metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris{aqua­bis­[3-(2-pyrid­yl)-1H-pyrazole]copper(II)} di-μ9-arsenato-hexa­triaconta-μ2-oxido-octa­deca­oxido­octa­deca­molybdate(VI)

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 9 December 2009; accepted 13 January 2010; online 16 January 2010)

The title compound, [Cu(C8H7N3)2(H2O)]3[As2Mo18O62], consists of two subunits, viz. an α-Dawson-type [As2Mo18O62]6− anion and a complex [Cu(C8H7N3)2(H2O)]2+ cation. The copper(II) ion (site symmetry .2) is penta­coordinated in a distorted square-pyramidal manner by four N atoms from two chelating 3-(2-pyrid­yl)pyrazole ligands in equatorial positions and one water mol­ecule in the apical position. In the heteropolyanion, two O atoms of the AsO4 group (3. symmetry) are equally disordered about the threefold rotation axis. N—H⋯O and O—H⋯O hydrogen bonding between the neutral mol­ecules and the water mol­ecules leads to a consolidation of the structure.

Related literature

For background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei, Shi et al. (2010[Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26-m27.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]); Zhang, Yuan et al. (2010[Zhang, X., Yuan, D., Wei, P., Li, B. & Hu, B. (2010). Acta Cryst. E66, m152-m153.]). Zhang, Wei, Zhu et al. (2010[Zhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127-m128.]). For another α-Dawson-type anion, see: Li et al. (2007[Li, F. Y., Qu, X. S. & Qiu, Y. F. (2007). Cryst. Res. Technol. 42, 1036-1043.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7N3)2(H2O)]3[As2Mo18O62]

  • Mr = 3984.45

  • Hexagonal, [R \overline 3c ]

  • a = 21.967 (3) Å

  • c = 34.411 (7) Å

  • V = 14380 (4) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 3.72 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.664, Tmax = 0.755

  • 25458 measured reflections

  • 2750 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.00

  • 2750 reflections

  • 254 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.25 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected bond lengths (Å)

As1—O10A 1.653 (10)
As1—O10B 1.677 (10)
As1—O1 1.728 (9)
Cu1—N3 1.984 (7)
Cu1—N1 1.985 (8)
Cu1—O11 2.29 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O6i 0.86 2.27 3.097 (13) 162
O11—H1W⋯O3ii 0.84 (8) 2.69 (11) 2.860 (10) 94 (8)
Symmetry codes: (i) [x+{\script{1\over 3}}, x-y+{\script{2\over 3}}, z+{\script{1\over 6}}]; (ii) [y, x, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope et al., 1991). In our group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of an α-Dawson-type [As2Mo18O62]6- anion (Li et al., 2007) and a complex [Cu(H2O)(C8H7N3)2]2+ cation. The copper ion is penta-coordinated in a distorted square-pyramidal geometry by four N atoms from two 3-(2-pyridyl)pyrazole ligands and by one water molecule. The Cu—N bond lengths are in the range of 1.984 (7)—1.985 (8) Å and the Cu—O bond length is 2.29 (2) Å. In the heteropolyanion, there are four kinds of oxygen atoms according to their coordination manner: (i) 18 terminal O atoms bonded to one Mo atom with their Mo—O distances in the range of 1.651 (6)—1.690 (6) Å; (ii) 36 µ2 O atoms, the Mo—O distances in the range of 1.797 (5)—2.117 (5) Å; (iii) six µ3 O atoms shared by one As and two Mo atoms, the Mo—O distances varying from 1.653 (8) to 2.359 (1) Å; (iv) two µ4 O atoms which are coordinated to one As atom and three Mo atoms, Mo—O distances are between 1.728 (7) and 2.341 (7) Å, respectively. The resulting MoO6 octahedra are considerably distorted. The AsO4 group is disordered about a threefold rotation axis and exhibuts two sets of short As—O bond lenghts to the disordered O atoms (50% occupation) and one longer As—O bond. N—H···O and O—H···O hydrogen bonding between the neutral molecules and the water molecules leads to a consolidation of the structure (Fig. 2; Table 2) which also contains accessible voids of ca. 136 Å3.

Related literature top

For background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Shi et al. (2010); Zhang, Wei et al. (2009); Zhang, Yuan et al. (2010). Zhang, Wei, Zhu et al. (2010). For another α-Dawson-type anion, see: Li et al. (2007).

Experimental top

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL 0.14 g), sodium molybdate (2 mmoL, 0.48 g), sodium arsenate (0.2 mmoL, 0.08 g) and copper dichloride dihydrate (1 mmoL, 0.28 g) in 14 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Blue crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C48H48As2Cu3Mo18N18O65: C 14.46, H 1.20, N 6.32%; Found: C 14.24, H 1.01, N 6.23%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The H atoms of the water molecule were located from difference density maps and were refined with d(O—H) = 0.83 (2) Å, and with a fixed Uiso of 0.80 Å2. In the AsO4 unit, two oxygen atoms (O6 and O10) are disordered around a threefold rotation axis. Both positions were refined with split positions and an occupancy ratio of 1:1. In the final difference Fourier map the highest peak is 3.20 Å from atom O2 and the deepest hole is 0.67 A Å from atom O11. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was excluded from the final refinement.

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope et al., 1991). In our group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of two subunits, viz. of an α-Dawson-type [As2Mo18O62]6- anion (Li et al., 2007) and a complex [Cu(H2O)(C8H7N3)2]2+ cation. The copper ion is penta-coordinated in a distorted square-pyramidal geometry by four N atoms from two 3-(2-pyridyl)pyrazole ligands and by one water molecule. The Cu—N bond lengths are in the range of 1.984 (7)—1.985 (8) Å and the Cu—O bond length is 2.29 (2) Å. In the heteropolyanion, there are four kinds of oxygen atoms according to their coordination manner: (i) 18 terminal O atoms bonded to one Mo atom with their Mo—O distances in the range of 1.651 (6)—1.690 (6) Å; (ii) 36 µ2 O atoms, the Mo—O distances in the range of 1.797 (5)—2.117 (5) Å; (iii) six µ3 O atoms shared by one As and two Mo atoms, the Mo—O distances varying from 1.653 (8) to 2.359 (1) Å; (iv) two µ4 O atoms which are coordinated to one As atom and three Mo atoms, Mo—O distances are between 1.728 (7) and 2.341 (7) Å, respectively. The resulting MoO6 octahedra are considerably distorted. The AsO4 group is disordered about a threefold rotation axis and exhibuts two sets of short As—O bond lenghts to the disordered O atoms (50% occupation) and one longer As—O bond. N—H···O and O—H···O hydrogen bonding between the neutral molecules and the water molecules leads to a consolidation of the structure (Fig. 2; Table 2) which also contains accessible voids of ca. 136 Å3.

For background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Shi et al. (2010); Zhang, Wei et al. (2009); Zhang, Yuan et al. (2010). Zhang, Wei, Zhu et al. (2010). For another α-Dawson-type anion, see: Li et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.
Tris{aquabis[3-(2-pyridyl)-1H-pyrazole]copper(II)} di-µ9-arsenato-hexatriaconta-µ2-oxido-octadecaoxidooctadecamolybdate(VI) top
Crystal data top
[Cu(C8H7N3)2(H2O)]3[As2Mo18O62]Dx = 2.761 Mg m3
Mr = 3984.45Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3cCell parameters from 2750 reflections
Hall symbol: -R 3 2"cθ = 1.6–25.0°
a = 21.967 (3) ŵ = 3.72 mm1
c = 34.411 (7) ÅT = 293 K
V = 14380 (4) Å3Block, blue
Z = 60.12 × 0.10 × 0.08 mm
F(000) = 11346
Data collection top
Bruker APEXII CCD
diffractometer
2750 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2526
Tmin = 0.664, Tmax = 0.755k = 2626
25458 measured reflectionsl = 4039
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.063P)2 + 278.6957P]
where P = (Fo2 + 2Fc2)/3
2750 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 2.25 e Å3
14 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Cu(C8H7N3)2(H2O)]3[As2Mo18O62]Z = 6
Mr = 3984.45Mo Kα radiation
Hexagonal, R3cµ = 3.72 mm1
a = 21.967 (3) ÅT = 293 K
c = 34.411 (7) Å0.12 × 0.10 × 0.08 mm
V = 14380 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2750 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2053 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.755Rint = 0.085
25458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04614 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.063P)2 + 278.6957P]
where P = (Fo2 + 2Fc2)/3
2750 reflectionsΔρmax = 2.25 e Å3
254 parametersΔρmin = 1.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
As10.00000.00000.05884 (4)0.0161 (3)
C10.2641 (5)0.2974 (5)0.1696 (3)0.039 (2)
C20.1872 (5)0.3163 (5)0.2056 (3)0.042 (2)
H20.16980.31990.22960.050*
C30.1552 (7)0.3216 (5)0.1730 (3)0.055 (3)
H30.11920.33210.17470.066*
C40.1768 (7)0.3112 (5)0.1380 (3)0.055 (3)
H40.15340.31130.11550.065*
C50.2326 (6)0.3008 (5)0.1359 (3)0.042 (3)
H50.24930.29600.11190.050*
C60.2831 (5)0.3216 (5)0.3283 (2)0.037 (2)
C70.2761 (7)0.3645 (7)0.3554 (4)0.066 (3)
H70.28090.36360.38220.079*
C80.2605 (7)0.4092 (6)0.3343 (3)0.067 (4)
H80.25230.44380.34420.080*
Cu10.28491 (9)0.28491 (9)0.25000.0444 (5)
Mo10.06070 (4)0.10373 (4)0.14523 (2)0.0293 (2)
Mo20.03113 (4)0.17477 (4)0.05152 (2)0.0270 (2)
Mo30.17292 (4)0.14366 (4)0.05871 (2)0.0298 (2)
N10.2731 (5)0.3393 (5)0.2924 (2)0.045 (2)
N20.2599 (5)0.3921 (5)0.2969 (3)0.057 (3)
H2A0.25180.41260.27790.068*
N30.2426 (4)0.3063 (4)0.2048 (2)0.0381 (19)
O10.00000.00000.1090 (3)0.023 (2)
O20.0297 (3)0.0513 (3)0.16857 (15)0.0250 (12)
O30.1016 (3)0.1636 (3)0.18082 (17)0.0336 (15)
O40.0331 (3)0.1452 (3)0.10985 (16)0.0261 (13)
O50.1395 (3)0.1213 (3)0.11134 (16)0.0271 (13)
O60.0665 (5)0.1212 (5)0.0577 (3)0.075 (2)
O70.0438 (3)0.2531 (3)0.06422 (17)0.0344 (15)
O80.2534 (3)0.2085 (3)0.06733 (18)0.0412 (17)
O90.0315 (4)0.1816 (3)0.00079 (17)0.0445 (18)
O10A0.0288 (5)0.0530 (5)0.0445 (3)0.019 (2)0.50
O10B0.0832 (5)0.0297 (5)0.0446 (3)0.016 (2)0.50
O110.1808 (10)0.1808 (10)0.25000.142 (2)
O12A0.1344 (7)0.2076 (7)0.0591 (4)0.030 (3)0.50
O12B0.1111 (7)0.1708 (8)0.0481 (4)0.027 (3)0.50
H1W0.1487 (19)0.179 (2)0.264 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0173 (4)0.0173 (4)0.0136 (7)0.0086 (2)0.0000.000
C10.043 (6)0.025 (5)0.034 (6)0.005 (4)0.004 (4)0.000 (4)
C20.058 (7)0.042 (6)0.032 (6)0.030 (5)0.006 (5)0.003 (4)
C30.081 (9)0.041 (6)0.051 (7)0.038 (6)0.015 (6)0.005 (5)
C40.082 (9)0.030 (6)0.055 (8)0.031 (6)0.018 (6)0.004 (5)
C50.063 (7)0.032 (5)0.020 (5)0.016 (5)0.011 (4)0.002 (4)
C60.045 (6)0.044 (6)0.018 (5)0.019 (5)0.004 (4)0.000 (4)
C70.076 (9)0.065 (8)0.042 (7)0.025 (7)0.010 (6)0.006 (6)
C80.099 (10)0.058 (8)0.040 (7)0.036 (7)0.021 (7)0.002 (6)
Cu10.0590 (9)0.0590 (9)0.0215 (9)0.0344 (10)0.0019 (4)0.0019 (4)
Mo10.0391 (5)0.0246 (4)0.0214 (4)0.0139 (4)0.0087 (3)0.0058 (3)
Mo20.0362 (5)0.0200 (4)0.0270 (4)0.0156 (3)0.0013 (3)0.0008 (3)
Mo30.0201 (4)0.0244 (4)0.0388 (5)0.0067 (3)0.0063 (3)0.0045 (3)
N10.065 (6)0.048 (5)0.022 (4)0.028 (5)0.000 (4)0.001 (4)
N20.086 (7)0.041 (5)0.044 (6)0.033 (5)0.007 (5)0.016 (4)
N30.048 (5)0.028 (4)0.025 (4)0.009 (4)0.007 (4)0.003 (3)
O10.027 (3)0.027 (3)0.016 (5)0.0133 (16)0.0000.000
O20.028 (3)0.029 (3)0.016 (3)0.013 (3)0.003 (2)0.001 (2)
O30.044 (4)0.028 (3)0.023 (3)0.013 (3)0.008 (3)0.006 (3)
O40.028 (3)0.027 (3)0.025 (3)0.015 (3)0.006 (2)0.005 (2)
O50.030 (3)0.030 (3)0.024 (3)0.017 (3)0.001 (2)0.001 (2)
O60.074 (3)0.075 (3)0.073 (3)0.0349 (15)0.0029 (10)0.0033 (10)
O70.048 (4)0.025 (3)0.030 (3)0.018 (3)0.001 (3)0.001 (3)
O80.024 (3)0.048 (4)0.035 (4)0.005 (3)0.002 (3)0.014 (3)
O90.087 (5)0.030 (4)0.022 (3)0.034 (4)0.001 (3)0.002 (3)
O10A0.015 (5)0.022 (6)0.020 (6)0.009 (5)0.003 (4)0.001 (4)
O10B0.017 (5)0.012 (5)0.020 (6)0.009 (4)0.009 (4)0.001 (4)
O110.142 (2)0.142 (2)0.142 (2)0.0707 (13)0.0005 (7)0.0005 (7)
O12A0.029 (8)0.023 (8)0.037 (9)0.012 (7)0.001 (6)0.001 (6)
O12B0.028 (8)0.029 (8)0.022 (7)0.012 (7)0.004 (6)0.005 (6)
Geometric parameters (Å, º) top
As1—O10Ai1.653 (10)Mo1—O12.341 (5)
As1—O10A1.653 (10)Mo2—O71.658 (6)
As1—O10Aii1.653 (10)Mo2—O12B1.806 (13)
As1—O10B1.677 (10)Mo2—O91.806 (6)
As1—O10Bi1.677 (10)Mo2—O61.872 (9)
As1—O10Bii1.677 (10)Mo2—O12A2.024 (13)
As1—O11.728 (9)Mo2—O42.117 (5)
C1—N31.350 (12)Mo2—O10Bii2.309 (9)
C1—C51.371 (13)Mo2—O10A2.330 (10)
C1—C6iii1.447 (14)Mo3—O81.651 (6)
C2—N31.342 (12)Mo3—O12B1.772 (13)
C2—C31.359 (14)Mo3—O6ii1.878 (9)
C2—H20.9300Mo3—O51.923 (6)
C3—C41.355 (16)Mo3—O12A1.970 (13)
C3—H30.9300Mo3—O9iv2.000 (6)
C4—C51.358 (15)Mo3—O10Bii2.325 (9)
C4—H40.9300Mo3—O10Aii2.359 (10)
C5—H50.9300N1—N21.337 (12)
C6—N11.345 (11)N2—H2A0.8600
C6—C71.389 (15)O1—Mo1i2.341 (5)
C6—C1iii1.447 (14)O1—Mo1ii2.341 (5)
C7—C81.395 (17)O2—Mo1i2.053 (5)
C7—H70.9300O6—Mo3i1.878 (9)
C8—N21.339 (13)O9—Mo3v2.000 (6)
C8—H80.9300O10A—O10Bii1.582 (13)
Cu1—N3iii1.984 (7)O10A—O10B1.599 (13)
Cu1—N31.984 (7)O10A—Mo3i2.359 (10)
Cu1—N11.985 (8)O10B—O10Ai1.582 (13)
Cu1—N1iii1.985 (8)O10B—O12Bi1.698 (17)
Cu1—O112.29 (2)O10B—Mo2i2.309 (9)
Mo1—O31.690 (6)O10B—Mo3i2.325 (9)
Mo1—O41.797 (5)O11—H1W0.84 (8)
Mo1—O21.904 (5)O12A—O12B0.804 (14)
Mo1—O51.959 (6)O12B—O10Bii1.698 (17)
Mo1—O2ii2.053 (5)
O10Ai—As1—O10A111.5 (3)O7—Mo2—O10A157.6 (3)
O10Ai—As1—O10Aii111.5 (3)O12B—Mo2—O10A86.7 (5)
O10A—As1—O10Aii111.5 (3)O9—Mo2—O10A88.2 (3)
O10Ai—As1—O10B56.7 (4)O6—Mo2—O10A58.5 (4)
O10A—As1—O10B57.4 (4)O12A—Mo2—O10A108.2 (5)
O10Aii—As1—O10B145.7 (5)O4—Mo2—O10A80.3 (3)
O10Ai—As1—O10Bi57.4 (4)O10Bii—Mo2—O10A39.9 (3)
O10A—As1—O10Bi145.7 (5)O8—Mo3—O12B114.7 (5)
O10Aii—As1—O10Bi56.7 (4)O8—Mo3—O6ii100.9 (4)
O10B—As1—O10Bi111.8 (3)O12B—Mo3—O6ii143.7 (6)
O10Ai—As1—O10Bii145.7 (5)O8—Mo3—O599.1 (3)
O10A—As1—O10Bii56.7 (4)O12B—Mo3—O591.2 (4)
O10Aii—As1—O10Bii57.4 (4)O6ii—Mo3—O590.1 (3)
O10B—As1—O10Bii111.8 (3)O8—Mo3—O12A92.3 (5)
O10Bi—As1—O10Bii111.8 (3)O12B—Mo3—O12A24.1 (4)
O10Ai—As1—O1107.4 (4)O6ii—Mo3—O12A166.7 (5)
O10A—As1—O1107.4 (4)O5—Mo3—O12A86.0 (4)
O10Aii—As1—O1107.4 (4)O8—Mo3—O9iv95.5 (3)
O10B—As1—O1107.0 (3)O12B—Mo3—O9iv80.4 (5)
O10Bi—As1—O1107.0 (3)O6ii—Mo3—O9iv89.6 (4)
O10Bii—As1—O1107.0 (3)O5—Mo3—O9iv165.2 (2)
N3—C1—C5122.0 (10)O12A—Mo3—O9iv90.9 (5)
N3—C1—C6iii113.1 (8)O8—Mo3—O10Bii161.3 (3)
C5—C1—C6iii124.9 (9)O12B—Mo3—O10Bii46.6 (5)
N3—C2—C3123.3 (10)O6ii—Mo3—O10Bii97.8 (4)
N3—C2—H2118.4O5—Mo3—O10Bii82.7 (3)
C3—C2—H2118.4O12A—Mo3—O10Bii69.1 (5)
C4—C3—C2118.6 (11)O9iv—Mo3—O10Bii82.7 (3)
C4—C3—H3120.7O8—Mo3—O10Aii158.5 (3)
C2—C3—H3120.7O12B—Mo3—O10Aii86.2 (5)
C3—C4—C5119.9 (11)O6ii—Mo3—O10Aii57.9 (4)
C3—C4—H4120.1O5—Mo3—O10Aii84.9 (3)
C5—C4—H4120.1O12A—Mo3—O10Aii109.0 (5)
C4—C5—C1119.1 (10)O9iv—Mo3—O10Aii82.5 (3)
C4—C5—H5120.4O10Bii—Mo3—O10Aii39.9 (3)
C1—C5—H5120.4N2—N1—C6106.6 (8)
N1—C6—C7109.3 (10)N2—N1—Cu1139.1 (7)
N1—C6—C1iii115.9 (8)C6—N1—Cu1114.2 (7)
C7—C6—C1iii134.8 (9)N1—N2—C8112.1 (9)
C6—C7—C8106.0 (10)N1—N2—H2A124.0
C6—C7—H7127.0C8—N2—H2A124.0
C8—C7—H7127.0C2—N3—C1116.9 (8)
N2—C8—C7106.1 (11)C2—N3—Cu1126.5 (7)
N2—C8—H8127.0C1—N3—Cu1115.5 (7)
C7—C8—H8127.0As1—O1—Mo1i122.13 (18)
N3iii—Cu1—N3166.7 (4)As1—O1—Mo1122.13 (18)
N3iii—Cu1—N180.7 (3)Mo1i—O1—Mo194.3 (2)
N3—Cu1—N1102.5 (3)As1—O1—Mo1ii122.13 (18)
N3iii—Cu1—N1iii102.5 (3)Mo1i—O1—Mo1ii94.3 (2)
N3—Cu1—N1iii80.7 (3)Mo1—O1—Mo1ii94.3 (2)
N1—Cu1—N1iii152.7 (5)Mo1—O2—Mo1i120.4 (3)
N3iii—Cu1—O1183.4 (2)Mo1—O4—Mo2149.5 (3)
N3—Cu1—O1183.4 (2)Mo3—O5—Mo1142.9 (3)
N1—Cu1—O11103.6 (3)Mo2—O6—Mo3i144.3 (5)
N1iii—Cu1—O11103.6 (3)Mo2—O9—Mo3v170.5 (4)
O3—Mo1—O4106.2 (3)O10Bii—O10A—O10B121.6 (9)
O3—Mo1—O298.8 (3)O10Bii—O10A—As162.4 (5)
O4—Mo1—O294.5 (2)O10B—O10A—As162.0 (5)
O3—Mo1—O5101.8 (3)O10Bii—O10A—Mo269.3 (5)
O4—Mo1—O589.2 (2)O10B—O10A—Mo2167.6 (7)
O2—Mo1—O5157.1 (2)As1—O10A—Mo2125.6 (5)
O3—Mo1—O2ii95.3 (2)O10Bii—O10A—Mo3i164.3 (7)
O4—Mo1—O2ii158.1 (2)O10B—O10A—Mo3i68.9 (5)
O2—Mo1—O2ii85.9 (3)As1—O10A—Mo3i121.8 (5)
O5—Mo1—O2ii82.5 (2)Mo2—O10A—Mo3i99.2 (4)
O3—Mo1—O1164.9 (3)O10Ai—O10B—O10A118.4 (9)
O4—Mo1—O187.7 (2)O10Ai—O10B—As160.9 (5)
O2—Mo1—O173.8 (2)O10A—O10B—As160.5 (5)
O5—Mo1—O183.8 (2)O10Ai—O10B—O12Bi121.6 (8)
O2ii—Mo1—O171.36 (19)O10A—O10B—O12Bi119.9 (8)
O7—Mo2—O12B113.9 (5)As1—O10B—O12Bi159.0 (8)
O7—Mo2—O9100.7 (3)O10Ai—O10B—Mo2i70.8 (5)
O12B—Mo2—O988.5 (5)O10A—O10B—Mo2i169.3 (7)
O7—Mo2—O699.7 (4)As1—O10B—Mo2i125.6 (5)
O12B—Mo2—O6144.4 (5)O12Bi—O10B—Mo2i50.8 (5)
O9—Mo2—O697.0 (4)O10Ai—O10B—Mo3i165.0 (7)
O7—Mo2—O12A91.1 (5)O10A—O10B—Mo3i71.2 (5)
O12B—Mo2—O12A23.4 (4)As1—O10B—Mo3i122.5 (5)
O9—Mo2—O12A98.1 (5)O12Bi—O10B—Mo3i49.3 (5)
O6—Mo2—O12A159.5 (5)Mo2i—O10B—Mo3i98.7 (3)
O7—Mo2—O492.9 (3)Cu1—O11—H1W117 (2)
O12B—Mo2—O483.0 (4)O12B—O12A—Mo364.0 (14)
O9—Mo2—O4166.0 (2)O12B—O12A—Mo263.0 (14)
O6—Mo2—O483.8 (3)Mo3—O12A—Mo2123.3 (7)
O12A—Mo2—O478.2 (4)O12A—O12B—O10Bii155.9 (19)
O7—Mo2—O10Bii158.9 (3)O12A—O12B—Mo391.9 (16)
O12B—Mo2—O10Bii46.8 (5)O10Bii—O12B—Mo384.1 (7)
O9—Mo2—O10Bii88.6 (3)O12A—O12B—Mo293.7 (16)
O6—Mo2—O10Bii98.0 (4)O10Bii—O12B—Mo282.4 (7)
O12A—Mo2—O10Bii68.6 (5)Mo3—O12B—Mo2158.4 (8)
O4—Mo2—O10Bii77.5 (3)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) y, x, z+1/2; (iv) y, x+y, z; (v) xy, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6vi0.862.273.097 (13)162
O11—H1W···O3iii0.84 (8)2.69 (11)2.860 (10)94 (8)
Symmetry codes: (iii) y, x, z+1/2; (vi) x+1/3, xy+2/3, z+1/6.

Experimental details

Crystal data
Chemical formula[Cu(C8H7N3)2(H2O)]3[As2Mo18O62]
Mr3984.45
Crystal system, space groupHexagonal, R3c
Temperature (K)293
a, c (Å)21.967 (3), 34.411 (7)
V3)14380 (4)
Z6
Radiation typeMo Kα
µ (mm1)3.72
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.664, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
25458, 2750, 2053
Rint0.085
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.00
No. of reflections2750
No. of parameters254
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.063P)2 + 278.6957P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.25, 1.15

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
As1—O10A1.653 (10)Cu1—N31.984 (7)
As1—O10B1.677 (10)Cu1—N11.985 (8)
As1—O11.728 (9)Cu1—O112.29 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.862.273.097 (13)162.0
O11—H1W···O3ii0.84 (8)2.69 (11)2.860 (10)94 (8)
Symmetry codes: (i) x+1/3, xy+2/3, z+1/6; (ii) y, x, z+1/2.
 

Acknowledgements

Financial support from the Chinese Academy of Sciences (`Hundred Talents Program') and the Ministry of Science and Technology of China (grant No. 2007CB607608), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, F. Y., Qu, X. S. & Qiu, Y. F. (2007). Cryst. Res. Technol. 42, 1036–1043.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26–m27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127–m128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Yuan, D., Wei, P., Li, B. & Hu, B. (2010). Acta Cryst. E66, m152–m153.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds