organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium hydrogen succinate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 January 2010; accepted 25 January 2010; online 30 January 2010)

In the title salt, C5H6ClN2+·C4H5O4, the pyridine N atom is protonated. The pyridinium and amino groups associate via a pair of N—H⋯O hydrogen bonds to the carboxyl­ate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions self-assemble via O—H⋯O hydrogen bonds into chains along the b axis. The crystal structure is further stabilized by additional N—H⋯O hydrogen bonds involving the second amino H atoms, as well as C—H⋯O contacts, forming a three-dimensional network.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Pourayoubi et al. (2007[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.]); Akriche & Rzaigui (2005[Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607-o2609.]); Zaouali Zgolli et al. (2009[Zaouali Zgolli, D., Boughzala, H. & Driss, A. (2009). Acta Cryst. E65, o2755.]). For the structure of succinic acid, see: Gopalan et al. (2000[Gopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97-106.]); Leviel et al. (1981[Leviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185-2189.]). For applications of succinic acid, see: Sauer et al. (2008[Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100-108.]); Song & Lee (2006[Song, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352-361.]); Zeikus et al. (1999[Zeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545-552.])·For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). In Hydrogen Bonding: A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C4H5O4

  • Mr = 246.65

  • Orthorhombic, P 21 21 21

  • a = 5.2263 (1) Å

  • b = 13.5997 (3) Å

  • c = 14.9019 (3) Å

  • V = 1059.17 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.41 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.866, Tmax = 0.965

  • 11594 measured reflections

  • 3934 independent reflections

  • 3581 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.082

  • S = 1.02

  • 3934 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1604 Friedel pairs

  • Flack parameter: 0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 0.821 (19) 1.819 (19) 2.5891 (15) 156 (2)
N1—H1N1⋯O2ii 0.86 (2) 1.85 (2) 2.7023 (15) 172.4 (19)
N2—H1N2⋯O1ii 0.84 (2) 1.95 (2) 2.7814 (15) 177 (2)
N2—H2N2⋯O1 0.826 (19) 2.004 (19) 2.8002 (16) 162 (2)
C5—H5⋯O4iii 0.964 (17) 2.391 (17) 3.2216 (18) 144.0 (13)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The dicarboxylic acid, succinic acid, is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has been reported (Gopalan et al., 2000; Leviel et al., 1981). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009) and bis (2-amino-5-chloropyridinium) dihydrogen diphosphate (Akriche & Rzaigui, 2005) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2-amino-5-chloropyridinium hydrogen succinate, (I).

The asymmetric unit of (I), Fig. 1, contains a 2-amino-5-chloropyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-chloropyridinium cation, a wider than normal angle (123.22 (12)°) is subtended at the protonated N1 atom.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N–H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The hydrogen succinate anions self-assemble via O—H···O hydrogen bonds. The second amino-H atom forms a hydrogen bond with the carboxylate-O1 atom. Furthermore, the crystal structure is stabilized by C—H···O contacts, Table 1, forming a 3D-network.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Akriche & Rzaigui (2005); Zaouali Zgolli et al. (2009). For the structure of succinic acid, see: Gopalan et al. (2000); Leviel et al. (1981). For applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999).For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanolic solution (10 ml) of 2-amino-5-chloropyridine (32 mg, Aldrich) and a hot aqueous solution (10 ml) of succinic acid (29 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of (I) appeared from the mother liquor after a few days.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N–H = 0.83 (2) - 0.86 (2) Å, C–H = 0.944 (18) - 1.047 (19) Å, O–H = 0.822 (19) Å ].

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The dicarboxylic acid, succinic acid, is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has been reported (Gopalan et al., 2000; Leviel et al., 1981). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium nitrate (Zaouali Zgolli et al., 2009) and bis (2-amino-5-chloropyridinium) dihydrogen diphosphate (Akriche & Rzaigui, 2005) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2-amino-5-chloropyridinium hydrogen succinate, (I).

The asymmetric unit of (I), Fig. 1, contains a 2-amino-5-chloropyridinium cation and a hydrogen succinate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-chloropyridinium cation, a wider than normal angle (123.22 (12)°) is subtended at the protonated N1 atom.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N–H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The hydrogen succinate anions self-assemble via O—H···O hydrogen bonds. The second amino-H atom forms a hydrogen bond with the carboxylate-O1 atom. Furthermore, the crystal structure is stabilized by C—H···O contacts, Table 1, forming a 3D-network.

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Akriche & Rzaigui (2005); Zaouali Zgolli et al. (2009). For the structure of succinic acid, see: Gopalan et al. (2000); Leviel et al. (1981). For applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999).For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing intermolecular interactions as dashed lines.
2-Amino-5-chloropyridinium hydrogen succinate top
Crystal data top
C5H6ClN2+·C4H5O4F(000) = 512
Mr = 246.65Dx = 1.547 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3633 reflections
a = 5.2263 (1) Åθ = 2.7–33.2°
b = 13.5997 (3) ŵ = 0.36 mm1
c = 14.9019 (3) ÅT = 100 K
V = 1059.17 (4) Å3Blcok, yellow
Z = 40.41 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3934 independent reflections
Radiation source: fine-focus sealed tube3581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 33.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 86
Tmin = 0.866, Tmax = 0.965k = 1720
11594 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.0588P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3934 reflectionsΔρmax = 0.33 e Å3
189 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1604 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C5H6ClN2+·C4H5O4V = 1059.17 (4) Å3
Mr = 246.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2263 (1) ŵ = 0.36 mm1
b = 13.5997 (3) ÅT = 100 K
c = 14.9019 (3) Å0.41 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3581 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.965Rint = 0.033
11594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.33 e Å3
S = 1.02Δρmin = 0.27 e Å3
3934 reflectionsAbsolute structure: Flack (1983), 1604 Friedel pairs
189 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16471 (6)0.66417 (3)0.01385 (3)0.02344 (8)
N10.3976 (2)0.47974 (9)0.04334 (8)0.0152 (2)
N20.5510 (2)0.33552 (9)0.01762 (9)0.0194 (2)
C10.3838 (2)0.40861 (10)0.02044 (9)0.0152 (2)
C20.1897 (3)0.41668 (10)0.08661 (9)0.0170 (2)
C30.0245 (3)0.49419 (11)0.08409 (10)0.0183 (3)
C40.0469 (2)0.56603 (10)0.01630 (10)0.0180 (2)
C50.2340 (3)0.55775 (10)0.04688 (10)0.0168 (2)
O10.42571 (19)0.16607 (8)0.11491 (6)0.0208 (2)
O20.24386 (19)0.03548 (7)0.17729 (7)0.0184 (2)
O30.8289 (2)0.36179 (8)0.25630 (8)0.0232 (2)
O40.4478 (2)0.29887 (8)0.29328 (8)0.0277 (3)
C60.4118 (2)0.10302 (9)0.17571 (9)0.0142 (2)
C70.6061 (3)0.10441 (10)0.25145 (10)0.0179 (3)
C80.7907 (2)0.19017 (10)0.24860 (10)0.0181 (3)
C90.6663 (3)0.28792 (10)0.26836 (8)0.0158 (2)
H20.180 (3)0.3686 (13)0.1322 (11)0.020 (4)*
H30.110 (3)0.4991 (12)0.1279 (11)0.020 (4)*
H50.262 (3)0.6021 (12)0.0964 (12)0.016 (4)*
H7A0.713 (4)0.0395 (14)0.2466 (13)0.029 (5)*
H7B0.504 (4)0.1041 (13)0.3078 (13)0.033 (5)*
H8A0.925 (4)0.1818 (13)0.2917 (12)0.026 (5)*
H8B0.883 (4)0.1978 (13)0.1893 (12)0.023 (5)*
H1O30.764 (4)0.4144 (14)0.2709 (13)0.026 (5)*
H1N10.517 (4)0.4729 (13)0.0823 (13)0.026 (5)*
H1N20.667 (4)0.3364 (14)0.0209 (13)0.029 (5)*
H2N20.538 (4)0.2904 (14)0.0544 (13)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01978 (14)0.01782 (15)0.03271 (18)0.00423 (12)0.00071 (13)0.00177 (14)
N10.0162 (5)0.0134 (5)0.0162 (5)0.0010 (4)0.0012 (4)0.0015 (4)
N20.0200 (5)0.0154 (5)0.0227 (6)0.0009 (5)0.0046 (5)0.0071 (5)
C10.0156 (5)0.0133 (5)0.0168 (6)0.0035 (4)0.0024 (4)0.0009 (5)
C20.0188 (6)0.0168 (6)0.0154 (6)0.0038 (5)0.0007 (5)0.0013 (5)
C30.0177 (6)0.0193 (6)0.0180 (6)0.0033 (5)0.0013 (5)0.0030 (5)
C40.0176 (5)0.0154 (6)0.0209 (6)0.0001 (5)0.0026 (5)0.0021 (5)
C50.0175 (5)0.0124 (6)0.0205 (7)0.0014 (5)0.0030 (5)0.0008 (5)
O10.0257 (5)0.0174 (5)0.0194 (5)0.0048 (4)0.0037 (4)0.0068 (4)
O20.0197 (4)0.0132 (4)0.0222 (5)0.0027 (4)0.0035 (4)0.0039 (4)
O30.0242 (5)0.0129 (5)0.0326 (6)0.0011 (4)0.0082 (5)0.0048 (4)
O40.0192 (5)0.0251 (6)0.0387 (6)0.0001 (4)0.0062 (4)0.0112 (5)
C60.0153 (5)0.0118 (5)0.0154 (6)0.0024 (4)0.0000 (4)0.0013 (5)
C70.0226 (6)0.0140 (6)0.0169 (6)0.0011 (5)0.0027 (5)0.0027 (5)
C80.0169 (6)0.0156 (6)0.0218 (7)0.0014 (5)0.0023 (5)0.0016 (5)
C90.0184 (5)0.0153 (6)0.0138 (6)0.0011 (5)0.0014 (5)0.0017 (5)
Geometric parameters (Å, º) top
Cl1—C41.7336 (13)C5—H50.965 (17)
N1—C11.3580 (17)O1—C61.2496 (16)
N1—C51.3636 (18)O2—C61.2708 (16)
N1—H1N10.86 (2)O3—C91.3281 (17)
N2—C11.3242 (17)O3—H1O30.822 (19)
N2—H1N20.83 (2)O4—C91.2100 (17)
N2—H2N20.83 (2)C6—C71.5183 (19)
C1—C21.4189 (18)C7—C81.5141 (19)
C2—C31.363 (2)C7—H7A1.047 (19)
C2—H20.944 (18)C7—H7B0.99 (2)
C3—C41.410 (2)C8—C91.5090 (19)
C3—H30.961 (17)C8—H8A0.959 (19)
C4—C51.362 (2)C8—H8B1.010 (18)
C1—N1—C5123.22 (12)N1—C5—H5115.0 (10)
C1—N1—H1N1115.7 (12)C9—O3—H1O3110.9 (14)
C5—N1—H1N1121.0 (12)O1—C6—O2123.33 (12)
C1—N2—H1N2119.3 (14)O1—C6—C7119.44 (11)
C1—N2—H2N2118.7 (13)O2—C6—C7117.21 (11)
H1N2—N2—H2N2122.0 (19)C8—C7—C6114.51 (11)
N2—C1—N1118.52 (12)C8—C7—H7A107.9 (10)
N2—C1—C2123.49 (12)C6—C7—H7A107.2 (10)
N1—C1—C2117.99 (12)C8—C7—H7B111.6 (11)
C3—C2—C1119.57 (13)C6—C7—H7B105.6 (12)
C3—C2—H2121.4 (11)H7A—C7—H7B109.9 (15)
C1—C2—H2119.0 (11)C9—C8—C7113.48 (11)
C2—C3—C4120.21 (13)C9—C8—H8A106.9 (11)
C2—C3—H3119.8 (10)C7—C8—H8A110.9 (11)
C4—C3—H3119.9 (10)C9—C8—H8B106.5 (10)
C5—C4—C3119.81 (12)C7—C8—H8B114.0 (10)
C5—C4—Cl1120.47 (11)H8A—C8—H8B104.4 (14)
C3—C4—Cl1119.71 (11)O4—C9—O3123.52 (13)
C4—C5—N1119.20 (13)O4—C9—C8125.11 (13)
C4—C5—H5125.8 (10)O3—C9—C8111.36 (12)
C5—N1—C1—N2179.59 (12)Cl1—C4—C5—N1179.96 (10)
C5—N1—C1—C20.30 (18)C1—N1—C5—C40.21 (19)
N2—C1—C2—C3179.60 (13)O1—C6—C7—C84.56 (19)
N1—C1—C2—C30.29 (18)O2—C6—C7—C8176.50 (12)
C1—C2—C3—C40.2 (2)C6—C7—C8—C969.12 (16)
C2—C3—C4—C50.1 (2)C7—C8—C9—O47.3 (2)
C2—C3—C4—Cl1179.95 (11)C7—C8—C9—O3173.70 (12)
C3—C4—C5—N10.10 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.821 (19)1.819 (19)2.5891 (15)156 (2)
N1—H1N1···O2ii0.86 (2)1.85 (2)2.7023 (15)172.4 (19)
N2—H1N2···O1ii0.84 (2)1.95 (2)2.7814 (15)177 (2)
N2—H2N2···O10.826 (19)2.004 (19)2.8002 (16)162 (2)
C5—H5···O4iii0.964 (17)2.391 (17)3.2216 (18)144.0 (13)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C4H5O4
Mr246.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.2263 (1), 13.5997 (3), 14.9019 (3)
V3)1059.17 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.41 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.866, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
11594, 3934, 3581
Rint0.033
(sin θ/λ)max1)0.771
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.082, 1.02
No. of reflections3934
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27
Absolute structureFlack (1983), 1604 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.821 (19)1.819 (19)2.5891 (15)156 (2)
N1—H1N1···O2ii0.86 (2)1.85 (2)2.7023 (15)172.4 (19)
N2—H1N2···O1ii0.84 (2)1.95 (2)2.7814 (15)177 (2)
N2—H2N2···O10.826 (19)2.004 (19)2.8002 (16)162 (2)
C5—H5···O4iii0.964 (17)2.391 (17)3.2216 (18)144.0 (13)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAkriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106.  Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationLeviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185–2189.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScheiner, S. (1997). In Hydrogen Bonding: A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352–361.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaouali Zgolli, D., Boughzala, H. & Driss, A. (2009). Acta Cryst. E65, o2755.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545–552.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds