organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­phenyl­methyl­ene-2-(9H-fluoren-9-yl­­idene)hydrazine

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 4 January 2010; accepted 6 January 2010; online 13 January 2010)

In the title mol­ecule, C26H18N2, the 9H-fluorene unit is almost planar, as the cyclo­penta­diene ring makes dihedral angles of 1.12 (6) and 1.46 (6)° with the fused benzene rings. The dihedral angle between the two phenyl rings of the diphenyl­methyl­ene residue is 61.78 (6)°.

Related literature

For the synthesis, see: Lewis & Glaser (2002[Lewis, M. & Glaser, R. (2002). J. Org. Chem. 67, 1441-1447.]). For the crystal structures of some aromatic azines, for example, fluorenone azine, see: Hagen et al. (1977[Hagen, K., Bondybey, V. & Hedberg, K. (1977). J. Am. Chem. Soc. 99, 1365-1371.]). For the other heterocyclic aldehyde azines, see: Chen et al. (1995[Chen, G. S., Wilbur, J. K., Barnes, C. L. & Glaser, R. (1995). J. Chem. Soc. Perkin. Trans. 2, pp. 2311-2319.]). For quadratic nonlinear optical properties, see: Wolff & Wortmann (1999[Wolff, J. J. & Wortmann, R. (1999). Adv. Phys. Org. Chem. 32, 121-217.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18N2

  • Mr = 358.42

  • Monoclinic, C 2/c

  • a = 22.8362 (3) Å

  • b = 13.1432 (2) Å

  • c = 12.4642 (2) Å

  • β = 92.874 (1)°

  • V = 3736.31 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 110 K

  • 0.46 × 0.41 × 0.32 mm

Data collection
  • Oxford Xcalibur diffractometer with a Ruby Gemini detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.955, Tmax = 1.000

  • 7177 measured reflections

  • 3682 independent reflections

  • 3147 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.06

  • 3682 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azines have received attention due to their unusual reactivity and spectral properties. For instance they are potential nonlinear optical (NLO) material. Molecular materials with quadratic nonlinear optical properties are currently attracting considerable interest (Wolff & Wortmann, 1999; Chen et al., 1995). Some crystal structures are known (Hagen et al., 1977). Optoelectronics has stimulated the search of highly nonlinear organic crystals for efficient signal processing. The title compound is an example of unsymmetrical fluorenone azine and shows a nonlinear optical behaviour. Herein, we report its crystal structure.

In the title molecule, C26H18N2, the 9H-fluorene unit is planar. The cyclopentadiene ring makes dihedral angles of 1.12 (6)° and 1.46 (6)° with the fused benzene rings. The dihedral angle between the two phenyl rings of the diphenylmethylene residue is 61.78 (6)°.

Related literature top

For the synthesis, see: Lewis & Glaser (2002). For the crystal structures of some aromatic azines, for example, fluorenone azine, see: Hagen et al. (1977). For the other heterocyclic aldehyde azines, see: Chen et al. (1995). For quadratic nonlinear optical properties, see: Wolff & Wortmann (1999).

Experimental top

The compound was prepared in accord with literature precedents Lewis & Glaser (2002). The mixture of fluorenone hydrazone (1.94 g, 0.01 mol) and benzophenone (1.82 g, 0.01 mol) in ethanol with acetic acid was refluxed for 2 h. A mixture was cooled to room temperature over several hours. The solid obtained was separated, dried and then recrystallized from absolute ethanol. The yield of isolated product was (3.07 g, 78%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å. Uiso(H) = 1.2Ueq(C).

Structure description top

Azines have received attention due to their unusual reactivity and spectral properties. For instance they are potential nonlinear optical (NLO) material. Molecular materials with quadratic nonlinear optical properties are currently attracting considerable interest (Wolff & Wortmann, 1999; Chen et al., 1995). Some crystal structures are known (Hagen et al., 1977). Optoelectronics has stimulated the search of highly nonlinear organic crystals for efficient signal processing. The title compound is an example of unsymmetrical fluorenone azine and shows a nonlinear optical behaviour. Herein, we report its crystal structure.

In the title molecule, C26H18N2, the 9H-fluorene unit is planar. The cyclopentadiene ring makes dihedral angles of 1.12 (6)° and 1.46 (6)° with the fused benzene rings. The dihedral angle between the two phenyl rings of the diphenylmethylene residue is 61.78 (6)°.

For the synthesis, see: Lewis & Glaser (2002). For the crystal structures of some aromatic azines, for example, fluorenone azine, see: Hagen et al. (1977). For the other heterocyclic aldehyde azines, see: Chen et al. (1995). For quadratic nonlinear optical properties, see: Wolff & Wortmann (1999).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
1-Diphenylmethylene-2-(9H-fluoren-9-ylidene)hydrazine top
Crystal data top
C26H18N2F(000) = 1504
Mr = 358.42Dx = 1.274 Mg m3
Monoclinic, C2/cMelting point: 377 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54184 Å
a = 22.8362 (3) ÅCell parameters from 4987 reflections
b = 13.1432 (2) Åθ = 5.1–73.9°
c = 12.4642 (2) ŵ = 0.58 mm1
β = 92.874 (1)°T = 110 K
V = 3736.31 (10) Å3Chunk, pale-yellow
Z = 80.46 × 0.41 × 0.32 mm
Data collection top
Oxford Xcalibur
diffractometer with a Ruby Gemini detector
3682 independent reflections
Radiation source: Enhance (Cu) X-ray Source3147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 5.2°
ω scansh = 2728
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1015
Tmin = 0.955, Tmax = 1.000l = 1415
7177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0563P)2 + 1.6279P]
where P = (Fo2 + 2Fc2)/3
3682 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H18N2V = 3736.31 (10) Å3
Mr = 358.42Z = 8
Monoclinic, C2/cCu Kα radiation
a = 22.8362 (3) ŵ = 0.58 mm1
b = 13.1432 (2) ÅT = 110 K
c = 12.4642 (2) Å0.46 × 0.41 × 0.32 mm
β = 92.874 (1)°
Data collection top
Oxford Xcalibur
diffractometer with a Ruby Gemini detector
3682 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3147 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 1.000Rint = 0.019
7177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3682 reflectionsΔρmin = 0.20 e Å3
253 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35481 (4)0.16268 (8)0.34487 (8)0.0276 (3)
N20.30117 (4)0.20980 (8)0.32203 (8)0.0266 (3)
C10.48097 (6)0.08981 (10)0.38410 (10)0.0325 (4)
C20.54135 (6)0.07751 (12)0.40371 (11)0.0381 (4)
C30.57819 (6)0.16072 (12)0.41540 (11)0.0385 (4)
C40.55662 (6)0.25969 (11)0.40685 (10)0.0329 (4)
C4A0.49686 (5)0.27237 (10)0.38678 (9)0.0264 (3)
C4B0.46148 (5)0.36564 (10)0.37429 (9)0.0252 (3)
C50.47889 (5)0.46657 (10)0.37629 (9)0.0291 (4)
C60.43594 (6)0.54174 (10)0.36409 (10)0.0309 (4)
C70.37714 (6)0.51540 (10)0.35090 (9)0.0295 (4)
C80.35919 (5)0.41379 (10)0.34822 (9)0.0262 (3)
C8A0.40189 (5)0.33819 (9)0.35879 (9)0.0238 (3)
C90.39839 (5)0.22522 (9)0.35779 (9)0.0247 (3)
C9A0.45920 (5)0.18833 (10)0.37629 (9)0.0266 (3)
C100.25572 (5)0.16399 (9)0.35694 (9)0.0225 (3)
C110.25793 (5)0.07200 (8)0.42731 (9)0.0215 (3)
C120.22316 (5)0.01253 (9)0.39994 (9)0.0259 (3)
C130.22468 (5)0.09829 (9)0.46475 (10)0.0281 (3)
C140.25979 (5)0.09989 (9)0.55906 (10)0.0277 (3)
C150.29376 (5)0.01569 (9)0.58763 (9)0.0264 (3)
C160.29369 (5)0.06937 (9)0.52151 (9)0.0233 (3)
C210.19789 (5)0.20994 (9)0.32457 (9)0.0226 (3)
C220.19408 (5)0.28377 (9)0.24323 (9)0.0257 (3)
C230.14141 (6)0.33068 (10)0.21489 (10)0.0319 (4)
C240.09125 (6)0.30600 (11)0.26812 (11)0.0348 (4)
C250.09424 (5)0.23372 (10)0.34938 (10)0.0307 (4)
C260.14706 (5)0.18576 (9)0.37725 (9)0.0251 (3)
H10.455650.032650.376370.0390*
H20.557350.010880.409090.0457*
H30.619000.150170.429550.0462*
H40.582090.316660.414540.0395*
H50.519160.484220.385770.0350*
H60.447000.611430.364800.0370*
H70.348480.567650.343540.0355*
H80.318830.396630.339400.0315*
H120.198330.011190.336490.0310*
H130.201670.156080.444650.0337*
H140.260530.158420.603830.0332*
H150.317190.016240.652800.0317*
H160.318020.125880.540400.0279*
H220.228230.301780.207080.0308*
H230.139470.379870.158980.0382*
H240.055070.338490.248920.0417*
H250.060070.216980.386080.0369*
H260.148660.136040.432640.0301*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0245 (5)0.0310 (5)0.0277 (5)0.0046 (4)0.0057 (4)0.0066 (4)
N20.0237 (5)0.0284 (5)0.0279 (5)0.0023 (4)0.0034 (4)0.0040 (4)
C10.0348 (7)0.0340 (7)0.0293 (6)0.0097 (5)0.0066 (5)0.0068 (5)
C20.0384 (7)0.0428 (8)0.0334 (7)0.0195 (6)0.0056 (6)0.0080 (6)
C30.0270 (6)0.0556 (9)0.0328 (7)0.0157 (6)0.0012 (5)0.0020 (6)
C40.0252 (6)0.0463 (8)0.0273 (6)0.0066 (5)0.0011 (5)0.0002 (5)
C4A0.0263 (6)0.0356 (7)0.0174 (5)0.0066 (5)0.0036 (4)0.0022 (5)
C4B0.0245 (5)0.0346 (7)0.0167 (5)0.0055 (5)0.0023 (4)0.0011 (4)
C50.0276 (6)0.0364 (7)0.0233 (6)0.0004 (5)0.0003 (5)0.0011 (5)
C60.0379 (7)0.0302 (6)0.0245 (6)0.0014 (5)0.0011 (5)0.0001 (5)
C70.0343 (7)0.0320 (7)0.0224 (6)0.0103 (5)0.0023 (5)0.0028 (5)
C80.0242 (5)0.0336 (6)0.0210 (5)0.0069 (5)0.0028 (4)0.0044 (5)
C8A0.0247 (6)0.0314 (6)0.0157 (5)0.0036 (5)0.0039 (4)0.0034 (4)
C90.0240 (6)0.0310 (6)0.0195 (5)0.0056 (4)0.0060 (4)0.0059 (4)
C9A0.0254 (6)0.0350 (7)0.0198 (5)0.0067 (5)0.0055 (4)0.0050 (5)
C100.0261 (6)0.0219 (6)0.0198 (5)0.0001 (4)0.0029 (4)0.0030 (4)
C110.0229 (5)0.0207 (5)0.0214 (5)0.0021 (4)0.0051 (4)0.0015 (4)
C120.0282 (6)0.0255 (6)0.0240 (5)0.0002 (5)0.0022 (4)0.0043 (5)
C130.0291 (6)0.0205 (6)0.0354 (6)0.0017 (4)0.0086 (5)0.0045 (5)
C140.0299 (6)0.0221 (6)0.0318 (6)0.0065 (5)0.0100 (5)0.0046 (5)
C150.0270 (6)0.0279 (6)0.0245 (6)0.0077 (5)0.0026 (4)0.0009 (5)
C160.0232 (5)0.0220 (5)0.0248 (6)0.0016 (4)0.0036 (4)0.0036 (4)
C210.0262 (6)0.0213 (5)0.0202 (5)0.0000 (4)0.0015 (4)0.0038 (4)
C220.0289 (6)0.0251 (6)0.0233 (6)0.0005 (5)0.0035 (4)0.0010 (4)
C230.0347 (7)0.0315 (7)0.0291 (6)0.0053 (5)0.0012 (5)0.0031 (5)
C240.0274 (6)0.0375 (7)0.0389 (7)0.0072 (5)0.0029 (5)0.0018 (6)
C250.0241 (6)0.0344 (7)0.0339 (7)0.0012 (5)0.0043 (5)0.0048 (5)
C260.0276 (6)0.0245 (6)0.0232 (5)0.0018 (4)0.0029 (4)0.0029 (4)
Geometric parameters (Å, º) top
N1—N21.3893 (13)C15—C161.3889 (16)
N1—C91.2946 (15)C21—C221.4029 (16)
N2—C101.2940 (15)C21—C261.3986 (16)
C1—C21.3976 (19)C22—C231.3817 (18)
C1—C9A1.3887 (18)C23—C241.3906 (19)
C2—C31.383 (2)C24—C251.3878 (19)
C3—C41.393 (2)C25—C261.3896 (17)
C4—C4A1.3851 (18)C1—H10.9500
C4A—C4B1.4721 (18)C2—H20.9500
C4A—C9A1.4020 (18)C3—H30.9500
C4B—C51.3847 (18)C4—H40.9500
C4B—C8A1.4117 (16)C5—H50.9500
C5—C61.3951 (18)C6—H60.9500
C6—C71.3884 (19)C7—H70.9500
C7—C81.3969 (19)C8—H80.9500
C8—C8A1.3938 (17)C12—H120.9500
C8A—C91.4870 (17)C13—H130.9500
C9—C9A1.4780 (16)C14—H140.9500
C10—C111.4931 (16)C15—H150.9500
C10—C211.4893 (16)C16—H160.9500
C11—C121.3979 (16)C22—H220.9500
C11—C161.3966 (16)C23—H230.9500
C12—C131.3862 (17)C24—H240.9500
C13—C141.3895 (17)C25—H250.9500
C14—C151.3877 (17)C26—H260.9500
N1···C162.9339 (15)C21···H7vii2.9600
N2···C83.0012 (16)C21···H16v2.7700
N1···H12.8800C22···H14i2.8800
N1···H162.6600C22···H16v2.9700
N2···H82.5000C23···H15v3.0700
N2···H162.9400C25···H16v3.0100
N2···H222.4600C26···H122.9000
N2···H14i2.9100C26···H16v2.7800
C1···C1ii3.4960 (18)H1···N12.8800
C1···C2iii3.4966 (19)H1···C2iii3.1000
C2···C1iii3.4966 (19)H2···C1iii3.0600
C3···C9ii3.5752 (18)H3···C14iii2.8400
C3···C15iii3.4924 (18)H3···C15iii2.6800
C4···C9ii3.5328 (17)H3···H15iii2.5300
C4A···C4Aii3.4199 (16)H4···C53.0900
C5···C5ii3.3384 (16)H5···C43.0800
C5···C5iv3.3036 (16)H5···C5iv3.0300
C7···C14v3.5528 (18)H7···C21vi2.9600
C7···C13v3.5226 (17)H7···C13v3.0100
C8···N23.0012 (16)H7···C14v2.8400
C8A···C26v3.5415 (16)H8···N22.5000
C9···C4ii3.5328 (17)H8···H12vi2.5200
C9···C3ii3.5752 (18)H12···C212.9100
C12···C263.1373 (17)H12···C262.9000
C13···C7v3.5226 (17)H12···H262.5700
C14···C7v3.5528 (18)H12···C7vii2.8500
C15···C3iii3.4924 (18)H12···C8vii2.7700
C16···N12.9339 (15)H12···H8vii2.5200
C16···C22v3.5100 (16)H13···H22vii2.6000
C16···C21v3.4776 (16)H14···N2viii2.9100
C21···C16v3.4776 (16)H14···C22viii2.8800
C22···C16v3.5100 (16)H14···H22viii2.4200
C26···C8Av3.5415 (16)H15···H3iii2.5300
C26···C123.1373 (17)H15···C23v3.0700
C1···H2iii3.0600H16···N12.6600
C2···H1iii3.1000H16···N22.9400
C4···H53.0800H16···C21v2.7700
C5···H43.0900H16···C22v2.9700
C5···H5iv3.0300H16···C25v3.0100
C7···H12vi2.8500H16···C26v2.7800
C8···H26v2.8200H22···N22.4600
C8···H12vi2.7700H22···H14i2.4200
C8A···H26v2.9200H22···C12vi3.0200
C11···H262.6400H22···C13vi2.7700
C12···H262.6300H22···H13vi2.6000
C12···H22vii3.0200H24···H24ix2.5200
C13···H22vii2.7700H26···C112.6400
C13···H7v3.0100H26···C122.6300
C14···H7v2.8400H26···H122.5700
C14···H3iii2.8400H26···C8v2.8200
C15···H3iii2.6800H26···C8Av2.9200
C21···H122.9100
N2—N1—C9114.01 (10)C22—C23—C24120.09 (12)
N1—N2—C10115.95 (10)C23—C24—C25119.76 (12)
C2—C1—C9A117.82 (12)C24—C25—C26120.22 (11)
C1—C2—C3121.10 (14)C21—C26—C25120.67 (11)
C2—C3—C4121.29 (13)C2—C1—H1121.00
C3—C4—C4A117.88 (13)C9A—C1—H1121.00
C4—C4A—C4B130.53 (12)C1—C2—H2119.00
C4—C4A—C9A121.08 (12)C3—C2—H2119.00
C4B—C4A—C9A108.38 (10)C2—C3—H3119.00
C4A—C4B—C5129.81 (11)C4—C3—H3119.00
C4A—C4B—C8A108.77 (11)C3—C4—H4121.00
C5—C4B—C8A121.41 (11)C4A—C4—H4121.00
C4B—C5—C6118.48 (11)C4B—C5—H5121.00
C5—C6—C7120.45 (12)C6—C5—H5121.00
C6—C7—C8121.47 (12)C5—C6—H6120.00
C7—C8—C8A118.44 (11)C7—C6—H6120.00
C4B—C8A—C8119.72 (11)C6—C7—H7119.00
C4B—C8A—C9107.90 (10)C8—C7—H7119.00
C8—C8A—C9132.38 (11)C7—C8—H8121.00
N1—C9—C8A132.51 (11)C8A—C8—H8121.00
N1—C9—C9A121.43 (11)C11—C12—H12120.00
C8A—C9—C9A106.06 (10)C13—C12—H12120.00
C1—C9A—C4A120.82 (11)C12—C13—H13120.00
C1—C9A—C9130.32 (12)C14—C13—H13120.00
C4A—C9A—C9108.86 (11)C13—C14—H14120.00
N2—C10—C11124.77 (10)C15—C14—H14120.00
N2—C10—C21115.82 (10)C14—C15—H15120.00
C11—C10—C21119.40 (10)C16—C15—H15120.00
C10—C11—C12119.88 (10)C11—C16—H16120.00
C10—C11—C16121.00 (10)C15—C16—H16120.00
C12—C11—C16119.11 (10)C21—C22—H22120.00
C11—C12—C13120.45 (10)C23—C22—H22119.00
C12—C13—C14120.12 (11)C22—C23—H23120.00
C13—C14—C15119.77 (11)C24—C23—H23120.00
C14—C15—C16120.38 (11)C23—C24—H24120.00
C11—C16—C15120.13 (11)C25—C24—H24120.00
C10—C21—C22119.89 (10)C24—C25—H25120.00
C10—C21—C26121.75 (10)C26—C25—H25120.00
C22—C21—C26118.27 (10)C21—C26—H26120.00
C21—C22—C23121.00 (11)C25—C26—H26120.00
C9—N1—N2—C10148.47 (11)C4B—C8A—C9—C9A1.37 (12)
N2—N1—C9—C8A3.86 (18)C8—C8A—C9—N11.5 (2)
N2—N1—C9—C9A176.38 (10)C8—C8A—C9—C9A178.31 (12)
N1—N2—C10—C116.19 (17)N1—C9—C9A—C10.58 (19)
N1—N2—C10—C21175.08 (10)N1—C9—C9A—C4A179.70 (11)
C9A—C1—C2—C30.26 (19)C8A—C9—C9A—C1179.24 (12)
C2—C1—C9A—C4A0.60 (18)C8A—C9—C9A—C4A0.49 (12)
C2—C1—C9A—C9179.09 (12)N2—C10—C11—C12130.13 (13)
C1—C2—C3—C40.8 (2)N2—C10—C11—C1650.85 (17)
C2—C3—C4—C4A0.35 (19)C21—C10—C11—C1251.19 (15)
C3—C4—C4A—C4B179.63 (12)C21—C10—C11—C16127.84 (12)
C3—C4—C4A—C9A0.52 (18)N2—C10—C21—C2213.12 (16)
C4—C4A—C4B—C52.1 (2)N2—C10—C21—C26163.26 (11)
C4—C4A—C4B—C8A177.76 (12)C11—C10—C21—C22168.08 (10)
C9A—C4A—C4B—C5178.73 (12)C11—C10—C21—C2615.54 (17)
C9A—C4A—C4B—C8A1.44 (13)C10—C11—C12—C13179.81 (11)
C4—C4A—C9A—C11.01 (18)C16—C11—C12—C130.77 (17)
C4—C4A—C9A—C9178.74 (11)C10—C11—C16—C15177.99 (11)
C4B—C4A—C9A—C1179.70 (11)C12—C11—C16—C151.05 (17)
C4B—C4A—C9A—C90.55 (13)C11—C12—C13—C141.60 (18)
C4A—C4B—C5—C6178.91 (11)C12—C13—C14—C150.61 (18)
C8A—C4B—C5—C60.90 (17)C13—C14—C15—C161.21 (17)
C4A—C4B—C8A—C8178.01 (10)C14—C15—C16—C112.04 (17)
C4A—C4B—C8A—C91.72 (13)C10—C21—C22—C23177.22 (11)
C5—C4B—C8A—C81.84 (17)C26—C21—C22—C230.72 (17)
C5—C4B—C8A—C9178.43 (10)C10—C21—C26—C25176.52 (11)
C4B—C5—C6—C70.37 (17)C22—C21—C26—C250.08 (16)
C5—C6—C7—C80.71 (18)C21—C22—C23—C240.85 (19)
C6—C7—C8—C8A0.22 (17)C22—C23—C24—C250.3 (2)
C7—C8—C8A—C4B1.46 (16)C23—C24—C25—C260.3 (2)
C7—C8—C8A—C9178.89 (11)C24—C25—C26—C210.42 (19)
C4B—C8A—C9—N1178.85 (12)
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x, y, z+1/2; (ix) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H18N2
Mr358.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)110
a, b, c (Å)22.8362 (3), 13.1432 (2), 12.4642 (2)
β (°) 92.874 (1)
V3)3736.31 (10)
Z8
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.46 × 0.41 × 0.32
Data collection
DiffractometerOxford Xcalibur
diffractometer with a Ruby Gemini detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.955, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7177, 3682, 3147
Rint0.019
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.06
No. of reflections3682
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationChen, G. S., Wilbur, J. K., Barnes, C. L. & Glaser, R. (1995). J. Chem. Soc. Perkin. Trans. 2, pp. 2311–2319.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHagen, K., Bondybey, V. & Hedberg, K. (1977). J. Am. Chem. Soc. 99, 1365–1371.  CrossRef CAS Web of Science Google Scholar
First citationLewis, M. & Glaser, R. (2002). J. Org. Chem. 67, 1441–1447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, J. J. & Wortmann, R. (1999). Adv. Phys. Org. Chem. 32, 121–217.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds