a Postdoctoral Fellowship and Gokhale Centenary College, Ankola, Karnataka, India for postdoctoral study leave. HKF thanks USM for the Research University Golden Goose grant 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321–343.  CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSanger, A. R. (1983). Can. J. Chem. 61, 2214–2219.  CrossRef CAS Web of Science Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1620–m1621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387–394.  Web of Science CSD CrossRef Google Scholar
First citationShawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211–1216.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds