metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic polymorph of poly[aqua(μ4-hydrogen tartrato)sodium]

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 January 2010; accepted 6 January 2010; online 9 January 2010)

A monoclinic polymorph of the title compound, [Na(C4H5O6)(H2O)]n, is reported and complements an ortho­rhom­bic form [Kubozono, Hirano, Nagasawa, Maeda & Kashino (1993[Kubozono, Y., Hirano, A., Nagasawa, S., Maeda, H. & Kashino, S. (1993). Bull. Chem. Soc. Jpn, 66 2166-2173.]). Bull. Chem. Soc. Jpn, 66, 2166–2173]. The asymmetric unit contains a hydrogen tartrate anion, an Na+ cation and a water mol­ecule. The Na+ ion is surrounded by seven O atoms derived from one independent and three symmetry-related hydrogen tartrate anions, and a water mol­ecule, forming a distorted penta­gonal–bipyramidal geometry. Independent units are linked via a pair of inter­molecular bifurcated O—H⋯O acceptor bonds, generating an R21(6) ring motif to form polymeric two-dimensional arrays parallel to the (100) plane. In the crystal packing, the arrays are linked by adjacent ring motifs, together with additional inter­molecular O—H⋯O inter­actions, into a three-dimensional network.

Related literature

For the optical activity of tartaric acid, see: Synoradzki et al. (2008[Synoradzki, L., Bernas, U. & Ruskowski, P. (2008). Org. Prep. Proced. Int. 40, 163-200.]). For Na—O distances, see: Wong et al. (2009[Wong, K. C., Hamid, A., Baharuddin, S., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, m1308-m1309.]). For the ortho­rhom­bic polymorph of C4H5O6Na·H2O, see: Kubozono et al. (1993[Kubozono, Y., Hirano, A., Nagasawa, S., Maeda, H. & Kashino, S. (1993). Bull. Chem. Soc. Jpn, 66 2166-2173.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C4H5O6)(H2O)]

  • Mr = 190.09

  • Monoclinic, P 21 /c

  • a = 8.9723 (2) Å

  • b = 7.1457 (1) Å

  • c = 12.0186 (2) Å

  • β = 119.571 (1)°

  • V = 670.18 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.40 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.979

  • 6649 measured reflections

  • 1947 independent reflections

  • 1532 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.03

  • 1947 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O6i 0.86 1.69 2.5496 (13) 175
O1W—H1W1⋯O5ii 0.83 1.94 2.7585 (14) 167
O1W—H2W1⋯O6iii 0.90 1.94 2.8006 (15) 161
O3—H1O3⋯O5ii 0.78 2.14 2.7575 (19) 137
O4—H1O4⋯O1Wiv 0.79 1.90 2.6784 (14) 170
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+2, -z+2; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tartaric acid is found free throughout nature, especially in many fruits and in wine, and as salts with Ca2+, K+, and Na+. It has many applications such as in making silver mirrors, in the manufacture of soft drinks, to provide tartness to foods, in tanning leather, and in making blueprints. Tartaric acid has optical activity (Synoradzki et al., 2008).

Kubozono et al. (1993) reported the structure of the title compound, in the orthorhombic space group P212121. Herein, a new polymorph of the title compound is reported which crystallizes in the monoclinic space group P21/c. The asymmetric unit contains a hydrogen tartrate anion, a Na cation and a water molecule (Fig. 1). The independent unit forms polymeric two-dimensional networks parallel to the plane (100) (Fig. 2). Each Na+ ion is surrounded by seven O atoms (Fig. 3) derived from a independent and three symmetry related hydrogen tartrate anions; and a water molecule, forming a distorted pentagonal bipyramidal geometry with Na—O distances ranging from 2.3331 (12) to 2.6740 (12) Å which are comparable to those reported in (Wong et al., 2009), whereas the angles around the Na+ ion range from 62.55 (4) to 151.93 (4)°. Bond lengths and angles are within normal ranges and comparable to the orthorhombic polymorph of C4H5O6Na.H2O (Kubozono et al., 1993).

The molecular structure is linked via intermolecular bifurcated O1W—H1W1···O5 and O3—H1O3···O5 acceptor bonds, generating R12(6) ring motif (Bernstein et al., 1995). In the crystal packing (Fig. 4), the polymeric two-dimensional arrays are linked by adjacent ring motifs, together with intermolecular O1—H1O1···O6, O1W—H2W1···O6 and O4—H1O4···O1W interactions, into a three-dimensional network.

Related literature top

For the optical activity of tartaric acid, see: Synoradzki et al. (2008). For Na—O distances, see: Wong et al. (2009). For the orthorhombic polymorph of C4H5O6Na.H2O, see: Kubozono et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Anhydrous tartaric acid (1.5 g, 0.1 mmol) was dissolved in water in a flat bottom flask with magnetic stirrer. In a separating funnel, sodium bicarbonate (0.85g, 0.1 mmol) was dissolved in water. The sodium bicarbonate solution was added in small portions to the flask of tartaric acid with stirring. The reaction mixture was refluxed for 1 h. After cooling the reaction mixture to room temperature, it was left for overnight stirring. The colourless crystals that subsequently formed were filtered and washed with methanol and dried at 353 K.

Refinement top

All H atoms were located in a difference Fourier map and fixed at these positions [C—H = 0.92–1.00 Å; O—H = 0.77–0.90 Å] and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Structure description top

Tartaric acid is found free throughout nature, especially in many fruits and in wine, and as salts with Ca2+, K+, and Na+. It has many applications such as in making silver mirrors, in the manufacture of soft drinks, to provide tartness to foods, in tanning leather, and in making blueprints. Tartaric acid has optical activity (Synoradzki et al., 2008).

Kubozono et al. (1993) reported the structure of the title compound, in the orthorhombic space group P212121. Herein, a new polymorph of the title compound is reported which crystallizes in the monoclinic space group P21/c. The asymmetric unit contains a hydrogen tartrate anion, a Na cation and a water molecule (Fig. 1). The independent unit forms polymeric two-dimensional networks parallel to the plane (100) (Fig. 2). Each Na+ ion is surrounded by seven O atoms (Fig. 3) derived from a independent and three symmetry related hydrogen tartrate anions; and a water molecule, forming a distorted pentagonal bipyramidal geometry with Na—O distances ranging from 2.3331 (12) to 2.6740 (12) Å which are comparable to those reported in (Wong et al., 2009), whereas the angles around the Na+ ion range from 62.55 (4) to 151.93 (4)°. Bond lengths and angles are within normal ranges and comparable to the orthorhombic polymorph of C4H5O6Na.H2O (Kubozono et al., 1993).

The molecular structure is linked via intermolecular bifurcated O1W—H1W1···O5 and O3—H1O3···O5 acceptor bonds, generating R12(6) ring motif (Bernstein et al., 1995). In the crystal packing (Fig. 4), the polymeric two-dimensional arrays are linked by adjacent ring motifs, together with intermolecular O1—H1O1···O6, O1W—H2W1···O6 and O4—H1O4···O1W interactions, into a three-dimensional network.

For the optical activity of tartaric acid, see: Synoradzki et al. (2008). For Na—O distances, see: Wong et al. (2009). For the orthorhombic polymorph of C4H5O6Na.H2O, see: Kubozono et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The polymeric structure of the title compound, viewed down the a axis, showing 2-dimensional array parallel to the (100) plane. All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of a 2-dimensional array, highlighting the coordination environment for Na+. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry codes: (%) -x, 1/2 + y, 3/2 - z; (#) -x, -1/2 + y, 1/2 - z; ($) x, 3/2 - y, -1/2 + z.
[Figure 4] Fig. 4. The crystal packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.
poly[aqua(µ4-hydrogen tartrato)sodium] top
Crystal data top
[Na(C4H5O6)(H2O)]F(000) = 392
Mr = 190.09Dx = 1.884 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1671 reflections
a = 8.9723 (2) Åθ = 2.6–29.9°
b = 7.1457 (1) ŵ = 0.24 mm1
c = 12.0186 (2) ÅT = 100 K
β = 119.571 (1)°Needle, colourless
V = 670.18 (2) Å30.40 × 0.09 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1947 independent reflections
Radiation source: fine-focus sealed tube1532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.895, Tmax = 0.979k = 1010
6649 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.2259P]
where P = (Fo2 + 2Fc2)/3
1947 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Na(C4H5O6)(H2O)]V = 670.18 (2) Å3
Mr = 190.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9723 (2) ŵ = 0.24 mm1
b = 7.1457 (1) ÅT = 100 K
c = 12.0186 (2) Å0.40 × 0.09 × 0.05 mm
β = 119.571 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1532 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.979Rint = 0.034
6649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092All H-atom parameters refined
S = 1.03Δρmax = 0.51 e Å3
1947 reflectionsΔρmin = 0.29 e Å3
109 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.01684 (8)0.60710 (8)0.68653 (6)0.01242 (15)
O10.40344 (13)0.43067 (13)1.07635 (10)0.0119 (2)
H1O10.40440.31031.07860.018*
C10.26779 (18)0.50448 (18)0.97844 (15)0.0099 (3)
O1W0.25610 (13)0.58582 (13)0.72347 (11)0.0129 (2)
H1W10.25580.68560.75950.019*
H2W10.36460.55220.66860.019*
O20.15291 (13)0.41821 (13)0.89112 (11)0.0130 (2)
C20.26731 (18)0.71881 (18)0.98483 (14)0.0088 (3)
H2A0.36500.76430.97390.011*
O30.10842 (13)0.79014 (13)0.88733 (10)0.0106 (2)
H1O30.04050.78140.90940.016*
C30.29897 (18)0.78670 (18)1.11559 (14)0.0094 (3)
H3A0.40580.74421.17780.011*
O40.16227 (13)0.72503 (13)1.13335 (11)0.0128 (2)
H1O40.18640.62651.16770.019*
C40.30326 (18)1.00147 (18)1.11769 (14)0.0100 (3)
O50.19847 (14)1.08865 (13)1.13774 (11)0.0148 (2)
O60.41681 (13)1.07517 (13)1.09721 (11)0.0122 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0142 (3)0.0111 (3)0.0123 (3)0.0020 (2)0.0068 (3)0.0009 (2)
O10.0127 (5)0.0075 (4)0.0133 (6)0.0015 (4)0.0046 (5)0.0013 (4)
C10.0125 (7)0.0096 (6)0.0112 (7)0.0011 (5)0.0087 (6)0.0002 (5)
O1W0.0130 (5)0.0103 (5)0.0156 (6)0.0014 (4)0.0071 (5)0.0022 (4)
O20.0135 (5)0.0099 (4)0.0130 (6)0.0008 (4)0.0045 (5)0.0016 (4)
C20.0092 (6)0.0080 (6)0.0085 (7)0.0009 (5)0.0040 (6)0.0009 (5)
O30.0098 (5)0.0119 (5)0.0097 (5)0.0016 (4)0.0044 (4)0.0012 (4)
C30.0107 (7)0.0075 (6)0.0100 (7)0.0001 (5)0.0050 (6)0.0003 (5)
O40.0164 (5)0.0093 (4)0.0172 (6)0.0014 (4)0.0118 (5)0.0030 (4)
C40.0107 (7)0.0087 (6)0.0071 (7)0.0006 (5)0.0016 (6)0.0012 (5)
O50.0133 (5)0.0108 (5)0.0212 (6)0.0009 (4)0.0092 (5)0.0033 (4)
O60.0137 (5)0.0092 (4)0.0145 (6)0.0000 (4)0.0076 (5)0.0006 (4)
Geometric parameters (Å, º) top
Na1—O4i2.3331 (12)C2—O31.4201 (17)
Na1—O1W2.4020 (12)C2—C31.531 (2)
Na1—O3ii2.4235 (11)C2—H2A1.0020
Na1—O32.4741 (12)O3—Na1iii2.4235 (11)
Na1—O2iii2.4858 (11)O3—H1O30.7774
Na1—O22.5479 (12)C3—O41.4150 (16)
Na1—O5i2.6740 (12)C3—C41.5350 (18)
O1—C11.3155 (18)C3—H3A0.9288
O1—H1O10.8604O4—Na1iv2.3332 (11)
C1—O21.2149 (18)O4—H1O40.7905
C1—C21.5336 (18)C4—O51.2465 (17)
O1W—H1W10.8339C4—O61.2741 (17)
O1W—H2W10.8983O5—Na1iv2.6740 (12)
O2—Na1ii2.4858 (11)
O4i—Na1—O1W151.93 (4)C1—O2—Na1ii145.91 (10)
O4i—Na1—O3ii122.35 (4)C1—O2—Na1114.40 (9)
O1W—Na1—O3ii80.57 (4)Na1ii—O2—Na199.35 (4)
O4i—Na1—O387.29 (4)O3—C2—C3109.60 (11)
O1W—Na1—O382.55 (4)O3—C2—C1110.09 (11)
O3ii—Na1—O3139.47 (4)C3—C2—C1111.35 (11)
O4i—Na1—O2iii73.41 (4)O3—C2—H2A111.2
O1W—Na1—O2iii78.92 (4)C3—C2—H2A107.5
O3ii—Na1—O2iii133.11 (4)C1—C2—H2A107.0
O3—Na1—O2iii78.23 (4)C2—O3—Na1iii131.19 (8)
O4i—Na1—O2111.86 (4)C2—O3—Na1113.77 (8)
O1W—Na1—O287.20 (4)Na1iii—O3—Na1103.19 (4)
O3ii—Na1—O277.97 (4)C2—O3—H1O3109.0
O3—Na1—O264.61 (4)Na1iii—O3—H1O391.1
O2iii—Na1—O2141.72 (4)Na1—O3—H1O3103.6
O4i—Na1—O5i62.55 (4)O4—C3—C2108.69 (11)
O1W—Na1—O5i144.66 (4)O4—C3—C4109.00 (11)
O3ii—Na1—O5i65.28 (3)C2—C3—C4108.91 (12)
O3—Na1—O5i117.44 (4)O4—C3—H3A113.8
O2iii—Na1—O5i131.27 (4)C2—C3—H3A108.5
O2—Na1—O5i77.41 (4)C4—C3—H3A107.8
C1—O1—H1O1114.8C3—O4—Na1iv130.28 (8)
O2—C1—O1125.82 (12)C3—O4—H1O4108.8
O2—C1—C2121.86 (13)Na1iv—O4—H1O4111.3
O1—C1—C2112.32 (12)O5—C4—O6125.60 (12)
Na1—O1W—H1W1105.6O5—C4—C3119.18 (12)
Na1—O1W—H2W1128.7O6—C4—C3115.22 (12)
H1W1—O1W—H2W1109.5C4—O5—Na1iv118.45 (9)
O1—C1—O2—Na1ii13.8 (3)O4i—Na1—O3—C282.64 (9)
C2—C1—O2—Na1ii165.96 (11)O1W—Na1—O3—C2123.57 (9)
O1—C1—O2—Na1157.55 (11)O3ii—Na1—O3—C257.61 (8)
C2—C1—O2—Na122.65 (16)O2iii—Na1—O3—C2156.25 (9)
O4i—Na1—O2—C146.35 (11)O2—Na1—O3—C233.14 (8)
O1W—Na1—O2—C1112.44 (10)O5i—Na1—O3—C225.64 (10)
O3ii—Na1—O2—C1166.61 (10)O3—C2—C3—O458.74 (14)
O3—Na1—O2—C129.37 (9)C1—C2—C3—O463.32 (14)
O2iii—Na1—O2—C144.32 (10)O3—C2—C3—C459.89 (14)
O5i—Na1—O2—C199.59 (10)C1—C2—C3—C4178.05 (11)
O2—C1—C2—O37.77 (19)C2—C3—O4—Na1iv126.79 (10)
O1—C1—C2—O3172.06 (11)C4—C3—O4—Na1iv8.22 (17)
O2—C1—C2—C3129.54 (15)O4—C3—C4—O52.38 (19)
O1—C1—C2—C350.29 (15)C2—C3—C4—O5120.82 (15)
C3—C2—O3—Na1iii66.43 (14)O4—C3—C4—O6177.16 (12)
C1—C2—O3—Na1iii170.76 (8)C2—C3—C4—O658.73 (17)
C3—C2—O3—Na1157.80 (8)O6—C4—O5—Na1iv177.69 (12)
C1—C2—O3—Na134.99 (13)C3—C4—O5—Na1iv2.82 (18)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6v0.861.692.5496 (13)175
O1W—H1W1···O5vi0.831.942.7585 (14)167
O1W—H2W1···O6vii0.901.942.8006 (15)161
O3—H1O3···O5vi0.782.142.7575 (19)137
O4—H1O4···O1Wviii0.791.902.6784 (14)170
Symmetry codes: (v) x, y1, z; (vi) x, y+2, z+2; (vii) x1, y+3/2, z1/2; (viii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Na(C4H5O6)(H2O)]
Mr190.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9723 (2), 7.1457 (1), 12.0186 (2)
β (°) 119.571 (1)
V3)670.18 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.09 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.895, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6649, 1947, 1532
Rint0.034
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.03
No. of reflections1947
No. of parameters109
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.51, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.861.692.5496 (13)175
O1W—H1W1···O5ii0.831.942.7585 (14)167
O1W—H2W1···O6iii0.901.942.8006 (15)161
O3—H1O3···O5ii0.782.142.7575 (19)137
O4—H1O4···O1Wiv0.791.902.6784 (14)170
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+2; (iii) x1, y+3/2, z1/2; (iv) x, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: nornisah@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HHA gratefully acknowledges funding from Universiti Sains Malaysia (USM) under a University Research Grant (No. 1001/PKIMIA/811142). HKF and CKQ thank USM for a Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKubozono, Y., Hirano, A., Nagasawa, S., Maeda, H. & Kashino, S. (1993). Bull. Chem. Soc. Jpn, 66 2166–2173.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSynoradzki, L., Bernas, U. & Ruskowski, P. (2008). Org. Prep. Proced. Int. 40, 163–200.  CrossRef CAS Google Scholar
First citationWong, K. C., Hamid, A., Baharuddin, S., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, m1308–m1309.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds