metal-organic compounds
Bis(cyanido-κC)bis(cyclohexylamine-κN)mercury(II)
aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com
In the title compound, [Hg(CN)2(C6H13N)2], the HgII ion adopts an extremely distorted HgC2N2 tetrahedral coordination. The crystal packing is influenced by weak N—H⋯N hydrogen bonds between the amino groups and the cyanide N atoms, resulting in chains of molecules propagating in [110]. Both cyclohexylamine molecules adopt chair conformations.
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810001042/wm2295sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810001042/wm2295Isup2.hkl
Mercury(II) cyanide (0.5 g, 2.2 mmol) was dissolved in distilled water (20 ml). Cyclohexylamine (0.44 g, 4.4 mmol) was added and the mixture stirred at room temperature for 15 minutes. A white precipitate formed, which was filtered off, washed with distilled water and dried. Colourless blocks of (I) were recrystallized from methanol.
All the hydrogen atoms were placed in calculated positions (C—H = 0.97–0.98 Å, N—H = 0.90 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier). The highest difference peak is 1.54Å from N3 and the deepest difference hole is 0.89Å from H1A.
As part of our ongoing studies of MX2Y2 complexes (Ejaz et al., 2009), the synthesis and structure of the title compound, (I), (Fig. 1), are now described.
The HgII atom in (I) adopts what could be described as an extremely distorted HgC2N2 tetrahedral geometry (Table 1), arising from its coordination by two cyanide anions and two cyclohexylamine ligands. As well as the gross deviations of the bond angles from nominal tetrahedral values, the Hg—C and Hg—N bond lengths are very different. Indeed, an alternative description of the structure of (I) could be to start with a nominal linear Hg(CN)2 molecule, which is then weakly coordinated by the two N-bonded ligands (Cingolani et al., 1987). The cyclohexylamine molecules in (I) adopt chair conformations.
In the crystal, the molecules interact by way of N—H···N hydrogen bonds (Table 2), leading to chains in the structure.
Surprisingly, the Cambridge Structural Database contains just one
containing an Hg(CN)2(NR)2 unit (Cingolani et al., 1987), in which the C—Hg—C bond angles in the two asymmetric molecules are 148.2 (8) and 163.1 (9)°.For related structures, see: Ejaz et al. (2009); Cingolani et al. (1987).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Hg(CN)2(C6H13N)2] | V = 870.95 (8) Å3 |
Mr = 450.98 | Z = 2 |
Triclinic, P1 | F(000) = 436 |
Hall symbol: -P 1 | Dx = 1.720 Mg m−3 |
a = 7.9283 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1791 (5) Å | µ = 8.83 mm−1 |
c = 12.2722 (6) Å | T = 293 K |
α = 93.972 (3)° | Block, colourless |
β = 99.179 (3)° | 0.31 × 0.23 × 0.15 mm |
γ = 97.258 (3)° |
Bruker Kappa APEXII CCD diffractometer | 3385 independent reflections |
Radiation source: fine-focus sealed tube | 2830 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 26.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −9→9 |
Tmin = 0.171, Tmax = 0.351 | k = −11→11 |
16082 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.193 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0858P)2 + 12.3401P] where P = (Fo2 + 2Fc2)/3 |
3385 reflections | (Δ/σ)max = 0.001 |
172 parameters | Δρmax = 3.17 e Å−3 |
0 restraints | Δρmin = −1.98 e Å−3 |
[Hg(CN)2(C6H13N)2] | γ = 97.258 (3)° |
Mr = 450.98 | V = 870.95 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9283 (4) Å | Mo Kα radiation |
b = 9.1791 (5) Å | µ = 8.83 mm−1 |
c = 12.2722 (6) Å | T = 293 K |
α = 93.972 (3)° | 0.31 × 0.23 × 0.15 mm |
β = 99.179 (3)° |
Bruker Kappa APEXII CCD diffractometer | 3385 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2830 reflections with I > 2σ(I) |
Tmin = 0.171, Tmax = 0.351 | Rint = 0.041 |
16082 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.193 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0858P)2 + 12.3401P] where P = (Fo2 + 2Fc2)/3 |
3385 reflections | Δρmax = 3.17 e Å−3 |
172 parameters | Δρmin = −1.98 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.15752 (8) | 0.30488 (6) | 0.45191 (5) | 0.0641 (3) | |
C1 | 0.363 (3) | 0.059 (2) | 0.3106 (15) | 0.082 (5) | |
H1A | 0.4532 | −0.0049 | 0.3212 | 0.099* | |
C2 | 0.199 (4) | −0.038 (3) | 0.272 (2) | 0.132 (11) | |
H2A | 0.1036 | 0.0184 | 0.2616 | 0.159* | |
H2B | 0.1784 | −0.1096 | 0.3247 | 0.159* | |
C3 | 0.221 (5) | −0.119 (3) | 0.158 (2) | 0.155 (14) | |
H3A | 0.3180 | −0.1736 | 0.1694 | 0.187* | |
H3B | 0.1180 | −0.1884 | 0.1289 | 0.187* | |
C4 | 0.249 (4) | −0.013 (4) | 0.077 (2) | 0.148 (12) | |
H4A | 0.1556 | 0.0462 | 0.0670 | 0.177* | |
H4B | 0.2538 | −0.0644 | 0.0057 | 0.177* | |
C5 | 0.420 (6) | 0.083 (4) | 0.123 (3) | 0.176 (17) | |
H5A | 0.4461 | 0.1538 | 0.0709 | 0.211* | |
H5B | 0.5116 | 0.0215 | 0.1318 | 0.211* | |
C6 | 0.414 (4) | 0.166 (3) | 0.236 (2) | 0.125 (9) | |
H6A | 0.5268 | 0.2198 | 0.2672 | 0.150* | |
H6B | 0.3320 | 0.2358 | 0.2269 | 0.150* | |
N1 | 0.3599 (18) | 0.1352 (17) | 0.4211 (11) | 0.074 (4) | |
H1 | 0.4662 | 0.1852 | 0.4446 | 0.089* | |
H2 | 0.3457 | 0.0643 | 0.4673 | 0.089* | |
C7 | 0.197 (3) | 0.355 (2) | 0.7345 (14) | 0.085 (5) | |
H7 | 0.0734 | 0.3208 | 0.7271 | 0.102* | |
C8 | 0.220 (3) | 0.509 (2) | 0.7259 (16) | 0.096 (6) | |
H8A | 0.1653 | 0.5275 | 0.6528 | 0.115* | |
H8B | 0.3425 | 0.5431 | 0.7331 | 0.115* | |
C9 | 0.145 (5) | 0.598 (3) | 0.814 (2) | 0.150 (13) | |
H9A | 0.1665 | 0.7025 | 0.8056 | 0.180* | |
H9B | 0.0215 | 0.5686 | 0.8061 | 0.180* | |
C10 | 0.232 (5) | 0.566 (3) | 0.925 (2) | 0.134 (10) | |
H10A | 0.3523 | 0.6092 | 0.9350 | 0.160* | |
H10B | 0.1798 | 0.6142 | 0.9812 | 0.160* | |
C11 | 0.222 (5) | 0.407 (3) | 0.940 (2) | 0.137 (11) | |
H11A | 0.1041 | 0.3673 | 0.9433 | 0.164* | |
H11B | 0.2931 | 0.3946 | 1.0101 | 0.164* | |
C12 | 0.284 (3) | 0.324 (2) | 0.8463 (15) | 0.097 (6) | |
H12A | 0.4076 | 0.3512 | 0.8523 | 0.117* | |
H12B | 0.2619 | 0.2191 | 0.8534 | 0.117* | |
N2 | 0.2619 (18) | 0.2820 (14) | 0.6440 (9) | 0.068 (3) | |
H3 | 0.2471 | 0.1849 | 0.6529 | 0.082* | |
H4 | 0.3766 | 0.3111 | 0.6552 | 0.082* | |
C13 | −0.073 (2) | 0.1629 (18) | 0.4292 (15) | 0.067 (4) | |
N3 | −0.196 (2) | 0.0797 (19) | 0.4154 (15) | 0.090 (4) | |
C14 | 0.282 (2) | 0.504 (2) | 0.4133 (18) | 0.089 (6) | |
N4 | 0.352 (3) | 0.610 (2) | 0.395 (2) | 0.116 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0633 (4) | 0.0592 (4) | 0.0654 (4) | −0.0021 (2) | 0.0064 (3) | 0.0050 (3) |
C1 | 0.080 (11) | 0.096 (13) | 0.067 (10) | 0.004 (10) | 0.014 (9) | −0.006 (9) |
C2 | 0.16 (2) | 0.111 (17) | 0.118 (19) | −0.051 (16) | 0.064 (18) | −0.043 (15) |
C3 | 0.24 (4) | 0.117 (19) | 0.090 (17) | −0.06 (2) | 0.06 (2) | −0.061 (16) |
C4 | 0.15 (2) | 0.22 (4) | 0.058 (13) | 0.00 (2) | 0.005 (14) | −0.031 (18) |
C5 | 0.26 (5) | 0.16 (3) | 0.11 (2) | −0.05 (3) | 0.11 (3) | −0.016 (19) |
C6 | 0.16 (2) | 0.118 (19) | 0.086 (15) | −0.035 (17) | 0.026 (15) | −0.003 (13) |
N1 | 0.069 (8) | 0.088 (9) | 0.060 (8) | 0.005 (7) | 0.009 (6) | −0.014 (7) |
C7 | 0.111 (15) | 0.088 (12) | 0.052 (9) | 0.017 (11) | 0.007 (9) | −0.010 (8) |
C8 | 0.121 (16) | 0.095 (14) | 0.065 (11) | 0.037 (12) | −0.005 (10) | −0.023 (10) |
C9 | 0.21 (3) | 0.13 (2) | 0.11 (2) | 0.09 (2) | 0.02 (2) | −0.026 (17) |
C10 | 0.20 (3) | 0.12 (2) | 0.083 (16) | 0.03 (2) | 0.025 (18) | −0.032 (14) |
C11 | 0.20 (3) | 0.13 (2) | 0.074 (14) | −0.01 (2) | 0.041 (17) | −0.019 (14) |
C12 | 0.142 (19) | 0.086 (13) | 0.061 (11) | 0.013 (13) | 0.013 (11) | 0.003 (9) |
N2 | 0.086 (9) | 0.064 (7) | 0.045 (6) | −0.024 (6) | 0.008 (6) | 0.005 (5) |
C13 | 0.056 (9) | 0.064 (9) | 0.083 (11) | 0.010 (7) | 0.015 (8) | 0.018 (8) |
N3 | 0.072 (10) | 0.090 (11) | 0.103 (12) | 0.013 (9) | 0.001 (8) | 0.012 (9) |
C14 | 0.067 (10) | 0.084 (12) | 0.114 (15) | −0.004 (9) | 0.007 (10) | 0.048 (11) |
N4 | 0.090 (12) | 0.100 (13) | 0.153 (19) | −0.005 (10) | 0.013 (12) | 0.034 (13) |
Hg1—C13 | 2.076 (17) | N1—H2 | 0.9000 |
Hg1—C14 | 2.084 (17) | C7—C8 | 1.41 (3) |
Hg1—N2 | 2.404 (12) | C7—N2 | 1.45 (2) |
Hg1—N1 | 2.426 (14) | C7—C12 | 1.50 (3) |
C1—C6 | 1.45 (3) | C7—H7 | 0.9800 |
C1—C2 | 1.47 (3) | C8—C9 | 1.55 (3) |
C1—N1 | 1.49 (2) | C8—H8A | 0.9700 |
C1—H1A | 0.9800 | C8—H8B | 0.9700 |
C2—C3 | 1.58 (3) | C9—C10 | 1.48 (4) |
C2—H2A | 0.9700 | C9—H9A | 0.9700 |
C2—H2B | 0.9700 | C9—H9B | 0.9700 |
C3—C4 | 1.45 (4) | C10—C11 | 1.48 (4) |
C3—H3A | 0.9700 | C10—H10A | 0.9700 |
C3—H3B | 0.9700 | C10—H10B | 0.9700 |
C4—C5 | 1.53 (4) | C11—C12 | 1.52 (3) |
C4—H4A | 0.9700 | C11—H11A | 0.9700 |
C4—H4B | 0.9700 | C11—H11B | 0.9700 |
C5—C6 | 1.55 (3) | C12—H12A | 0.9700 |
C5—H5A | 0.9700 | C12—H12B | 0.9700 |
C5—H5B | 0.9700 | N2—H3 | 0.9000 |
C6—H6A | 0.9700 | N2—H4 | 0.9000 |
C6—H6B | 0.9700 | C13—N3 | 1.14 (2) |
N1—H1 | 0.9000 | C14—N4 | 1.12 (2) |
C13—Hg1—C14 | 145.6 (7) | Hg1—N1—H2 | 106.6 |
C13—Hg1—N2 | 100.1 (6) | H1—N1—H2 | 106.5 |
C14—Hg1—N2 | 107.0 (7) | C8—C7—N2 | 109.0 (17) |
C13—Hg1—N1 | 101.5 (6) | C8—C7—C12 | 109.4 (16) |
C14—Hg1—N1 | 102.3 (7) | N2—C7—C12 | 113.0 (17) |
N2—Hg1—N1 | 83.4 (5) | C8—C7—H7 | 108.4 |
C6—C1—C2 | 116 (2) | N2—C7—H7 | 108.4 |
C6—C1—N1 | 109.7 (17) | C12—C7—H7 | 108.4 |
C2—C1—N1 | 109.9 (16) | C7—C8—C9 | 114 (2) |
C6—C1—H1A | 106.8 | C7—C8—H8A | 108.8 |
C2—C1—H1A | 106.8 | C9—C8—H8A | 108.8 |
N1—C1—H1A | 106.8 | C7—C8—H8B | 108.8 |
C1—C2—C3 | 105 (2) | C9—C8—H8B | 108.8 |
C1—C2—H2A | 110.7 | H8A—C8—H8B | 107.7 |
C3—C2—H2A | 110.7 | C10—C9—C8 | 107 (2) |
C1—C2—H2B | 110.7 | C10—C9—H9A | 110.3 |
C3—C2—H2B | 110.7 | C8—C9—H9A | 110.3 |
H2A—C2—H2B | 108.8 | C10—C9—H9B | 110.3 |
C4—C3—C2 | 111 (2) | C8—C9—H9B | 110.3 |
C4—C3—H3A | 109.4 | H9A—C9—H9B | 108.5 |
C2—C3—H3A | 109.4 | C11—C10—C9 | 114 (2) |
C4—C3—H3B | 109.4 | C11—C10—H10A | 108.8 |
C2—C3—H3B | 109.4 | C9—C10—H10A | 108.8 |
H3A—C3—H3B | 108.0 | C11—C10—H10B | 108.8 |
C3—C4—C5 | 106 (3) | C9—C10—H10B | 108.8 |
C3—C4—H4A | 110.5 | H10A—C10—H10B | 107.7 |
C5—C4—H4A | 110.5 | C10—C11—C12 | 111 (2) |
C3—C4—H4B | 110.5 | C10—C11—H11A | 109.4 |
C5—C4—H4B | 110.5 | C12—C11—H11A | 109.4 |
H4A—C4—H4B | 108.7 | C10—C11—H11B | 109.4 |
C4—C5—C6 | 111 (3) | C12—C11—H11B | 109.4 |
C4—C5—H5A | 109.4 | H11A—C11—H11B | 108.0 |
C6—C5—H5A | 109.4 | C7—C12—C11 | 113 (2) |
C4—C5—H5B | 109.4 | C7—C12—H12A | 109.1 |
C6—C5—H5B | 109.4 | C11—C12—H12A | 109.1 |
H5A—C5—H5B | 108.0 | C7—C12—H12B | 109.1 |
C1—C6—C5 | 109 (2) | C11—C12—H12B | 109.1 |
C1—C6—H6A | 110.0 | H12A—C12—H12B | 107.8 |
C5—C6—H6A | 110.0 | C7—N2—Hg1 | 123.3 (12) |
C1—C6—H6B | 110.0 | C7—N2—H3 | 106.5 |
C5—C6—H6B | 110.0 | Hg1—N2—H3 | 106.5 |
H6A—C6—H6B | 108.4 | C7—N2—H4 | 106.5 |
C1—N1—Hg1 | 123.1 (12) | Hg1—N2—H4 | 106.5 |
C1—N1—H1 | 106.6 | H3—N2—H4 | 106.5 |
Hg1—N1—H1 | 106.6 | N3—C13—Hg1 | 177.0 (15) |
C1—N1—H2 | 106.6 | N4—C14—Hg1 | 178.2 (19) |
C6—C1—C2—C3 | 57 (3) | N2—C7—C8—C9 | 176 (2) |
N1—C1—C2—C3 | −177 (2) | C12—C7—C8—C9 | −60 (3) |
C1—C2—C3—C4 | −62 (4) | C7—C8—C9—C10 | 59 (3) |
C2—C3—C4—C5 | 64 (4) | C8—C9—C10—C11 | −53 (4) |
C3—C4—C5—C6 | −60 (4) | C9—C10—C11—C12 | 52 (4) |
C2—C1—C6—C5 | −56 (4) | C8—C7—C12—C11 | 55 (3) |
N1—C1—C6—C5 | 179 (3) | N2—C7—C12—C11 | 177 (2) |
C4—C5—C6—C1 | 55 (4) | C10—C11—C12—C7 | −51 (3) |
C6—C1—N1—Hg1 | 66 (2) | C8—C7—N2—Hg1 | −58 (2) |
C2—C1—N1—Hg1 | −63 (2) | C12—C7—N2—Hg1 | −179.6 (13) |
C13—Hg1—N1—C1 | 69.3 (14) | C13—Hg1—N2—C7 | −77.6 (14) |
C14—Hg1—N1—C1 | −85.7 (14) | C14—Hg1—N2—C7 | 80.9 (14) |
N2—Hg1—N1—C1 | 168.3 (14) | N1—Hg1—N2—C7 | −178.2 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···N3i | 0.90 | 2.37 | 3.21 (2) | 155 |
N2—H3···N3i | 0.90 | 2.48 | 3.31 (2) | 154 |
N2—H4···N4ii | 0.90 | 2.37 | 3.22 (2) | 157 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Hg(CN)2(C6H13N)2] |
Mr | 450.98 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.9283 (4), 9.1791 (5), 12.2722 (6) |
α, β, γ (°) | 93.972 (3), 99.179 (3), 97.258 (3) |
V (Å3) | 870.95 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 8.83 |
Crystal size (mm) | 0.31 × 0.23 × 0.15 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.171, 0.351 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16082, 3385, 2830 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.193, 1.10 |
No. of reflections | 3385 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0858P)2 + 12.3401P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 3.17, −1.98 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Hg1—C13 | 2.076 (17) | Hg1—N2 | 2.404 (12) |
Hg1—C14 | 2.084 (17) | Hg1—N1 | 2.426 (14) |
C13—Hg1—C14 | 145.6 (7) | C13—Hg1—N1 | 101.5 (6) |
C13—Hg1—N2 | 100.1 (6) | C14—Hg1—N1 | 102.3 (7) |
C14—Hg1—N2 | 107.0 (7) | N2—Hg1—N1 | 83.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···N3i | 0.90 | 2.37 | 3.21 (2) | 155 |
N2—H3···N3i | 0.90 | 2.48 | 3.31 (2) | 154 |
N2—H4···N4ii | 0.90 | 2.37 | 3.22 (2) | 157 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
IUK thanks the Higher Education Commission of Pakistan for its financial support under the project `Strengthening of Materials Chemistry Laboratory at GCUL'.
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cingolani, A., Lorenzotti, A., Lobbia, G. G., Leonesi, D., Bonati, F. & Bovio, B. (1987). Inorg. Chim. Acta, 132, 167–176. CSD CrossRef CAS Web of Science Google Scholar
Ejaz, Sahin, O. & Khan, I. U. (2009). Acta Cryst. E65, m1457. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing studies of MX2Y2 complexes (Ejaz et al., 2009), the synthesis and structure of the title compound, (I), (Fig. 1), are now described.
The HgII atom in (I) adopts what could be described as an extremely distorted HgC2N2 tetrahedral geometry (Table 1), arising from its coordination by two cyanide anions and two cyclohexylamine ligands. As well as the gross deviations of the bond angles from nominal tetrahedral values, the Hg—C and Hg—N bond lengths are very different. Indeed, an alternative description of the structure of (I) could be to start with a nominal linear Hg(CN)2 molecule, which is then weakly coordinated by the two N-bonded ligands (Cingolani et al., 1987). The cyclohexylamine molecules in (I) adopt chair conformations.
In the crystal, the molecules interact by way of N—H···N hydrogen bonds (Table 2), leading to chains in the structure.
Surprisingly, the Cambridge Structural Database contains just one crystal structure containing an Hg(CN)2(NR)2 unit (Cingolani et al., 1987), in which the C—Hg—C bond angles in the two asymmetric molecules are 148.2 (8) and 163.1 (9)°.