organic compounds
2-Amino-5-chloropyridinium hydrogen succinate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title salt, C5H6ClN2+·C4H5O4−, the pyridine N atom is protonated. The pyridinium and amino groups associate via a pair of N—H⋯O hydrogen bonds to the carboxylate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions self-assemble via O—H⋯O hydrogen bonds into chains along the b axis. The is further stabilized by additional N—H⋯O hydrogen bonds involving the second amino H atoms, as well as C—H⋯O contacts, forming a three-dimensional network.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Akriche & Rzaigui (2005); Zaouali Zgolli et al. (2009). For the structure of succinic acid, see: Gopalan et al. (2000); Leviel et al. (1981). For applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999)·For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810002990/tk2616sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810002990/tk2616Isup2.hkl
A hot methanolic solution (10 ml) of 2-amino-5-chloropyridine (32 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (29 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of (I) appeared from the mother liquor after a few days.
All the H atoms were located in a difference Fourier map and allowed to refine freely [N–H = 0.83 (2) - 0.86 (2) Å, C–H = 0.944 (18) - 1.047 (19) Å, O–H = 0.822 (19) Å ].
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The dicarboxylic acid, succinic acid, is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The
of succinic acid has been reported (Gopalan et al., 2000; Leviel et al., 1981). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009) and bis (2-amino-5-chloropyridinium) dihydrogen diphosphate (Akriche & Rzaigui, 2005) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2-amino-5-chloropyridinium hydrogen succinate, (I).The
of (I), Fig. 1, contains a 2-amino-5-chloropyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-chloropyridinium cation, a wider than normal angle (123.22 (12)°) is subtended at the protonated N1 atom.In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N–H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The hydrogen succinate anions self-assemble via O—H···O hydrogen bonds. The second amino-H atom forms a hydrogen bond with the carboxylate-O1 atom. Furthermore, the
is stabilized by C—H···O contacts, Table 1, forming a 3D-network.For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Akriche & Rzaigui (2005); Zaouali Zgolli et al. (2009). For the structure of succinic acid, see: Gopalan et al. (2000); Leviel et al. (1981). For applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999).For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of (I) showing atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of (I), showing intermolecular interactions as dashed lines. |
C5H6ClN2+·C4H5O4− | F(000) = 512 |
Mr = 246.65 | Dx = 1.547 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3633 reflections |
a = 5.2263 (1) Å | θ = 2.7–33.2° |
b = 13.5997 (3) Å | µ = 0.36 mm−1 |
c = 14.9019 (3) Å | T = 100 K |
V = 1059.17 (4) Å3 | Blcok, yellow |
Z = 4 | 0.41 × 0.15 × 0.10 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3934 independent reflections |
Radiation source: fine-focus sealed tube | 3581 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
φ and ω scans | θmax = 33.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→6 |
Tmin = 0.866, Tmax = 0.965 | k = −17→20 |
11594 measured reflections | l = −21→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0404P)2 + 0.0588P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3934 reflections | Δρmax = 0.33 e Å−3 |
189 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1604 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.05 (5) |
C5H6ClN2+·C4H5O4− | V = 1059.17 (4) Å3 |
Mr = 246.65 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.2263 (1) Å | µ = 0.36 mm−1 |
b = 13.5997 (3) Å | T = 100 K |
c = 14.9019 (3) Å | 0.41 × 0.15 × 0.10 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3934 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3581 reflections with I > 2σ(I) |
Tmin = 0.866, Tmax = 0.965 | Rint = 0.033 |
11594 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | Δρmax = 0.33 e Å−3 |
S = 1.02 | Δρmin = −0.27 e Å−3 |
3934 reflections | Absolute structure: Flack (1983), 1604 Friedel pairs |
189 parameters | Absolute structure parameter: 0.05 (5) |
0 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.16471 (6) | 0.66417 (3) | 0.01385 (3) | 0.02344 (8) | |
N1 | 0.3976 (2) | 0.47974 (9) | −0.04334 (8) | 0.0152 (2) | |
N2 | 0.5510 (2) | 0.33552 (9) | 0.01762 (9) | 0.0194 (2) | |
C1 | 0.3838 (2) | 0.40861 (10) | 0.02044 (9) | 0.0152 (2) | |
C2 | 0.1897 (3) | 0.41668 (10) | 0.08661 (9) | 0.0170 (2) | |
C3 | 0.0245 (3) | 0.49419 (11) | 0.08409 (10) | 0.0183 (3) | |
C4 | 0.0469 (2) | 0.56603 (10) | 0.01630 (10) | 0.0180 (2) | |
C5 | 0.2340 (3) | 0.55775 (10) | −0.04688 (10) | 0.0168 (2) | |
O1 | 0.42571 (19) | 0.16607 (8) | 0.11491 (6) | 0.0208 (2) | |
O2 | 0.24386 (19) | 0.03548 (7) | 0.17729 (7) | 0.0184 (2) | |
O3 | 0.8289 (2) | 0.36179 (8) | 0.25630 (8) | 0.0232 (2) | |
O4 | 0.4478 (2) | 0.29887 (8) | 0.29328 (8) | 0.0277 (3) | |
C6 | 0.4118 (2) | 0.10302 (9) | 0.17571 (9) | 0.0142 (2) | |
C7 | 0.6061 (3) | 0.10441 (10) | 0.25145 (10) | 0.0179 (3) | |
C8 | 0.7907 (2) | 0.19017 (10) | 0.24860 (10) | 0.0181 (3) | |
C9 | 0.6663 (3) | 0.28792 (10) | 0.26836 (8) | 0.0158 (2) | |
H2 | 0.180 (3) | 0.3686 (13) | 0.1322 (11) | 0.020 (4)* | |
H3 | −0.110 (3) | 0.4991 (12) | 0.1279 (11) | 0.020 (4)* | |
H5 | 0.262 (3) | 0.6021 (12) | −0.0964 (12) | 0.016 (4)* | |
H7A | 0.713 (4) | 0.0395 (14) | 0.2466 (13) | 0.029 (5)* | |
H7B | 0.504 (4) | 0.1041 (13) | 0.3078 (13) | 0.033 (5)* | |
H8A | 0.925 (4) | 0.1818 (13) | 0.2917 (12) | 0.026 (5)* | |
H8B | 0.883 (4) | 0.1978 (13) | 0.1893 (12) | 0.023 (5)* | |
H1O3 | 0.764 (4) | 0.4144 (14) | 0.2709 (13) | 0.026 (5)* | |
H1N1 | 0.517 (4) | 0.4729 (13) | −0.0823 (13) | 0.026 (5)* | |
H1N2 | 0.667 (4) | 0.3364 (14) | −0.0209 (13) | 0.029 (5)* | |
H2N2 | 0.538 (4) | 0.2904 (14) | 0.0544 (13) | 0.027 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01978 (14) | 0.01782 (15) | 0.03271 (18) | 0.00423 (12) | 0.00071 (13) | −0.00177 (14) |
N1 | 0.0162 (5) | 0.0134 (5) | 0.0162 (5) | −0.0010 (4) | 0.0012 (4) | 0.0015 (4) |
N2 | 0.0200 (5) | 0.0154 (5) | 0.0227 (6) | 0.0009 (5) | 0.0046 (5) | 0.0071 (5) |
C1 | 0.0156 (5) | 0.0133 (5) | 0.0168 (6) | −0.0035 (4) | −0.0024 (4) | 0.0009 (5) |
C2 | 0.0188 (6) | 0.0168 (6) | 0.0154 (6) | −0.0038 (5) | 0.0007 (5) | 0.0013 (5) |
C3 | 0.0177 (6) | 0.0193 (6) | 0.0180 (6) | −0.0033 (5) | 0.0013 (5) | −0.0030 (5) |
C4 | 0.0176 (5) | 0.0154 (6) | 0.0209 (6) | 0.0001 (5) | −0.0026 (5) | −0.0021 (5) |
C5 | 0.0175 (5) | 0.0124 (6) | 0.0205 (7) | −0.0014 (5) | −0.0030 (5) | 0.0008 (5) |
O1 | 0.0257 (5) | 0.0174 (5) | 0.0194 (5) | −0.0048 (4) | −0.0037 (4) | 0.0068 (4) |
O2 | 0.0197 (4) | 0.0132 (4) | 0.0222 (5) | −0.0027 (4) | −0.0035 (4) | 0.0039 (4) |
O3 | 0.0242 (5) | 0.0129 (5) | 0.0326 (6) | −0.0011 (4) | 0.0082 (5) | −0.0048 (4) |
O4 | 0.0192 (5) | 0.0251 (6) | 0.0387 (6) | −0.0001 (4) | 0.0062 (4) | −0.0112 (5) |
C6 | 0.0153 (5) | 0.0118 (5) | 0.0154 (6) | 0.0024 (4) | 0.0000 (4) | −0.0013 (5) |
C7 | 0.0226 (6) | 0.0140 (6) | 0.0169 (6) | −0.0011 (5) | −0.0027 (5) | 0.0027 (5) |
C8 | 0.0169 (6) | 0.0156 (6) | 0.0218 (7) | 0.0014 (5) | −0.0023 (5) | −0.0016 (5) |
C9 | 0.0184 (5) | 0.0153 (6) | 0.0138 (6) | 0.0011 (5) | −0.0014 (5) | −0.0017 (5) |
Cl1—C4 | 1.7336 (13) | C5—H5 | 0.965 (17) |
N1—C1 | 1.3580 (17) | O1—C6 | 1.2496 (16) |
N1—C5 | 1.3636 (18) | O2—C6 | 1.2708 (16) |
N1—H1N1 | 0.86 (2) | O3—C9 | 1.3281 (17) |
N2—C1 | 1.3242 (17) | O3—H1O3 | 0.822 (19) |
N2—H1N2 | 0.83 (2) | O4—C9 | 1.2100 (17) |
N2—H2N2 | 0.83 (2) | C6—C7 | 1.5183 (19) |
C1—C2 | 1.4189 (18) | C7—C8 | 1.5141 (19) |
C2—C3 | 1.363 (2) | C7—H7A | 1.047 (19) |
C2—H2 | 0.944 (18) | C7—H7B | 0.99 (2) |
C3—C4 | 1.410 (2) | C8—C9 | 1.5090 (19) |
C3—H3 | 0.961 (17) | C8—H8A | 0.959 (19) |
C4—C5 | 1.362 (2) | C8—H8B | 1.010 (18) |
C1—N1—C5 | 123.22 (12) | N1—C5—H5 | 115.0 (10) |
C1—N1—H1N1 | 115.7 (12) | C9—O3—H1O3 | 110.9 (14) |
C5—N1—H1N1 | 121.0 (12) | O1—C6—O2 | 123.33 (12) |
C1—N2—H1N2 | 119.3 (14) | O1—C6—C7 | 119.44 (11) |
C1—N2—H2N2 | 118.7 (13) | O2—C6—C7 | 117.21 (11) |
H1N2—N2—H2N2 | 122.0 (19) | C8—C7—C6 | 114.51 (11) |
N2—C1—N1 | 118.52 (12) | C8—C7—H7A | 107.9 (10) |
N2—C1—C2 | 123.49 (12) | C6—C7—H7A | 107.2 (10) |
N1—C1—C2 | 117.99 (12) | C8—C7—H7B | 111.6 (11) |
C3—C2—C1 | 119.57 (13) | C6—C7—H7B | 105.6 (12) |
C3—C2—H2 | 121.4 (11) | H7A—C7—H7B | 109.9 (15) |
C1—C2—H2 | 119.0 (11) | C9—C8—C7 | 113.48 (11) |
C2—C3—C4 | 120.21 (13) | C9—C8—H8A | 106.9 (11) |
C2—C3—H3 | 119.8 (10) | C7—C8—H8A | 110.9 (11) |
C4—C3—H3 | 119.9 (10) | C9—C8—H8B | 106.5 (10) |
C5—C4—C3 | 119.81 (12) | C7—C8—H8B | 114.0 (10) |
C5—C4—Cl1 | 120.47 (11) | H8A—C8—H8B | 104.4 (14) |
C3—C4—Cl1 | 119.71 (11) | O4—C9—O3 | 123.52 (13) |
C4—C5—N1 | 119.20 (13) | O4—C9—C8 | 125.11 (13) |
C4—C5—H5 | 125.8 (10) | O3—C9—C8 | 111.36 (12) |
C5—N1—C1—N2 | 179.59 (12) | Cl1—C4—C5—N1 | −179.96 (10) |
C5—N1—C1—C2 | −0.30 (18) | C1—N1—C5—C4 | 0.21 (19) |
N2—C1—C2—C3 | −179.60 (13) | O1—C6—C7—C8 | 4.56 (19) |
N1—C1—C2—C3 | 0.29 (18) | O2—C6—C7—C8 | −176.50 (12) |
C1—C2—C3—C4 | −0.2 (2) | C6—C7—C8—C9 | 69.12 (16) |
C2—C3—C4—C5 | 0.1 (2) | C7—C8—C9—O4 | 7.3 (2) |
C2—C3—C4—Cl1 | 179.95 (11) | C7—C8—C9—O3 | −173.70 (12) |
C3—C4—C5—N1 | −0.10 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2i | 0.821 (19) | 1.819 (19) | 2.5891 (15) | 156 (2) |
N1—H1N1···O2ii | 0.86 (2) | 1.85 (2) | 2.7023 (15) | 172.4 (19) |
N2—H1N2···O1ii | 0.84 (2) | 1.95 (2) | 2.7814 (15) | 177 (2) |
N2—H2N2···O1 | 0.826 (19) | 2.004 (19) | 2.8002 (16) | 162 (2) |
C5—H5···O4iii | 0.964 (17) | 2.391 (17) | 3.2216 (18) | 144.0 (13) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, −z; (iii) −x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6ClN2+·C4H5O4− |
Mr | 246.65 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 5.2263 (1), 13.5997 (3), 14.9019 (3) |
V (Å3) | 1059.17 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.41 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.866, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11594, 3934, 3581 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.771 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.082, 1.02 |
No. of reflections | 3934 |
No. of parameters | 189 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.27 |
Absolute structure | Flack (1983), 1604 Friedel pairs |
Absolute structure parameter | 0.05 (5) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2i | 0.821 (19) | 1.819 (19) | 2.5891 (15) | 156 (2) |
N1—H1N1···O2ii | 0.86 (2) | 1.85 (2) | 2.7023 (15) | 172.4 (19) |
N2—H1N2···O1ii | 0.84 (2) | 1.95 (2) | 2.7814 (15) | 177 (2) |
N2—H2N2···O1 | 0.826 (19) | 2.004 (19) | 2.8002 (16) | 162 (2) |
C5—H5···O4iii | 0.964 (17) | 2.391 (17) | 3.2216 (18) | 144.0 (13) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1/2, −y+1/2, −z; (iii) −x+1/2, −y+1, z−1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106. Google Scholar
Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Leviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185–2189. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley. Google Scholar
Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108. Web of Science CrossRef PubMed CAS Google Scholar
Scheiner, S. (1997). In Hydrogen Bonding: A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352–361. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2009). Acta Cryst. E65, o2755. Web of Science CrossRef IUCr Journals Google Scholar
Zeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545–552. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The dicarboxylic acid, succinic acid, is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has been reported (Gopalan et al., 2000; Leviel et al., 1981). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009) and bis (2-amino-5-chloropyridinium) dihydrogen diphosphate (Akriche & Rzaigui, 2005) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2-amino-5-chloropyridinium hydrogen succinate, (I).
The asymmetric unit of (I), Fig. 1, contains a 2-amino-5-chloropyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-chloropyridinium cation, a wider than normal angle (123.22 (12)°) is subtended at the protonated N1 atom.
In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N–H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The hydrogen succinate anions self-assemble via O—H···O hydrogen bonds. The second amino-H atom forms a hydrogen bond with the carboxylate-O1 atom. Furthermore, the crystal structure is stabilized by C—H···O contacts, Table 1, forming a 3D-network.