metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{tris­­[3-(2-pyrid­yl)-1H-pyrazole]zinc(II)} dodeca­molybdosilicate hexa­hydrate

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 14 December 2009; accepted 4 January 2010; online 9 January 2010)

The asymmetric unit of the title compound, [Zn(C8H7N3)3]2[SiMo12O40]·6H2O, consists of a complex [Zn(C8H7N3)3]2+ cation, half of a Keggin-type [SiMo12O40]4− heteropolyanion and three uncoordinated water mol­ecules. The Zn2+ cation is surrounded in a distorted octa­hedral coordination by six N atoms from three chelating 3-(2-pyrid­yl)pyrazole ligands. In the heteropolyanion, two O atoms of the central SiO4 group ([\overline{1}] symmetry) are equally disordered about an inversion centre. N—H⋯O hydrogen bonding between the cations, anions and the uncoordinated water mol­ecules leads to a consolidation of the structure.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]). For the structure of another dodeca­molybdosilicate, see: Wu et al. (2003[Wu, C. D., Lu, C. Z., Chen, S. M., Zhuang, H. H. & Huang, J. S. (2003). Polyhedron, 22, 3091-3098.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H7N3)3]2[SiMo12O40]·6H2O

  • Mr = 2929.20

  • Monoclinic, C 2/c

  • a = 18.824 (4) Å

  • b = 16.365 (3) Å

  • c = 27.749 (6) Å

  • β = 104.74 (3)°

  • V = 8267 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.758, Tmax = 0.829

  • 27894 measured reflections

  • 7081 independent reflections

  • 5632 reflections with I > 2σ(I)'

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.112

  • S = 1.00

  • 7081 reflections

  • 601 parameters

  • H-atom parameters constrained

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Si1—O5A 1.581 (8)
Si1—O20B 1.628 (8)
Si1—O5B 1.650 (9)
Si1—O20A 1.674 (8)
Zn1—N5 2.134 (7)
Zn1—N2 2.138 (8)
Zn1—N7 2.167 (6)
Zn1—N1 2.176 (8)
Zn1—N8 2.186 (7)
Zn1—N4 2.196 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯O16Ai 0.86 2.20 2.972 (14) 149
N9—H9A⋯O16Bi 0.86 1.88 2.728 (13) 168
N6—H6⋯O2W 0.86 1.95 2.770 (11) 160
N3—H3A⋯O3W 0.86 2.02 2.870 (15) 167
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of three subunits, viz. of a complex [Zn(C8H7N3)3]2+ cation, a heteropolyanion [SiMo12O40]4- anion and of uncoordinated water molecules. The zinc(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 3-(2-pyridyl)pyrazole ligands. The Zn—N bond lengths are in the range of 2.134 (7)—2.196 (7) Å. In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the Si atom is located at the center of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered SiO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The Si—O bond distances are in the normal range of 1.581 (8)—1.674 (8) compared to reported distances in other dodecamolybdosilicates (Wu et al., 2003). The Mo—O bond distances vary widely from 1.647 (5) to 2.447 (8) Å. The shortest Mo—O bonds are in the range of 1.647 (5)—1.675 (5) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.345 (8)—2.447 (8) Å for those oxygen atoms connected with both Mo and Si atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

Related literature top

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structure of another dodecamolybdosilicate, see: Wu et al. (2003).

Experimental top

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL 0.14 g), sodium molybdate (2 mmoL, 0.48 g), sodium silicate nonahydrate (0.2 mmoL, 0.05 g) and zinc acetate (1 mmoL, 0.18 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Colorless crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C48H54Mo12N18O46SiZn2: C 19.67, H 1.84, N 8.60 %; Found: C 19.52, H 1.74, N 8.48 %.

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). The hydrogen atoms of the three uncoordinated water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules. Thus the structure was refined without the H atoms of the water molecules (which includes the water O atoms O1W, O2W, O3W). In the SiO4 unit, the two oxygen atoms (O5 and O20) are equally disordered about the inversion centre. One of the bridging O atoms (O16) is also disordered and was refined with split positions and an occupancy ratio of 1:1. In the final difference Fourier map the highest peak is 2.93 Å from atom O3w and the deepest hole is 0.20 A Å from atom O17. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of three subunits, viz. of a complex [Zn(C8H7N3)3]2+ cation, a heteropolyanion [SiMo12O40]4- anion and of uncoordinated water molecules. The zinc(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 3-(2-pyridyl)pyrazole ligands. The Zn—N bond lengths are in the range of 2.134 (7)—2.196 (7) Å. In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the Si atom is located at the center of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered SiO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The Si—O bond distances are in the normal range of 1.581 (8)—1.674 (8) compared to reported distances in other dodecamolybdosilicates (Wu et al., 2003). The Mo—O bond distances vary widely from 1.647 (5) to 2.447 (8) Å. The shortest Mo—O bonds are in the range of 1.647 (5)—1.675 (5) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.345 (8)—2.447 (8) Å for those oxygen atoms connected with both Mo and Si atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structure of another dodecamolybdosilicate, see: Wu et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with N—H···O and O—H···O hydrogen bonds as dashed lines.
Bis{tris[3-(2-pyridyl)-1H-pyrazole]zinc(II)} dodecamolybdosilicate hexahydrate top
Crystal data top
[Zn(C8H7N3)3]2[SiMo12O40]·6H2OF(000) = 5656
Mr = 2929.20Dx = 2.354 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7081 reflections
a = 18.824 (4) Åθ = 2.1–25.0°
b = 16.365 (3) ŵ = 2.44 mm1
c = 27.749 (6) ÅT = 293 K
β = 104.74 (3)°Block, colorless
V = 8267 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7081 independent reflections
Radiation source: fine-focus sealed tube5632 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2222
Tmin = 0.758, Tmax = 0.829k = 1919
27894 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.040P)2 + 90.4942P]
where P = (Fo2 + 2Fc2)/3
7081 reflections(Δ/σ)max = 0.001
601 parametersΔρmax = 1.22 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Zn(C8H7N3)3]2[SiMo12O40]·6H2OV = 8267 (3) Å3
Mr = 2929.20Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.824 (4) ŵ = 2.44 mm1
b = 16.365 (3) ÅT = 293 K
c = 27.749 (6) Å0.12 × 0.10 × 0.08 mm
β = 104.74 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7081 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5632 reflections with I > 2σ(I)'
Tmin = 0.758, Tmax = 0.829Rint = 0.050
27894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.040P)2 + 90.4942P]
where P = (Fo2 + 2Fc2)/3
7081 reflectionsΔρmax = 1.22 e Å3
601 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.25000.75000.50000.0259 (5)
Zn10.20485 (5)0.18036 (6)0.30659 (4)0.0495 (2)
Mo10.32661 (4)0.65322 (4)0.41132 (2)0.04445 (19)
Mo20.14843 (3)0.59791 (4)0.42128 (2)0.04067 (18)
Mo30.25254 (4)0.85217 (4)0.38792 (2)0.0493 (2)
Mo40.08217 (3)0.80182 (4)0.41417 (3)0.04398 (19)
Mo50.30421 (4)0.54390 (4)0.51646 (3)0.04711 (19)
Mo60.08169 (3)0.67952 (4)0.51953 (3)0.04175 (18)
C10.1721 (5)0.0214 (6)0.2386 (4)0.062 (2)
H10.20380.04320.22110.074*
C20.1437 (6)0.0550 (6)0.2264 (4)0.071 (3)
H20.15550.08440.20080.085*
C30.0987 (7)0.0867 (8)0.2518 (5)0.092 (4)
H30.07960.13890.24400.111*
C40.0811 (6)0.0452 (8)0.2878 (5)0.081 (3)
H40.04980.06730.30550.097*
C50.1100 (4)0.0311 (6)0.2985 (3)0.057 (2)
C60.0921 (5)0.0815 (7)0.3375 (4)0.065 (3)
C70.0418 (5)0.0710 (10)0.3689 (5)0.100 (5)
H70.01050.02730.36940.120*
C80.0516 (6)0.1423 (9)0.3984 (5)0.084 (4)
H80.02690.15570.42240.101*
C90.0912 (5)0.2438 (6)0.2080 (4)0.068 (3)
H90.08670.18890.19890.082*
C100.0527 (6)0.2998 (8)0.1755 (5)0.089 (4)
H100.02280.28320.14500.107*
C110.0582 (6)0.3805 (8)0.1880 (4)0.092 (4)
H110.03200.41970.16650.110*
C120.1037 (6)0.4026 (7)0.2336 (4)0.086 (3)
H120.10830.45710.24340.103*
C130.1420 (5)0.3430 (5)0.2640 (3)0.055 (2)
C140.1945 (5)0.3607 (6)0.3124 (3)0.057 (2)
C150.2158 (6)0.4342 (6)0.3378 (4)0.073 (3)
H150.19740.48610.32800.088*
C160.2680 (6)0.4148 (7)0.3790 (4)0.074 (3)
H160.29280.45080.40350.089*
C170.2987 (4)0.1008 (5)0.4058 (3)0.0471 (19)
H170.25620.10540.41690.057*
C180.3603 (5)0.0661 (5)0.4374 (3)0.056 (2)
H180.35850.04770.46870.067*
C190.4222 (5)0.0591 (5)0.4225 (3)0.053 (2)
H190.46390.03570.44330.063*
C200.4231 (4)0.0872 (6)0.3760 (3)0.054 (2)
H200.46590.08350.36520.065*
C210.3604 (4)0.1210 (4)0.3454 (3)0.0397 (17)
C220.3555 (4)0.1495 (5)0.2946 (3)0.0416 (18)
C230.4101 (5)0.1560 (7)0.2682 (3)0.067 (3)
H230.45970.14290.27940.080*
C240.3738 (6)0.1861 (7)0.2224 (4)0.076 (3)
H240.39410.19630.19570.091*
N10.1557 (4)0.0657 (4)0.2749 (3)0.0557 (18)
N20.1281 (4)0.1523 (5)0.3493 (3)0.062 (2)
N30.1028 (5)0.1869 (6)0.3854 (3)0.076 (2)
H3A0.11810.23310.39880.091*
N40.1355 (4)0.2636 (5)0.2524 (3)0.0543 (18)
N50.2323 (4)0.2991 (4)0.3376 (3)0.0559 (18)
N60.2775 (4)0.3336 (5)0.3781 (3)0.066 (2)
H60.30870.30680.40060.079*
N70.2976 (3)0.1278 (4)0.3605 (2)0.0394 (14)
N80.2916 (4)0.1760 (4)0.2672 (2)0.0467 (16)
N90.3042 (4)0.1979 (5)0.2231 (2)0.061 (2)
H9A0.27100.21710.19840.073*
O10.2556 (3)0.9034 (4)0.3374 (2)0.0581 (15)
O20.3551 (3)0.6067 (4)0.3660 (2)0.0603 (16)
O30.2143 (3)0.5308 (5)0.4729 (3)0.092 (2)
O40.0056 (3)0.8237 (4)0.3718 (2)0.0709 (19)
O5A0.1705 (4)0.7185 (5)0.4728 (3)0.0272 (19)0.50
O5B0.2051 (5)0.8171 (5)0.4590 (3)0.029 (2)0.50
O60.3318 (3)0.4476 (3)0.5234 (3)0.0649 (17)
O70.0948 (4)0.6044 (4)0.4756 (2)0.0711 (19)
O80.0983 (4)0.5235 (4)0.3883 (2)0.0671 (18)
O90.0955 (4)0.6878 (4)0.3938 (2)0.0730 (19)
O100.0468 (4)0.7568 (4)0.4653 (2)0.0698 (19)
O110.2221 (3)0.6113 (5)0.3913 (2)0.085 (2)
O120.0004 (3)0.6534 (4)0.5292 (3)0.0649 (17)
O130.4022 (5)0.7155 (4)0.4407 (3)0.113 (4)
O140.3436 (3)0.5746 (5)0.4594 (3)0.092 (3)
O150.2669 (4)0.5588 (5)0.5708 (3)0.113 (3)
O16A0.2666 (7)0.7439 (8)0.3817 (5)0.042 (3)0.50
O16B0.2893 (7)0.7499 (7)0.3635 (4)0.034 (3)0.50
O170.1467 (5)0.6329 (4)0.5734 (3)0.112 (3)
O180.1061 (4)0.9000 (5)0.4463 (3)0.100 (3)
O190.1530 (4)0.8255 (4)0.3747 (3)0.089 (2)
O20A0.3000 (4)0.7634 (5)0.4586 (3)0.0257 (19)0.50
O20B0.2524 (5)0.6636 (5)0.4715 (3)0.030 (2)0.50
O1W0.4635 (8)0.4314 (11)0.4744 (9)0.278 (10)
O2W0.3838 (4)0.2836 (6)0.4615 (3)0.109 (3)
O3W0.1316 (7)0.3429 (7)0.4336 (5)0.159 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0238 (12)0.0280 (13)0.0247 (13)0.0012 (10)0.0038 (10)0.0011 (10)
Zn10.0419 (5)0.0506 (6)0.0561 (6)0.0072 (4)0.0128 (4)0.0112 (5)
Mo10.0470 (4)0.0519 (4)0.0337 (4)0.0140 (3)0.0089 (3)0.0095 (3)
Mo20.0329 (3)0.0450 (4)0.0421 (4)0.0093 (3)0.0058 (3)0.0105 (3)
Mo30.0725 (5)0.0434 (4)0.0306 (3)0.0072 (4)0.0108 (3)0.0056 (3)
Mo40.0293 (3)0.0542 (4)0.0425 (4)0.0003 (3)0.0017 (3)0.0035 (3)
Mo50.0524 (4)0.0308 (4)0.0637 (5)0.0091 (3)0.0250 (4)0.0063 (3)
Mo60.0275 (3)0.0455 (4)0.0520 (4)0.0075 (3)0.0095 (3)0.0032 (3)
C10.057 (6)0.067 (6)0.063 (6)0.005 (5)0.017 (5)0.016 (5)
C20.068 (6)0.060 (6)0.076 (7)0.002 (5)0.003 (5)0.004 (5)
C30.074 (8)0.079 (8)0.105 (10)0.009 (6)0.016 (7)0.012 (8)
C40.054 (6)0.092 (9)0.083 (8)0.020 (6)0.008 (6)0.015 (7)
C50.033 (4)0.063 (6)0.066 (6)0.005 (4)0.005 (4)0.020 (5)
C60.034 (4)0.092 (8)0.067 (6)0.011 (5)0.010 (4)0.035 (6)
C70.042 (6)0.140 (12)0.115 (10)0.002 (7)0.014 (6)0.076 (10)
C80.062 (7)0.120 (10)0.079 (8)0.032 (7)0.034 (6)0.040 (8)
C90.068 (6)0.066 (6)0.061 (6)0.009 (5)0.000 (5)0.008 (5)
C100.081 (8)0.088 (9)0.084 (8)0.004 (7)0.007 (6)0.022 (7)
C110.084 (8)0.083 (9)0.086 (8)0.019 (6)0.018 (7)0.027 (7)
C120.087 (8)0.059 (6)0.097 (9)0.017 (6)0.005 (7)0.016 (6)
C130.051 (5)0.052 (5)0.063 (6)0.008 (4)0.013 (4)0.006 (4)
C140.058 (5)0.059 (6)0.057 (5)0.013 (4)0.019 (4)0.001 (5)
C150.099 (8)0.061 (6)0.063 (6)0.021 (6)0.025 (6)0.002 (5)
C160.100 (8)0.072 (7)0.053 (6)0.008 (6)0.025 (6)0.013 (5)
C170.043 (4)0.050 (5)0.051 (5)0.004 (4)0.018 (4)0.010 (4)
C180.073 (6)0.059 (5)0.029 (4)0.015 (5)0.002 (4)0.013 (4)
C190.045 (5)0.058 (5)0.047 (5)0.007 (4)0.001 (4)0.009 (4)
C200.027 (4)0.077 (6)0.054 (5)0.001 (4)0.002 (4)0.012 (4)
C210.036 (4)0.037 (4)0.047 (4)0.003 (3)0.012 (3)0.001 (3)
C220.039 (4)0.046 (5)0.039 (4)0.004 (3)0.011 (3)0.010 (3)
C230.041 (5)0.109 (8)0.056 (6)0.009 (5)0.022 (4)0.011 (5)
C240.068 (7)0.114 (9)0.055 (6)0.007 (6)0.030 (5)0.000 (6)
N10.044 (4)0.053 (4)0.068 (5)0.001 (3)0.009 (4)0.015 (4)
N20.046 (4)0.079 (6)0.063 (5)0.015 (4)0.017 (4)0.023 (4)
N30.066 (5)0.083 (6)0.080 (6)0.023 (5)0.019 (5)0.021 (5)
N40.044 (4)0.062 (5)0.057 (5)0.007 (3)0.014 (3)0.006 (4)
N50.049 (4)0.053 (4)0.062 (5)0.007 (3)0.008 (4)0.002 (4)
N60.065 (5)0.077 (6)0.053 (5)0.019 (4)0.012 (4)0.005 (4)
N70.036 (3)0.045 (4)0.039 (3)0.007 (3)0.011 (3)0.009 (3)
N80.046 (4)0.055 (4)0.037 (4)0.004 (3)0.007 (3)0.005 (3)
N90.075 (5)0.071 (5)0.033 (4)0.002 (4)0.007 (3)0.016 (3)
O10.061 (4)0.072 (4)0.039 (3)0.012 (3)0.007 (3)0.013 (3)
O20.052 (3)0.085 (4)0.046 (3)0.001 (3)0.016 (3)0.028 (3)
O30.047 (3)0.152 (6)0.083 (4)0.019 (4)0.029 (3)0.065 (4)
O40.052 (4)0.102 (5)0.049 (4)0.031 (4)0.006 (3)0.004 (3)
O5A0.024 (4)0.027 (5)0.031 (5)0.001 (4)0.009 (4)0.003 (4)
O5B0.029 (5)0.030 (5)0.029 (5)0.004 (4)0.005 (4)0.001 (4)
O60.062 (4)0.030 (3)0.103 (5)0.013 (3)0.020 (3)0.011 (3)
O70.112 (5)0.052 (4)0.061 (4)0.038 (4)0.044 (4)0.015 (3)
O80.083 (5)0.054 (4)0.060 (4)0.025 (3)0.011 (3)0.021 (3)
O90.114 (6)0.053 (4)0.068 (4)0.029 (4)0.053 (4)0.010 (3)
O100.119 (6)0.051 (4)0.054 (4)0.032 (4)0.048 (4)0.012 (3)
O110.039 (3)0.144 (7)0.073 (4)0.009 (4)0.016 (3)0.060 (5)
O120.050 (3)0.063 (4)0.094 (5)0.004 (3)0.043 (3)0.003 (3)
O130.131 (7)0.035 (4)0.113 (6)0.021 (4)0.080 (5)0.017 (4)
O140.026 (3)0.175 (8)0.074 (4)0.008 (4)0.010 (3)0.070 (5)
O150.102 (6)0.123 (6)0.147 (7)0.079 (5)0.095 (6)0.093 (6)
O16A0.038 (8)0.056 (8)0.030 (7)0.004 (6)0.008 (5)0.002 (6)
O16B0.037 (7)0.038 (6)0.024 (7)0.002 (5)0.001 (5)0.001 (5)
O170.124 (6)0.040 (4)0.116 (6)0.026 (4)0.073 (5)0.025 (4)
O180.105 (6)0.116 (6)0.108 (6)0.068 (5)0.080 (5)0.069 (5)
O190.093 (5)0.088 (5)0.108 (5)0.042 (4)0.069 (4)0.046 (4)
O20A0.023 (4)0.030 (5)0.024 (4)0.006 (4)0.006 (4)0.006 (4)
O20B0.034 (5)0.031 (5)0.027 (5)0.000 (4)0.012 (4)0.003 (4)
O1W0.178 (14)0.240 (17)0.47 (3)0.016 (12)0.190 (18)0.077 (19)
O2W0.080 (5)0.143 (8)0.090 (6)0.026 (5)0.003 (4)0.006 (5)
O3W0.186 (11)0.135 (9)0.200 (12)0.027 (8)0.128 (10)0.028 (8)
Geometric parameters (Å, º) top
Si1—O5A1.581 (8)C2—H20.9300
Si1—O5Ai1.581 (8)C3—C41.320 (16)
Si1—O20Bi1.628 (8)C3—H30.9300
Si1—O20B1.628 (8)C4—C51.364 (14)
Si1—O5B1.650 (9)C4—H40.9300
Si1—O5Bi1.650 (9)C5—N11.333 (11)
Si1—O20Ai1.674 (8)C5—C61.466 (14)
Si1—O20A1.674 (8)C6—N21.340 (12)
Zn1—N52.134 (7)C6—C71.450 (14)
Zn1—N22.138 (8)C7—C81.411 (18)
Zn1—N72.167 (6)C7—H70.9300
Zn1—N12.176 (8)C8—N31.329 (14)
Zn1—N82.186 (7)C8—H80.9300
Zn1—N42.196 (7)C9—N41.341 (11)
Mo1—O21.670 (5)C9—C101.357 (14)
Mo1—O131.771 (7)C9—H90.9300
Mo1—O141.823 (6)C10—C111.363 (16)
Mo1—O16A1.918 (13)C10—H100.9300
Mo1—O112.023 (6)C11—C121.382 (15)
Mo1—O16B2.070 (12)C11—H110.9300
Mo1—O20A2.358 (8)C12—C131.368 (13)
Mo1—O20B2.439 (8)C12—H120.9300
Mo2—O81.666 (5)C13—N41.336 (11)
Mo2—O111.803 (6)C13—C141.480 (12)
Mo2—O91.830 (6)C14—N51.326 (11)
Mo2—O31.972 (6)C14—C151.399 (13)
Mo2—O72.019 (6)C15—C161.343 (14)
Mo2—O20B2.353 (9)C15—H150.9300
Mo2—O5A2.411 (8)C16—N61.342 (12)
Mo3—O11.647 (5)C16—H160.9300
Mo3—O16A1.806 (14)C17—N71.328 (9)
Mo3—O191.867 (7)C17—C181.383 (11)
Mo3—O17i1.943 (7)C17—H170.9300
Mo3—O15i1.945 (7)C18—C191.337 (12)
Mo3—O16B1.994 (12)C18—H180.9300
Mo3—O20A2.423 (8)C19—C201.375 (11)
Mo3—O5B2.433 (9)C19—H190.9300
Mo4—O41.651 (5)C20—C211.382 (10)
Mo4—O181.837 (7)C20—H200.9300
Mo4—O101.867 (6)C21—N71.357 (9)
Mo4—O191.967 (6)C21—C221.467 (10)
Mo4—O91.984 (6)C22—N81.322 (9)
Mo4—O5B2.345 (8)C22—C231.410 (11)
Mo4—O5A2.427 (8)C23—C241.373 (13)
Mo5—O61.655 (5)C23—H230.9300
Mo5—O31.825 (7)C24—N91.331 (12)
Mo5—O151.834 (7)C24—H240.9300
Mo5—O18i1.968 (7)N2—N31.339 (11)
Mo5—O141.975 (6)N3—H3A0.8600
Mo5—O20B2.393 (9)N5—N61.350 (10)
Mo5—O5Bi2.394 (9)N6—H60.8600
Mo6—O121.675 (5)N8—N91.351 (9)
Mo6—O71.792 (6)N9—H9A0.8600
Mo6—O171.839 (6)O5A—O20B1.794 (12)
Mo6—O101.947 (6)O5A—O5B1.816 (12)
Mo6—O13i2.022 (6)O5B—Mo5i2.394 (9)
Mo6—O20Ai2.348 (8)O13—Mo6i2.022 (6)
Mo6—O5A2.447 (8)O15—Mo3i1.945 (7)
C1—N11.340 (12)O16A—O16B0.747 (11)
C1—C21.368 (13)O17—Mo3i1.943 (7)
C1—H10.9300O18—Mo5i1.968 (7)
C2—C31.337 (16)O20A—Mo6i2.348 (8)
O5A—Si1—O5Ai180.000 (1)O17—Mo6—O13i86.1 (3)
O5A—Si1—O20Bi112.0 (4)O10—Mo6—O13i81.0 (3)
O5Ai—Si1—O20Bi68.0 (4)O12—Mo6—O20Ai154.9 (3)
O5A—Si1—O20B68.0 (4)O7—Mo6—O20Ai99.4 (3)
O5Ai—Si1—O20B112.0 (4)O17—Mo6—O20Ai64.2 (4)
O20Bi—Si1—O20B180.000 (2)O10—Mo6—O20Ai93.0 (3)
O5A—Si1—O5B68.3 (4)O13i—Mo6—O20Ai61.3 (3)
O5Ai—Si1—O5B111.7 (4)O12—Mo6—O5A157.9 (3)
O20Bi—Si1—O5B71.6 (4)O7—Mo6—O5A65.6 (3)
O20B—Si1—O5B108.4 (4)O17—Mo6—O5A97.8 (4)
O5A—Si1—O5Bi111.7 (4)O10—Mo6—O5A64.1 (3)
O5Ai—Si1—O5Bi68.3 (4)O13i—Mo6—O5A92.3 (4)
O20Bi—Si1—O5Bi108.4 (4)O20Ai—Mo6—O5A45.7 (3)
O20B—Si1—O5Bi71.6 (4)N1—C1—C2122.0 (9)
O5B—Si1—O5Bi180.0 (5)N1—C1—H1119.0
O5A—Si1—O20Ai69.8 (4)C2—C1—H1119.0
O5Ai—Si1—O20Ai110.2 (4)C3—C2—C1119.0 (11)
O20Bi—Si1—O20Ai71.9 (4)C3—C2—H2120.5
O20B—Si1—O20Ai108.1 (4)C1—C2—H2120.5
O5B—Si1—O20Ai106.3 (4)C2—C3—C4121.0 (12)
O5Bi—Si1—O20Ai73.7 (4)C2—C3—H3119.5
O5A—Si1—O20A110.2 (4)C4—C3—H3119.5
O5Ai—Si1—O20A69.8 (4)C3—C4—C5118.2 (12)
O20Bi—Si1—O20A108.1 (4)C3—C4—H4120.9
O20B—Si1—O20A71.9 (4)C5—C4—H4120.9
O5B—Si1—O20A73.7 (4)N1—C5—C4123.6 (11)
O5Bi—Si1—O20A106.3 (4)N1—C5—C6115.0 (8)
O20Ai—Si1—O20A180.000 (2)C4—C5—C6121.4 (10)
N5—Zn1—N295.8 (3)N2—C6—C7108.9 (11)
N5—Zn1—N790.8 (3)N2—C6—C5118.0 (8)
N2—Zn1—N794.1 (2)C7—C6—C5133.1 (12)
N5—Zn1—N1169.1 (3)C8—C7—C6103.9 (11)
N2—Zn1—N176.2 (3)C8—C7—H7128.0
N7—Zn1—N197.0 (2)C6—C7—H7128.0
N5—Zn1—N895.5 (3)N3—C8—C7107.0 (10)
N2—Zn1—N8165.1 (3)N3—C8—H8126.5
N7—Zn1—N876.1 (2)C7—C8—H8126.5
N1—Zn1—N893.7 (3)N4—C9—C10123.2 (10)
N5—Zn1—N475.6 (3)N4—C9—H9118.4
N2—Zn1—N498.3 (3)C10—C9—H9118.4
N7—Zn1—N4162.4 (3)C9—C10—C11119.5 (11)
N1—Zn1—N498.1 (3)C9—C10—H10120.2
N8—Zn1—N493.8 (2)C11—C10—H10120.3
O2—Mo1—O13103.6 (4)C10—C11—C12118.4 (10)
O2—Mo1—O14101.5 (4)C10—C11—H11120.8
O13—Mo1—O1495.7 (3)C12—C11—H11120.8
O2—Mo1—O16A107.3 (4)C13—C12—C11118.9 (11)
O13—Mo1—O16A93.9 (4)C13—C12—H12120.5
O14—Mo1—O16A146.5 (4)C11—C12—H12120.5
O2—Mo1—O1196.6 (3)N4—C13—C12122.9 (9)
O13—Mo1—O11158.8 (4)N4—C13—C14114.1 (8)
O14—Mo1—O1186.5 (3)C12—C13—C14123.0 (9)
O16A—Mo1—O1173.7 (4)N5—C14—C15110.0 (8)
O2—Mo1—O16B89.3 (4)N5—C14—C13118.3 (8)
O13—Mo1—O16B87.5 (4)C15—C14—C13131.6 (9)
O14—Mo1—O16B167.7 (4)C16—C15—C14106.2 (9)
O16A—Mo1—O16B21.2 (3)C16—C15—H15126.9
O11—Mo1—O16B86.3 (4)C14—C15—H15126.9
O2—Mo1—O20A157.2 (3)C15—C16—N6107.0 (9)
O13—Mo1—O20A64.1 (4)C15—C16—H16126.5
O14—Mo1—O20A98.9 (3)N6—C16—H16126.5
O16A—Mo1—O20A57.4 (4)N7—C17—C18122.9 (7)
O11—Mo1—O20A94.8 (3)N7—C17—H17118.5
O16B—Mo1—O20A71.8 (4)C18—C17—H17118.5
O2—Mo1—O20B153.6 (3)C19—C18—C17119.8 (8)
O13—Mo1—O20B100.2 (4)C19—C18—H18120.1
O14—Mo1—O20B64.7 (3)C17—C18—H18120.1
O16A—Mo1—O20B82.1 (4)C18—C19—C20118.7 (8)
O11—Mo1—O20B61.7 (3)C18—C19—H19120.7
O16B—Mo1—O20B103.1 (4)C20—C19—H19120.7
O20A—Mo1—O20B47.6 (3)C19—C20—C21119.9 (8)
O8—Mo2—O11103.3 (4)C19—C20—H20120.0
O8—Mo2—O9100.7 (3)C21—C20—H20120.1
O11—Mo2—O996.4 (3)N7—C21—C20121.2 (7)
O8—Mo2—O399.0 (4)N7—C21—C22115.1 (6)
O11—Mo2—O389.2 (3)C20—C21—C22123.6 (7)
O9—Mo2—O3157.6 (4)N8—C22—C23110.8 (7)
O8—Mo2—O797.3 (3)N8—C22—C21118.9 (7)
O11—Mo2—O7158.0 (3)C23—C22—C21130.3 (7)
O9—Mo2—O786.9 (2)C24—C23—C22104.5 (8)
O3—Mo2—O780.2 (3)C24—C23—H23127.8
O8—Mo2—O20B158.3 (3)C22—C23—H23127.8
O11—Mo2—O20B66.1 (3)N9—C24—C23107.4 (8)
O9—Mo2—O20B99.3 (3)N9—C24—H24126.3
O3—Mo2—O20B63.3 (3)C23—C24—H24126.3
O7—Mo2—O20B91.9 (3)C5—N1—C1116.2 (8)
O8—Mo2—O5A155.9 (3)C5—N1—Zn1115.4 (7)
O11—Mo2—O5A97.9 (3)C1—N1—Zn1127.9 (6)
O9—Mo2—O5A65.3 (3)N3—N2—C6107.0 (8)
O3—Mo2—O5A92.5 (3)N3—N2—Zn1138.0 (7)
O7—Mo2—O5A63.7 (3)C6—N2—Zn1115.0 (7)
O20B—Mo2—O5A44.2 (3)C8—N3—N2113.1 (10)
O1—Mo3—O16A112.4 (5)C8—N3—H3A123.5
O1—Mo3—O19101.7 (3)N2—N3—H3A123.5
O16A—Mo3—O1985.2 (5)C9—N4—C13117.0 (8)
O1—Mo3—O17i99.5 (4)C9—N4—Zn1127.0 (7)
O16A—Mo3—O17i91.7 (4)C13—N4—Zn1115.9 (6)
O19—Mo3—O17i158.1 (4)C14—N5—N6105.1 (7)
O1—Mo3—O15i100.0 (4)C14—N5—Zn1116.0 (6)
O16A—Mo3—O15i147.7 (5)N6—N5—Zn1138.9 (6)
O19—Mo3—O15i87.8 (3)C16—N6—N5111.7 (8)
O17i—Mo3—O15i83.3 (3)C16—N6—H6124.1
O1—Mo3—O16B92.7 (4)N5—N6—H6124.2
O16A—Mo3—O16B22.0 (4)C17—N7—C21117.4 (6)
O19—Mo3—O16B98.9 (4)C17—N7—Zn1127.0 (5)
O17i—Mo3—O16B85.3 (4)C21—N7—Zn1115.6 (5)
O15i—Mo3—O16B164.2 (5)C22—N8—N9105.3 (6)
O1—Mo3—O20A155.4 (3)C22—N8—Zn1114.1 (5)
O16A—Mo3—O20A57.0 (4)N9—N8—Zn1140.3 (5)
O19—Mo3—O20A99.4 (3)C24—N9—N8112.1 (7)
O17i—Mo3—O20A61.4 (3)C24—N9—H9A124.0
O15i—Mo3—O20A93.3 (4)N8—N9—H9A124.0
O16B—Mo3—O20A71.5 (4)Mo5—O3—Mo2136.1 (5)
O1—Mo3—O5B155.5 (3)Si1—O5A—O20B57.2 (4)
O16A—Mo3—O5B86.5 (5)Si1—O5A—O5B57.6 (4)
O19—Mo3—O5B63.0 (3)O20B—O5A—O5B94.8 (5)
O17i—Mo3—O5B95.2 (4)Si1—O5A—Mo2123.3 (4)
O15i—Mo3—O5B62.4 (3)O20B—O5A—Mo266.2 (4)
O16B—Mo3—O5B108.0 (4)O5B—O5A—Mo2128.3 (5)
O20A—Mo3—O5B48.5 (3)Si1—O5A—Mo4122.7 (4)
O4—Mo4—O18102.6 (4)O20B—O5A—Mo4135.5 (5)
O4—Mo4—O10102.2 (3)O5B—O5A—Mo465.3 (4)
O18—Mo4—O1093.9 (3)Mo2—O5A—Mo494.4 (3)
O4—Mo4—O1998.9 (4)Si1—O5A—Mo6121.6 (4)
O18—Mo4—O1988.9 (3)O20B—O5A—Mo6126.0 (5)
O10—Mo4—O19157.6 (3)O5B—O5A—Mo6132.3 (5)
O4—Mo4—O998.7 (3)Mo2—O5A—Mo693.6 (3)
O18—Mo4—O9158.1 (4)Mo4—O5A—Mo693.3 (3)
O10—Mo4—O986.6 (2)Si1—O5B—O5A54.0 (4)
O19—Mo4—O982.8 (3)Si1—O5B—Mo4123.9 (4)
O4—Mo4—O5B156.9 (3)O5A—O5B—Mo470.1 (4)
O18—Mo4—O5B64.1 (4)Si1—O5B—Mo5i119.9 (4)
O10—Mo4—O5B97.6 (3)O5A—O5B—Mo5i136.7 (5)
O19—Mo4—O5B63.7 (3)Mo4—O5B—Mo5i96.8 (3)
O9—Mo4—O5B94.1 (3)Si1—O5B—Mo3119.1 (4)
O4—Mo4—O5A157.5 (3)O5A—O5B—Mo3127.3 (5)
O18—Mo4—O5A97.2 (4)Mo4—O5B—Mo396.4 (3)
O10—Mo4—O5A65.5 (3)Mo5i—O5B—Mo394.3 (3)
O19—Mo4—O5A92.2 (3)Mo6—O7—Mo2136.5 (4)
O9—Mo4—O5A63.1 (3)Mo2—O9—Mo4137.1 (4)
O5B—Mo4—O5A44.7 (3)Mo4—O10—Mo6136.8 (4)
O6—Mo5—O3100.1 (4)Mo2—O11—Mo1136.3 (4)
O6—Mo5—O15101.9 (4)Mo1—O13—Mo6i137.0 (5)
O3—Mo5—O1594.3 (3)Mo1—O14—Mo5137.3 (4)
O6—Mo5—O18i100.4 (4)Mo5—O15—Mo3i138.8 (5)
O3—Mo5—O18i158.4 (4)O16B—O16A—Mo393.4 (18)
O15—Mo5—O18i87.9 (3)O16B—O16A—Mo190.9 (17)
O6—Mo5—O1499.5 (3)Mo3—O16A—Mo1143.4 (7)
O3—Mo5—O1488.4 (3)O16A—O16B—Mo364.7 (16)
O15—Mo5—O14157.6 (4)O16A—O16B—Mo167.9 (16)
O18i—Mo5—O1481.7 (3)Mo3—O16B—Mo1120.9 (6)
O6—Mo5—O20B156.1 (3)Mo6—O17—Mo3i138.7 (5)
O3—Mo5—O20B64.2 (3)Mo4—O18—Mo5i137.2 (5)
O15—Mo5—O20B97.4 (4)Mo3—O19—Mo4136.5 (4)
O18i—Mo5—O20B94.2 (4)Si1—O20A—Mo6i122.5 (4)
O14—Mo5—O20B63.9 (3)Si1—O20A—Mo1121.2 (4)
O6—Mo5—O5Bi156.3 (3)Mo6i—O20A—Mo197.2 (3)
O3—Mo5—O5Bi100.2 (3)Si1—O20A—Mo3118.6 (4)
O15—Mo5—O5Bi64.5 (3)Mo6i—O20A—Mo395.8 (3)
O18i—Mo5—O5Bi61.5 (3)Mo1—O20A—Mo395.4 (3)
O14—Mo5—O5Bi93.2 (3)Si1—O20B—O5A54.8 (4)
O20B—Mo5—O5Bi47.2 (3)Si1—O20B—Mo2124.2 (5)
O12—Mo6—O7102.9 (3)O5A—O20B—Mo269.6 (4)
O12—Mo6—O17102.1 (4)Si1—O20B—Mo5121.0 (4)
O7—Mo6—O1795.2 (3)O5A—O20B—Mo5129.6 (5)
O12—Mo6—O1098.4 (3)Mo2—O20B—Mo595.9 (3)
O7—Mo6—O1089.9 (2)Si1—O20B—Mo1119.0 (4)
O17—Mo6—O10157.1 (4)O5A—O20B—Mo1133.9 (5)
O12—Mo6—O13i98.4 (4)Mo2—O20B—Mo195.7 (3)
O7—Mo6—O13i157.9 (4)Mo5—O20B—Mo194.1 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O16Aii0.862.202.972 (14)149
N9—H9A···O16Bii0.861.882.728 (13)168
N6—H6···O2W0.861.952.770 (11)160
N3—H3A···O3W0.862.022.870 (15)167
Symmetry code: (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H7N3)3]2[SiMo12O40]·6H2O
Mr2929.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.824 (4), 16.365 (3), 27.749 (6)
β (°) 104.74 (3)
V3)8267 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.758, 0.829
No. of measured, independent and
observed [I > 2σ(I)'] reflections
27894, 7081, 5632
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.112, 1.00
No. of reflections7081
No. of parameters601
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.040P)2 + 90.4942P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.22, 0.63

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Si1—O5A1.581 (8)Zn1—N22.138 (8)
Si1—O20B1.628 (8)Zn1—N72.167 (6)
Si1—O5B1.650 (9)Zn1—N12.176 (8)
Si1—O20A1.674 (8)Zn1—N82.186 (7)
Zn1—N52.134 (7)Zn1—N42.196 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O16Ai0.862.202.972 (14)149.3
N9—H9A···O16Bi0.861.882.728 (13)168.2
N6—H6···O2W0.861.952.770 (11)160.3
N3—H3A···O3W0.862.022.870 (15)167.1
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

Financial support from the Chinese Academy of Sciences (Hundred Talents Program) and the Ministry of Science and Technology of China (grant No. 2007CB607608), Shandong Provincial Education Department and Shandong Institute of Education is gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. D., Lu, C. Z., Chen, S. M., Zhuang, H. H. & Huang, J. S. (2003). Polyhedron, 22, 3091–3098.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds