inorganic compounds
NASICON-type Na3V2(PO4)3
aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska str., 01601 Kyiv, Ukraine
*Correspondence e-mail: zvigo@yandex.ru
Single crystals of the title compound, trisodium divanadium(III) tris(orthophosphate), were grown from a self-flux in the system Na4P2O7–NaVP2O7. Na3V2(PO4)3 belongs to the family of NASICON-related structures and is built up from isolated [VO6] octahedra (3. symmetry) and [PO4] tetrahedra (.2 symmetry) interlinked via corners to establish the framework anion [V2(PO4)3]3−. The two independent Na+ cations are partially occupied [site-occupancy factors = 0.805 (18) and 0.731 (7)] and are located in channels with two different oxygen environments, viz sixfold coordination for the first (. symmetry) and eightfold for the second (.2 symmetry) Na+ cation.
Related literature
For structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII = Sc, Fe, Cr), see: Collin et al. (1986); Genkina et al. (1991); Lazoryak et al. (1980); Lucazeau et al. (1986); Masquelier et al. (1992); Susman et al. (1983). For preparation of NaVP2O7 which was used as an educt for crystal growth of the title compound, see: Zatovsky et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536810002801/wm2293sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810002801/wm2293Isup2.hkl
Crystals of (I) were obtained in the system Na4P2O7—NaVP2O7 using a high-temperature crystallization technique. Initial NaVP2O7 was prepared in accordance to Zatovsky et al. (1999). A thoroughly ground mixture of Na4P2O7 and NaVP2O7 (ratio 1:3) was heated up to 1343 K and then kept for 2 h in a sealed silica tube under vacuum. Then it was cooled down to 823 K with a rate of 5 K/h and left in the furnace to reach room temperature. The final product, green prismatic crystals, was leached out from the solidified melt with boiling water.
After
of a basic model and an accurate definition of the atom positions, the occupancy of Na1 and Na2 sites were refined freely and were finally restrained to meet the criterion for charge balance. The highest peak and the deepest hole in the final difference map is located at 0.00 Å from Na1 (1.12 e/Å3) and 0.60 from Na2 (-0.74 e/Å3) respectively.The structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII - Sc, Fe, Cr) have been intensively investigated, for instance: (Collin et al., 1986; Genkina et al., 1991; Lazoryak et al., 1980; Lucazeau et al., 1986; Masquelier et al., 1992; Susman et al., 1983). The structure of NASICON-type Na3V2(PO4)3, (I), is reported here.
In the
of (I) (Fig. 1) there is one V and one P atom, while other,atoms (Na and O) are represented in two distinct positions each. The main building block of (I) (Fig. 2) involves two VO6 octahedra interlinked by three phosphate groups lying along the c axis. As a result of the block aggregation, a three-dimensional framework with an overall composition of [V2(PO4)3]3- is organized (Fig. 3).Sodium atoms are located in the voids of the framework with six- (position 6b) and eightfold (18b) coordination when a cut-off distance of 2.9 Å is considered.
For structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII = Sc, Fe, Cr), see: Collin et al. (1986); Genkina et al. (1991); Lazoryak et al. (1980); Lucazeau et al. (1986); Masquelier et al. (1992); Susman et al. (1983). For preparation of NaVP2O7 which was used as an educt for crystal growth of the title compound, see: Zatovsky et al. (1999).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).Na3V2(PO4)3 | Dx = 3.156 Mg m−3 |
Mr = 455.76 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c | Cell parameters from 12580 reflections |
Hall symbol: -R 3 2"c | θ = 3.3–45.0° |
a = 8.7288 (2) Å | µ = 2.66 mm−1 |
c = 21.8042 (7) Å | T = 293 K |
V = 1438.73 (7) Å3 | Prism, green |
Z = 6 | 0.20 × 0.15 × 0.10 mm |
F(000) = 1320 |
Oxford Diffraction Xcalibur-3 CCD diffractometer | 1331 independent reflections |
Radiation source: fine-focus sealed tube | 1153 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
φ and ω scans | θmax = 45°, θmin = 3.3° |
Absorption correction: multi-scan (Blessing, 1995) | h = −17→16 |
Tmin = 0.635, Tmax = 0.780 | k = −17→17 |
12580 measured reflections | l = −43→41 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0264P)2 + 5.1429P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max < 0.001 |
S = 1.1 | Δρmax = 1.12 e Å−3 |
1331 reflections | Δρmin = −0.74 e Å−3 |
37 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008) |
0 restraints | Extinction coefficient: 0.0056 (4) |
Na3V2(PO4)3 | Z = 6 |
Mr = 455.76 | Mo Kα radiation |
Trigonal, R3c | µ = 2.66 mm−1 |
a = 8.7288 (2) Å | T = 293 K |
c = 21.8042 (7) Å | 0.20 × 0.15 × 0.10 mm |
V = 1438.73 (7) Å3 |
Oxford Diffraction Xcalibur-3 CCD diffractometer | 1331 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 1153 reflections with I > 2σ(I) |
Tmin = 0.635, Tmax = 0.780 | Rint = 0.063 |
12580 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 37 parameters |
wR(F2) = 0.075 | 0 restraints |
S = 1.1 | Δρmax = 1.12 e Å−3 |
1331 reflections | Δρmin = −0.74 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
V1 | 0.3333 | 0.6667 | 0.019498 (13) | 0.00690 (6) | |
Na1 | 0.3333 | 0.6667 | 0.1667 | 0.149 (5) | 0.805 (18) |
Na2 | 0.6667 | 0.96726 (19) | 0.0833 | 0.0522 (10) | 0.731 (7) |
P1 | −0.04273 (5) | 0.3333 | 0.0833 | 0.00866 (8) | |
O1 | 0.14193 (13) | 0.49765 (14) | 0.07762 (5) | 0.01643 (16) | |
O2 | 0.54047 (16) | 0.84480 (17) | −0.02643 (7) | 0.0259 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.00643 (7) | 0.00643 (7) | 0.00784 (10) | 0.00321 (4) | 0 | 0 |
Na1 | 0.218 (8) | 0.218 (8) | 0.0111 (14) | 0.109 (4) | 0 | 0 |
Na2 | 0.0224 (8) | 0.0170 (5) | 0.119 (2) | 0.0112 (4) | −0.0354 (11) | −0.0177 (5) |
P1 | 0.00635 (10) | 0.00714 (14) | 0.01276 (15) | 0.00357 (7) | 0.00152 (5) | 0.00305 (11) |
O1 | 0.0089 (3) | 0.0130 (3) | 0.0220 (4) | 0.0015 (3) | 0.0048 (3) | 0.0057 (3) |
O2 | 0.0185 (4) | 0.0223 (5) | 0.0322 (6) | 0.0067 (4) | 0.0143 (4) | 0.0151 (4) |
V1—O2i | 1.9693 (10) | Na2—O1ii | 2.3883 (12) |
V1—O2 | 1.9693 (11) | Na2—O1vi | 2.3883 (12) |
V1—O2ii | 1.9693 (10) | Na2—O1i | 2.4448 (19) |
V1—O1ii | 2.0271 (9) | Na2—O1vii | 2.4449 (19) |
V1—O1 | 2.0271 (9) | Na2—O2viii | 2.6280 (16) |
V1—O1i | 2.0271 (9) | Na2—O2 | 2.6281 (16) |
V1—Na2i | 3.1070 (6) | Na2—O2ix | 2.8352 (19) |
V1—Na2 | 3.1070 (7) | Na2—O2x | 2.8352 (19) |
V1—Na2ii | 3.1070 (6) | Na2—P1xi | 2.9222 (11) |
V1—Na1 | 3.2096 (3) | Na2—P1ii | 2.9222 (11) |
Na1—O1 | 2.5045 (11) | Na2—P1i | 2.9968 (17) |
Na1—O1ii | 2.5045 (11) | P1—O2xii | 1.5227 (12) |
Na1—O1i | 2.5045 (11) | P1—O2xiii | 1.5227 (12) |
Na1—O1iii | 2.5045 (11) | P1—O1 | 1.5358 (10) |
Na1—O1iv | 2.5045 (11) | P1—O1xiv | 1.5359 (10) |
Na1—O1v | 2.5046 (11) | P1—Na2xv | 2.9222 (11) |
Na1—V1iv | 3.2081 (2) | P1—Na2i | 2.9222 (11) |
Na1—Na2i | 3.3193 (6) | P1—Na2ii | 2.9968 (17) |
Na1—Na2v | 3.3193 (6) | O1—Na2i | 2.3883 (12) |
Na1—Na2 | 3.3193 (6) | O1—Na2ii | 2.4448 (19) |
Na1—Na2ii | 3.3205 (6) | ||
O2i—V1—O2 | 96.44 (6) | O1ii—Na2—O2 | 68.20 (4) |
O2i—V1—O2ii | 96.44 (6) | O1vi—Na2—O2 | 115.98 (4) |
O2—V1—O2ii | 96.44 (6) | O1i—Na2—O2 | 66.40 (4) |
O2i—V1—O1ii | 88.22 (5) | O1vii—Na2—O2 | 93.51 (6) |
O2—V1—O1ii | 89.72 (5) | O2viii—Na2—O2 | 157.25 (9) |
O2ii—V1—O1ii | 171.80 (6) | O1ii—Na2—O2ix | 54.99 (4) |
O2i—V1—O1 | 89.72 (5) | O1vi—Na2—O2ix | 108.39 (6) |
O2—V1—O1 | 171.80 (6) | O1i—Na2—O2ix | 115.94 (4) |
O2ii—V1—O1 | 88.22 (5) | O1vii—Na2—O2ix | 151.11 (4) |
O1ii—V1—O1 | 85.05 (5) | O2viii—Na2—O2ix | 85.67 (3) |
O2i—V1—O1i | 171.80 (6) | O2—Na2—O2ix | 112.13 (5) |
O2—V1—O1i | 88.22 (5) | O1ii—Na2—O2x | 108.39 (6) |
O2ii—V1—O1i | 89.72 (5) | O1vi—Na2—O2x | 54.99 (4) |
O1ii—V1—O1i | 85.05 (5) | O1i—Na2—O2x | 151.10 (4) |
O1—V1—O1i | 85.05 (5) | O1vii—Na2—O2x | 115.94 (4) |
O1—Na1—O1ii | 66.33 (3) | O2viii—Na2—O2x | 112.13 (5) |
O1—Na1—O1i | 66.33 (3) | O2—Na2—O2x | 85.67 (3) |
O1ii—Na1—O1i | 66.33 (3) | O2ix—Na2—O2x | 80.45 (7) |
O1—Na1—O1iii | 113.67 (3) | O2xii—P1—O2xiii | 111.67 (12) |
O1ii—Na1—O1iii | 180 | O2xii—P1—O1 | 106.07 (7) |
O1i—Na1—O1iii | 113.67 (3) | O2xiii—P1—O1 | 112.18 (7) |
O1—Na1—O1iv | 180 | O2xii—P1—O1xiv | 112.19 (7) |
O1ii—Na1—O1iv | 113.67 (3) | O2xiii—P1—O1xiv | 106.07 (7) |
O1i—Na1—O1iv | 113.67 (3) | O1—P1—O1xiv | 108.74 (9) |
O1iii—Na1—O1iv | 66.33 (3) | P1—O1—V1 | 145.95 (7) |
O1—Na1—O1v | 113.67 (3) | P1—O1—Na2i | 93.73 (6) |
O1ii—Na1—O1v | 113.67 (3) | V1—O1—Na2i | 89.05 (5) |
O1i—Na1—O1v | 180 | P1—O1—Na2ii | 94.93 (5) |
O1iii—Na1—O1v | 66.33 (3) | V1—O1—Na2ii | 87.50 (4) |
O1iv—Na1—O1v | 66.33 (3) | Na2i—O1—Na2ii | 169.09 (5) |
O1ii—Na2—O1vi | 160.52 (9) | P1—O1—Na1 | 124.53 (6) |
O1ii—Na2—O1i | 69.07 (5) | V1—O1—Na1 | 89.52 (4) |
O1vi—Na2—O1i | 130.40 (6) | Na2i—O1—Na1 | 85.40 (5) |
O1ii—Na2—O1vii | 130.40 (6) | Na2ii—O1—Na1 | 84.23 (4) |
O1vi—Na2—O1vii | 69.07 (5) | P1xvi—O2—V1 | 151.38 (10) |
O1i—Na2—O1vii | 61.41 (6) | P1xvi—O2—Na2 | 120.77 (8) |
O1ii—Na2—O2viii | 115.98 (4) | V1—O2—Na2 | 83.72 (5) |
O1vi—Na2—O2viii | 68.20 (4) | P1xvi—O2—Na2xvii | 77.85 (5) |
O1i—Na2—O2viii | 93.51 (6) | V1—O2—Na2xvii | 107.30 (6) |
O1vii—Na2—O2viii | 66.40 (4) | Na2—O2—Na2xvii | 113.64 (7) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) x−y+2/3, x+1/3, −z+1/3; (iv) −x+2/3, −y+4/3, −z+1/3; (v) y−1/3, −x+y+1/3, −z+1/3; (vi) x−y+4/3, −y+5/3, −z+1/6; (vii) y+1/3, x+2/3, −z+1/6; (viii) −x+4/3, −x+y+2/3, −z+1/6; (ix) −y+4/3, −x+5/3, z+1/6; (x) y, −x+y+1, −z; (xi) x+1, y+1, z; (xii) x−2/3, x−y+2/3, z+1/6; (xiii) y−1, −x+y, −z; (xiv) x−y+1/3, −y+2/3, −z+1/6; (xv) x−1, y−1, z; (xvi) x−y+1, x+1, −z; (xvii) x−y+1, x, −z. |
Experimental details
Crystal data | |
Chemical formula | Na3V2(PO4)3 |
Mr | 455.76 |
Crystal system, space group | Trigonal, R3c |
Temperature (K) | 293 |
a, c (Å) | 8.7288 (2), 21.8042 (7) |
V (Å3) | 1438.73 (7) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 2.66 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur-3 CCD |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.635, 0.780 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12580, 1331, 1153 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.995 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.075, 1.1 |
No. of reflections | 1331 |
No. of parameters | 37 |
Δρmax, Δρmin (e Å−3) | 1.12, −0.74 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).
V1—O2i | 1.9693 (10) | Na2—O2iii | 2.6280 (16) |
V1—O1ii | 2.0271 (9) | Na2—O2iv | 2.8352 (19) |
Na1—O1 | 2.5045 (11) | P1—O2v | 1.5227 (12) |
Na2—O1ii | 2.3883 (12) | P1—O1 | 1.5358 (10) |
Na2—O1i | 2.4448 (19) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) −x+4/3, −x+y+2/3, −z+1/6; (iv) −y+4/3, −x+5/3, z+1/6; (v) x−2/3, x−y+2/3, z+1/6. |
Acknowledgements
The author is grateful to Professor Vyacheslav N. Baumer from STC "Institute for Single Crystals", NAS of Ukraine, Kharkiv, Ukraine, for the single-crystal measurements.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Collin, G., Comes, R., Boilot, J. P. & Colomban, P. (1986). J. Phys. Chem. Solids, 47, 843–854. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Genkina, E. A., Kalinin, V. B., Maksimov, B. A. & Golubev, A. M. (1991). Kristallografiya, 36, 1126–1130. CAS Google Scholar
Lazoryak, B. I., Kalinin, V. B., Stefanovich, S. Yu. & Efremov, V. A. (1980). Dokl. Akad. Nauk SSSR, 250, 861–864. CAS Google Scholar
Lucazeau, G., Barj, M., Soubeyroux, J. L., Dianoux, A. J. & Delmas, C. (1986). Solid State Ionics, 1819, 959–963. CrossRef Web of Science Google Scholar
Masquelier, C., Wurm, C., Rodriguez-Carvajal, J., Gaubicher, J. & Nazar, L. (1992). Phase Trans. 38, 127–220. Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Susman, S., Delbecq, C. J., Brun, T. O. & Prince, E. (1983). Solid State Ionics, 9, 839–844. CrossRef Web of Science Google Scholar
Zatovsky, I. V., Slobodyanik, N. S., Lisnyk, V. V. & Stratiychuk, D. A. (1999). Ukr. Khim. Zh. 65, 98–103. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structures and properties of complex phosphates with general formula Na3MIII2(PO4)3 (MIII - Sc, Fe, Cr) have been intensively investigated, for instance: (Collin et al., 1986; Genkina et al., 1991; Lazoryak et al., 1980; Lucazeau et al., 1986; Masquelier et al., 1992; Susman et al., 1983). The structure of NASICON-type Na3V2(PO4)3, (I), is reported here.
In the asymmetric unit of (I) (Fig. 1) there is one V and one P atom, while other,atoms (Na and O) are represented in two distinct positions each. The main building block of (I) (Fig. 2) involves two VO6 octahedra interlinked by three phosphate groups lying along the c axis. As a result of the block aggregation, a three-dimensional framework with an overall composition of [V2(PO4)3]3- is organized (Fig. 3).
Sodium atoms are located in the voids of the framework with six- (position 6b) and eightfold (18b) coordination when a cut-off distance of 2.9 Å is considered.