inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

NASICON-type Na3V2(PO4)3

aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska str., 01601 Kyiv, Ukraine
*Correspondence e-mail: zvigo@yandex.ru

(Received 19 December 2009; accepted 22 January 2010; online 27 January 2010)

Single crystals of the title compound, tris­odium divanadium(III) tris­(orthophosphate), were grown from a self-flux in the system Na4P2O7–NaVP2O7. Na3V2(PO4)3 belongs to the family of NASICON-related structures and is built up from isolated [VO6] octa­hedra (3. symmetry) and [PO4] tetra­hedra (.2 symmetry) inter­linked via corners to establish the framework anion [V2(PO4)3]3−. The two independent Na+ cations are partially occupied [site-occupancy factors = 0.805 (18) and 0.731 (7)] and are located in channels with two different oxygen environments, viz sixfold coordination for the first ([\overline{3}]. symmetry) and eightfold for the second (.2 symmetry) Na+ cation.

Related literature

For structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII = Sc, Fe, Cr), see: Collin et al. (1986[Collin, G., Comes, R., Boilot, J. P. & Colomban, P. (1986). J. Phys. Chem. Solids, 47, 843-854.]); Genkina et al. (1991[Genkina, E. A., Kalinin, V. B., Maksimov, B. A. & Golubev, A. M. (1991). Kristallografiya, 36, 1126-1130.]); Lazoryak et al. (1980[Lazoryak, B. I., Kalinin, V. B., Stefanovich, S. Yu. & Efremov, V. A. (1980). Dokl. Akad. Nauk SSSR, 250, 861-864.]); Lucazeau et al. (1986[Lucazeau, G., Barj, M., Soubeyroux, J. L., Dianoux, A. J. & Delmas, C. (1986). Solid State Ionics, 1819, 959-963.]); Masquelier et al. (1992[Masquelier, C., Wurm, C., Rodriguez-Carvajal, J., Gaubicher, J. & Nazar, L. (1992). Phase Trans. 38, 127-220.]); Susman et al. (1983[Susman, S., Delbecq, C. J., Brun, T. O. & Prince, E. (1983). Solid State Ionics, 9, 839-844.]). For preparation of NaVP2O7 which was used as an educt for crystal growth of the title compound, see: Zatovsky et al. (1999[Zatovsky, I. V., Slobodyanik, N. S., Lisnyk, V. V. & Stratiychuk, D. A. (1999). Ukr. Khim. Zh. 65, 98-103.]).

Experimental

Crystal data
  • Na3V2(PO4)3

  • Mr = 455.76

  • Trigonal, [R \overline 3c ]

  • a = 8.7288 (2) Å

  • c = 21.8042 (7) Å

  • V = 1438.73 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur-3 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.635, Tmax = 0.780

  • 12580 measured reflections

  • 1331 independent reflections

  • 1153 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 1.1

  • 1331 reflections

  • 37 parameters

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

V1—O2i 1.9693 (10)
V1—O1ii 2.0271 (9)
Na1—O1 2.5045 (11)
Na2—O1ii 2.3883 (12)
Na2—O1i 2.4448 (19)
Na2—O2iii 2.6280 (16)
Na2—O2iv 2.8352 (19)
P1—O2v 1.5227 (12)
P1—O1 1.5358 (10)
Symmetry codes: (i) -y+1, x-y+1, z; (ii) -x+y, -x+1, z; (iii) [-x+{\script{4\over 3}}, -x+y+{\script{2\over 3}}, -z+{\script{1\over 6}}]; (iv) [-y+{\script{4\over 3}}, -x+{\script{5\over 3}}, z+{\script{1\over 6}}]; (v) [x-{\script{2\over 3}}, x-y+{\script{2\over 3}}, z+{\script{1\over 6}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII - Sc, Fe, Cr) have been intensively investigated, for instance: (Collin et al., 1986; Genkina et al., 1991; Lazoryak et al., 1980; Lucazeau et al., 1986; Masquelier et al., 1992; Susman et al., 1983). The structure of NASICON-type Na3V2(PO4)3, (I), is reported here.

In the asymmetric unit of (I) (Fig. 1) there is one V and one P atom, while other,atoms (Na and O) are represented in two distinct positions each. The main building block of (I) (Fig. 2) involves two VO6 octahedra interlinked by three phosphate groups lying along the c axis. As a result of the block aggregation, a three-dimensional framework with an overall composition of [V2(PO4)3]3- is organized (Fig. 3).

Sodium atoms are located in the voids of the framework with six- (position 6b) and eightfold (18b) coordination when a cut-off distance of 2.9 Å is considered.

Related literature top

For structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII = Sc, Fe, Cr), see: Collin et al. (1986); Genkina et al. (1991); Lazoryak et al. (1980); Lucazeau et al. (1986); Masquelier et al. (1992); Susman et al. (1983). For preparation of NaVP2O7 which was used as an educt for crystal growth of the title compound, see: Zatovsky et al. (1999).

Experimental top

Crystals of (I) were obtained in the system Na4P2O7—NaVP2O7 using a high-temperature crystallization technique. Initial NaVP2O7 was prepared in accordance to Zatovsky et al. (1999). A thoroughly ground mixture of Na4P2O7 and NaVP2O7 (ratio 1:3) was heated up to 1343 K and then kept for 2 h in a sealed silica tube under vacuum. Then it was cooled down to 823 K with a rate of 5 K/h and left in the furnace to reach room temperature. The final product, green prismatic crystals, was leached out from the solidified melt with boiling water.

Refinement top

After refinement of a basic model and an accurate definition of the atom positions, the occupancy of Na1 and Na2 sites were refined freely and were finally restrained to meet the criterion for charge balance. The highest peak and the deepest hole in the final difference map is located at 0.00 Å from Na1 (1.12 e/Å3) and 0.60 from Na2 (-0.74 e/Å3) respectively.

Structure description top

The structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII - Sc, Fe, Cr) have been intensively investigated, for instance: (Collin et al., 1986; Genkina et al., 1991; Lazoryak et al., 1980; Lucazeau et al., 1986; Masquelier et al., 1992; Susman et al., 1983). The structure of NASICON-type Na3V2(PO4)3, (I), is reported here.

In the asymmetric unit of (I) (Fig. 1) there is one V and one P atom, while other,atoms (Na and O) are represented in two distinct positions each. The main building block of (I) (Fig. 2) involves two VO6 octahedra interlinked by three phosphate groups lying along the c axis. As a result of the block aggregation, a three-dimensional framework with an overall composition of [V2(PO4)3]3- is organized (Fig. 3).

Sodium atoms are located in the voids of the framework with six- (position 6b) and eightfold (18b) coordination when a cut-off distance of 2.9 Å is considered.

For structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII = Sc, Fe, Cr), see: Collin et al. (1986); Genkina et al. (1991); Lazoryak et al. (1980); Lucazeau et al. (1986); Masquelier et al. (1992); Susman et al. (1983). For preparation of NaVP2O7 which was used as an educt for crystal growth of the title compound, see: Zatovsky et al. (1999).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of Na3V2(PO4)3 with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The central building block [V2(PO4)3] in the structure of compound (I).
[Figure 3] Fig. 3. The view of the structure of compound (I) on the ab plane.
trisodium divanadium(III) tris(orthophosphate) top
Crystal data top
Na3V2(PO4)3Dx = 3.156 Mg m3
Mr = 455.76Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 12580 reflections
Hall symbol: -R 3 2"cθ = 3.3–45.0°
a = 8.7288 (2) ŵ = 2.66 mm1
c = 21.8042 (7) ÅT = 293 K
V = 1438.73 (7) Å3Prism, green
Z = 60.20 × 0.15 × 0.10 mm
F(000) = 1320
Data collection top
Oxford Diffraction Xcalibur-3 CCD
diffractometer
1331 independent reflections
Radiation source: fine-focus sealed tube1153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 45°, θmin = 3.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1716
Tmin = 0.635, Tmax = 0.780k = 1717
12580 measured reflectionsl = 4341
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0264P)2 + 5.1429P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.1Δρmax = 1.12 e Å3
1331 reflectionsΔρmin = 0.74 e Å3
37 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0056 (4)
Crystal data top
Na3V2(PO4)3Z = 6
Mr = 455.76Mo Kα radiation
Trigonal, R3cµ = 2.66 mm1
a = 8.7288 (2) ÅT = 293 K
c = 21.8042 (7) Å0.20 × 0.15 × 0.10 mm
V = 1438.73 (7) Å3
Data collection top
Oxford Diffraction Xcalibur-3 CCD
diffractometer
1331 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1153 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.780Rint = 0.063
12580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03237 parameters
wR(F2) = 0.0750 restraints
S = 1.1Δρmax = 1.12 e Å3
1331 reflectionsΔρmin = 0.74 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.33330.66670.019498 (13)0.00690 (6)
Na10.33330.66670.16670.149 (5)0.805 (18)
Na20.66670.96726 (19)0.08330.0522 (10)0.731 (7)
P10.04273 (5)0.33330.08330.00866 (8)
O10.14193 (13)0.49765 (14)0.07762 (5)0.01643 (16)
O20.54047 (16)0.84480 (17)0.02643 (7)0.0259 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00643 (7)0.00643 (7)0.00784 (10)0.00321 (4)00
Na10.218 (8)0.218 (8)0.0111 (14)0.109 (4)00
Na20.0224 (8)0.0170 (5)0.119 (2)0.0112 (4)0.0354 (11)0.0177 (5)
P10.00635 (10)0.00714 (14)0.01276 (15)0.00357 (7)0.00152 (5)0.00305 (11)
O10.0089 (3)0.0130 (3)0.0220 (4)0.0015 (3)0.0048 (3)0.0057 (3)
O20.0185 (4)0.0223 (5)0.0322 (6)0.0067 (4)0.0143 (4)0.0151 (4)
Geometric parameters (Å, º) top
V1—O2i1.9693 (10)Na2—O1ii2.3883 (12)
V1—O21.9693 (11)Na2—O1vi2.3883 (12)
V1—O2ii1.9693 (10)Na2—O1i2.4448 (19)
V1—O1ii2.0271 (9)Na2—O1vii2.4449 (19)
V1—O12.0271 (9)Na2—O2viii2.6280 (16)
V1—O1i2.0271 (9)Na2—O22.6281 (16)
V1—Na2i3.1070 (6)Na2—O2ix2.8352 (19)
V1—Na23.1070 (7)Na2—O2x2.8352 (19)
V1—Na2ii3.1070 (6)Na2—P1xi2.9222 (11)
V1—Na13.2096 (3)Na2—P1ii2.9222 (11)
Na1—O12.5045 (11)Na2—P1i2.9968 (17)
Na1—O1ii2.5045 (11)P1—O2xii1.5227 (12)
Na1—O1i2.5045 (11)P1—O2xiii1.5227 (12)
Na1—O1iii2.5045 (11)P1—O11.5358 (10)
Na1—O1iv2.5045 (11)P1—O1xiv1.5359 (10)
Na1—O1v2.5046 (11)P1—Na2xv2.9222 (11)
Na1—V1iv3.2081 (2)P1—Na2i2.9222 (11)
Na1—Na2i3.3193 (6)P1—Na2ii2.9968 (17)
Na1—Na2v3.3193 (6)O1—Na2i2.3883 (12)
Na1—Na23.3193 (6)O1—Na2ii2.4448 (19)
Na1—Na2ii3.3205 (6)
O2i—V1—O296.44 (6)O1ii—Na2—O268.20 (4)
O2i—V1—O2ii96.44 (6)O1vi—Na2—O2115.98 (4)
O2—V1—O2ii96.44 (6)O1i—Na2—O266.40 (4)
O2i—V1—O1ii88.22 (5)O1vii—Na2—O293.51 (6)
O2—V1—O1ii89.72 (5)O2viii—Na2—O2157.25 (9)
O2ii—V1—O1ii171.80 (6)O1ii—Na2—O2ix54.99 (4)
O2i—V1—O189.72 (5)O1vi—Na2—O2ix108.39 (6)
O2—V1—O1171.80 (6)O1i—Na2—O2ix115.94 (4)
O2ii—V1—O188.22 (5)O1vii—Na2—O2ix151.11 (4)
O1ii—V1—O185.05 (5)O2viii—Na2—O2ix85.67 (3)
O2i—V1—O1i171.80 (6)O2—Na2—O2ix112.13 (5)
O2—V1—O1i88.22 (5)O1ii—Na2—O2x108.39 (6)
O2ii—V1—O1i89.72 (5)O1vi—Na2—O2x54.99 (4)
O1ii—V1—O1i85.05 (5)O1i—Na2—O2x151.10 (4)
O1—V1—O1i85.05 (5)O1vii—Na2—O2x115.94 (4)
O1—Na1—O1ii66.33 (3)O2viii—Na2—O2x112.13 (5)
O1—Na1—O1i66.33 (3)O2—Na2—O2x85.67 (3)
O1ii—Na1—O1i66.33 (3)O2ix—Na2—O2x80.45 (7)
O1—Na1—O1iii113.67 (3)O2xii—P1—O2xiii111.67 (12)
O1ii—Na1—O1iii180O2xii—P1—O1106.07 (7)
O1i—Na1—O1iii113.67 (3)O2xiii—P1—O1112.18 (7)
O1—Na1—O1iv180O2xii—P1—O1xiv112.19 (7)
O1ii—Na1—O1iv113.67 (3)O2xiii—P1—O1xiv106.07 (7)
O1i—Na1—O1iv113.67 (3)O1—P1—O1xiv108.74 (9)
O1iii—Na1—O1iv66.33 (3)P1—O1—V1145.95 (7)
O1—Na1—O1v113.67 (3)P1—O1—Na2i93.73 (6)
O1ii—Na1—O1v113.67 (3)V1—O1—Na2i89.05 (5)
O1i—Na1—O1v180P1—O1—Na2ii94.93 (5)
O1iii—Na1—O1v66.33 (3)V1—O1—Na2ii87.50 (4)
O1iv—Na1—O1v66.33 (3)Na2i—O1—Na2ii169.09 (5)
O1ii—Na2—O1vi160.52 (9)P1—O1—Na1124.53 (6)
O1ii—Na2—O1i69.07 (5)V1—O1—Na189.52 (4)
O1vi—Na2—O1i130.40 (6)Na2i—O1—Na185.40 (5)
O1ii—Na2—O1vii130.40 (6)Na2ii—O1—Na184.23 (4)
O1vi—Na2—O1vii69.07 (5)P1xvi—O2—V1151.38 (10)
O1i—Na2—O1vii61.41 (6)P1xvi—O2—Na2120.77 (8)
O1ii—Na2—O2viii115.98 (4)V1—O2—Na283.72 (5)
O1vi—Na2—O2viii68.20 (4)P1xvi—O2—Na2xvii77.85 (5)
O1i—Na2—O2viii93.51 (6)V1—O2—Na2xvii107.30 (6)
O1vii—Na2—O2viii66.40 (4)Na2—O2—Na2xvii113.64 (7)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) xy+2/3, x+1/3, z+1/3; (iv) x+2/3, y+4/3, z+1/3; (v) y1/3, x+y+1/3, z+1/3; (vi) xy+4/3, y+5/3, z+1/6; (vii) y+1/3, x+2/3, z+1/6; (viii) x+4/3, x+y+2/3, z+1/6; (ix) y+4/3, x+5/3, z+1/6; (x) y, x+y+1, z; (xi) x+1, y+1, z; (xii) x2/3, xy+2/3, z+1/6; (xiii) y1, x+y, z; (xiv) xy+1/3, y+2/3, z+1/6; (xv) x1, y1, z; (xvi) xy+1, x+1, z; (xvii) xy+1, x, z.

Experimental details

Crystal data
Chemical formulaNa3V2(PO4)3
Mr455.76
Crystal system, space groupTrigonal, R3c
Temperature (K)293
a, c (Å)8.7288 (2), 21.8042 (7)
V3)1438.73 (7)
Z6
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur-3 CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.635, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
12580, 1331, 1153
Rint0.063
(sin θ/λ)max1)0.995
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.1
No. of reflections1331
No. of parameters37
Δρmax, Δρmin (e Å3)1.12, 0.74

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
V1—O2i1.9693 (10)Na2—O2iii2.6280 (16)
V1—O1ii2.0271 (9)Na2—O2iv2.8352 (19)
Na1—O12.5045 (11)P1—O2v1.5227 (12)
Na2—O1ii2.3883 (12)P1—O11.5358 (10)
Na2—O1i2.4448 (19)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) x+4/3, x+y+2/3, z+1/6; (iv) y+4/3, x+5/3, z+1/6; (v) x2/3, xy+2/3, z+1/6.
 

Acknowledgements

The author is grateful to Professor Vyacheslav N. Baumer from STC "Institute for Single Crystals", NAS of Ukraine, Kharkiv, Ukraine, for the single-crystal measurements.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCollin, G., Comes, R., Boilot, J. P. & Colomban, P. (1986). J. Phys. Chem. Solids, 47, 843–854.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGenkina, E. A., Kalinin, V. B., Maksimov, B. A. & Golubev, A. M. (1991). Kristallografiya, 36, 1126–1130.  CAS Google Scholar
First citationLazoryak, B. I., Kalinin, V. B., Stefanovich, S. Yu. & Efremov, V. A. (1980). Dokl. Akad. Nauk SSSR, 250, 861–864.  CAS Google Scholar
First citationLucazeau, G., Barj, M., Soubeyroux, J. L., Dianoux, A. J. & Delmas, C. (1986). Solid State Ionics, 1819, 959–963.  CrossRef Web of Science Google Scholar
First citationMasquelier, C., Wurm, C., Rodriguez-Carvajal, J., Gaubicher, J. & Nazar, L. (1992). Phase Trans. 38, 127–220.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSusman, S., Delbecq, C. J., Brun, T. O. & Prince, E. (1983). Solid State Ionics, 9, 839–844.  CrossRef Web of Science Google Scholar
First citationZatovsky, I. V., Slobodyanik, N. S., Lisnyk, V. V. & Stratiychuk, D. A. (1999). Ukr. Khim. Zh. 65, 98–103.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds