metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{tris­­[3-(2-pyrid­yl)-1H-pyrazole]nickel(II)} dodeca­molybdosilicate tetra­hydrate

aInstitute of Advanced Materials Research, Department of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 5 January 2010; accepted 8 January 2010; online 13 January 2010)

The asymmetric unit of the title compound, [Ni(C8H7N3)3]2[SiMo12O40]·4H2O, consists of a complex [Ni(C8H7N3)3]2+ cation, half of a Keggin-type heteropolyanion [SiMo12O40]4− and two uncoordinated water mol­ecules. The Ni2+ cation is surrounded in a slightly distorted octa­hedral coordination by six N atoms from three chelating 3-(2-pyrid­yl)-1H-pyrazole ligands. In the heteropolyanion, two O atoms of the central SiO4 group ([\overline{1}] symmetry) are equally disordered about an inversion centre. N—H⋯O and O—H⋯O hydrogen bonding between the cations, anions and the uncoordinated water mol­ecules leads to a consolidation of the structure.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei, Sun et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]; Zhang, Wei, Shi et al. (2010[Zhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26-m27.]). For the related structure of the Zn analogue that crystallizes as the hexa­hydrate, see: Zhang, Wei, Zhu et al. (2010[Zhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127-m128.]). For a further related structure, see: Wu et al. (2003[Wu, C. D., Lu, C. Z., Chen, S. M., Zhuang, H. H. & Huang, J. S. (2003). Polyhedron, 22, 3091-3098.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H7N3)3]2[SiMo12O40]·4H2O

  • Mr = 2879.85

  • Monoclinic, C 2/c

  • a = 18.687 (4) Å

  • b = 16.299 (3) Å

  • c = 27.604 (6) Å

  • β = 104.10 (3)°

  • V = 8154 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.835

  • 28737 measured reflections

  • 7188 independent reflections

  • 3439 reflections with I > 2σ(I)

  • Rint = 0.125

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.121

  • S = 1.00

  • 7188 reflections

  • 587 parameters

  • H-atom parameters constrained

  • Δρmax = 1.78 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N8 2.047 (11)
Ni1—N5 2.093 (11)
Ni1—N2 2.066 (11)
Ni1—N6 2.104 (10)
Ni1—N3 2.096 (12)
Ni1—N9 2.121 (11)
Si1—O18A 1.597 (13)
Si1—O18B 1.670 (13)
Si1—O1A 1.622 (14)
Si1—O1B 1.625 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O21i 0.86 2.01 2.850 (19) 165
N4—H4⋯O17ii 0.86 2.02 2.786 (13) 148
N7—H7A⋯O22iii 0.86 1.94 2.760 (16) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei, Sun et al., 2009; Zhang, Wei, Shi et al., 2010). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of three subunits, viz. of a complex [Ni(C8H7N3)3]2+ cation, a [SiMo12O40]4- heteropolyanion and of two uncoordinated water molecules. The nickel(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 3-(2-pyridyl)pyrazole ligands. The Ni—N bond lengths are in the range of 2.063 (10)—2.131 (9) Å. In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the Si atom is located at the center of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered SiO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The Si—O bond distances are in the normal range of 1.571 (15)—1.635 (12) compared to reported distances in other dodecamolybdosilicates (Wu et al., 2003; Zhang, Wei, Zhu et al., 2010). The Mo—O bond distances vary widely from 1.627 (7) to 2.510 (15) Å. The shortest Mo—O bonds are in the range of 1.627 (7)—1.694 (7) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.2279 (14)—2.510 (15) Å for those oxygen atoms connected with both Mo and Si atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

The TGA curve shows that the lattice water molecules and the organic ligands separate above ca 326 and 657 K, respectively. The overall thermal decomposition process can be described by the followed equation: C48H50Mo12N18Ni2O44Si + 81O2 25H2O + 48CO2 + 9N2O5 + 2NiO + SiO2 + 12MoO3.

Related literature top

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Sun et al. (2009; Zhang, Wei, Shi et al. (2010)). For the related structure of the Zn analogue that crystallizes as the hexahydrate, see: Zhang, Wei, Zhu et al. (2010).

For related literature, see: Wu et al. (2003).

Experimental top

A mixture of 3-(2-pyridyl)pyrazole (1 mmoL 0.14 g), sodium molybdate (2 mmoL, 0.48 g), sodium silicate nonahydrate (0.2 mmoL, 0.05 g) and nickel(II) chloride hexahydrate (0.25 mmol, 0.05 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Green crystals suitable for the X-ray experiment were obtained. Anal. C48H50Mo12N18Ni2O44Si: C, 20.02; H, 1.75; N, 8.75%. Found: C, 19.28; H, 2.07; N, 8.43%. IR(cm-1): 3376, 3136, 2961, 1614, 1568, 1522, 1457, 1439, 1364, 1300, 1097, 950, 913, 812, 636, 507.

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). The hydrogen atoms of the two uncoordinated water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules. Thus the structure was refined without the H atoms of the water molecules (which includes the water O atoms O21, O22). In the SiO4 unit, the two oxygen atoms (O1 and O18) are equally disordered about the inversion centre. One of the bridging O atoms (O12) is also disordered and was refined with split positions and an occupancy ratio of 1:1. In the final difference Fourier map the highest peak is 2.87 Å from atom O22 and the deepest hole is 0.11 Å from atom O8. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei, Sun et al., 2009; Zhang, Wei, Shi et al., 2010). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the title compound consists of three subunits, viz. of a complex [Ni(C8H7N3)3]2+ cation, a [SiMo12O40]4- heteropolyanion and of two uncoordinated water molecules. The nickel(II) ion is in a distorted octahedral coordination by six N atoms from three chelating 3-(2-pyridyl)pyrazole ligands. The Ni—N bond lengths are in the range of 2.063 (10)—2.131 (9) Å. In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the Si atom is located at the center of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered SiO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The Si—O bond distances are in the normal range of 1.571 (15)—1.635 (12) compared to reported distances in other dodecamolybdosilicates (Wu et al., 2003; Zhang, Wei, Zhu et al., 2010). The Mo—O bond distances vary widely from 1.627 (7) to 2.510 (15) Å. The shortest Mo—O bonds are in the range of 1.627 (7)—1.694 (7) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.2279 (14)—2.510 (15) Å for those oxygen atoms connected with both Mo and Si atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

The TGA curve shows that the lattice water molecules and the organic ligands separate above ca 326 and 657 K, respectively. The overall thermal decomposition process can be described by the followed equation: C48H50Mo12N18Ni2O44Si + 81O2 25H2O + 48CO2 + 9N2O5 + 2NiO + SiO2 + 12MoO3.

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei, Sun et al. (2009; Zhang, Wei, Shi et al. (2010)). For the related structure of the Zn analogue that crystallizes as the hexahydrate, see: Zhang, Wei, Zhu et al. (2010).

For related literature, see: Wu et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius. [Symmetry code: (A) -x+1/2, -y+1/2, -z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with N—H···O and O—H···O hydrogen bonds as dashed lines.
Bis{tris[3-(2-pyridyl)-1H-pyrazole]nickel(II)} dodecamolybdosilicate tetrahydrate top
Crystal data top
[Ni(C8H7N3)3]2[SiMo12O40]·4H2OF(000) = 5560
Mr = 2879.85Dx = 2.346 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7031 reflections
a = 18.687 (4) Åθ = 1.7–25.0°
b = 16.299 (3) ŵ = 2.35 mm1
c = 27.604 (6) ÅT = 293 K
β = 104.10 (3)°Block, green
V = 8154 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7188 independent reflections
Radiation source: fine-focus sealed tube3439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2222
Tmin = 0.766, Tmax = 0.835k = 1919
28737 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
7188 reflections(Δ/σ)max < 0.001
587 parametersΔρmax = 1.78 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Ni(C8H7N3)3]2[SiMo12O40]·4H2OV = 8154 (3) Å3
Mr = 2879.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.687 (4) ŵ = 2.35 mm1
b = 16.299 (3) ÅT = 293 K
c = 27.604 (6) Å0.12 × 0.10 × 0.08 mm
β = 104.10 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7188 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3439 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.835Rint = 0.125
28737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.00Δρmax = 1.78 e Å3
7188 reflectionsΔρmin = 0.66 e Å3
587 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.35240 (6)0.39842 (7)0.08084 (4)0.0443 (3)
Mo20.41863 (6)0.32246 (7)0.01978 (4)0.0435 (3)
Mo30.17276 (7)0.34378 (8)0.09029 (4)0.0473 (4)
Mo40.41827 (6)0.19458 (8)0.08355 (4)0.0465 (4)
Mo50.19742 (7)0.45683 (7)0.01322 (5)0.0504 (4)
Mo60.24752 (7)0.14446 (8)0.11101 (4)0.0518 (4)
Ni10.20687 (9)0.68505 (11)0.80894 (6)0.0483 (5)
Si10.25000.25000.00000.0298 (12)
C10.0571 (10)0.6492 (14)0.9038 (7)0.094 (7)
H10.03390.66090.92920.112*
C20.0465 (9)0.5804 (13)0.8729 (7)0.091 (7)
H20.01430.53700.87330.110*
C30.0961 (8)0.5903 (10)0.8402 (6)0.054 (4)
C40.1117 (8)0.5414 (11)0.8024 (6)0.054 (4)
C50.0818 (9)0.4649 (14)0.7921 (7)0.087 (6)
H50.05090.44370.81080.105*
C60.0967 (10)0.4219 (13)0.7560 (8)0.098 (7)
H60.07610.37010.74870.117*
C70.1423 (9)0.4526 (11)0.7292 (6)0.068 (5)
H70.15210.42380.70250.082*
C80.1740 (8)0.5294 (10)0.7432 (5)0.060 (4)
H80.20750.54970.72620.072*
C90.3644 (10)0.6954 (10)0.7209 (5)0.075 (5)
H90.38310.70780.69350.090*
C100.4029 (8)0.6601 (10)0.7658 (6)0.077 (5)
H100.45200.64360.77450.092*
C110.3521 (8)0.6553 (8)0.7941 (5)0.049 (4)
C120.3576 (7)0.6248 (7)0.8444 (5)0.038 (3)
C130.4223 (8)0.5908 (9)0.8744 (6)0.068 (5)
H130.46530.58780.86330.081*
C140.4201 (8)0.5628 (9)0.9197 (6)0.069 (5)
H140.46230.53940.94010.083*
C150.3569 (8)0.5679 (8)0.9368 (5)0.051 (4)
H150.35620.54800.96820.061*
C160.2960 (7)0.6023 (8)0.9071 (5)0.045 (4)
H160.25330.60640.91860.054*
C170.2717 (10)0.9142 (11)0.8778 (6)0.077 (5)
H170.29730.95050.90190.092*
C180.2178 (9)0.9341 (10)0.8373 (6)0.077 (5)
H180.19910.98630.82820.093*
C190.1958 (8)0.8617 (9)0.8119 (6)0.057 (4)
C200.1435 (8)0.8442 (11)0.7662 (5)0.059 (4)
C210.1056 (9)0.9007 (10)0.7363 (6)0.082 (6)
H210.11210.95560.74540.098*
C220.0578 (10)0.8808 (12)0.6928 (8)0.103 (7)
H220.03080.92030.67170.124*
C230.0516 (9)0.8002 (14)0.6820 (6)0.095 (6)
H230.02100.78300.65190.114*
C240.0910 (8)0.7415 (9)0.7157 (6)0.067 (5)
H240.08370.68610.70820.081*
N10.1099 (7)0.6972 (8)0.8887 (5)0.076 (4)
H1A0.12620.74350.90180.091*
N20.1317 (6)0.6609 (8)0.8510 (4)0.057 (3)
N30.1596 (6)0.5741 (7)0.7786 (4)0.055 (3)
N40.2975 (7)0.7076 (7)0.7250 (4)0.063 (4)
H40.26330.72900.70190.075*
N50.2877 (6)0.6839 (7)0.7681 (4)0.055 (3)
N60.2958 (6)0.6311 (6)0.8608 (4)0.044 (3)
N70.2818 (6)0.8333 (8)0.8773 (4)0.066 (4)
H7A0.31360.80630.89930.080*
N80.2349 (6)0.7999 (7)0.8373 (4)0.052 (3)
N90.1365 (6)0.7627 (8)0.7565 (4)0.050 (3)
O1A0.2482 (7)0.3343 (8)0.0309 (5)0.027 (4)0.50
O1B0.2934 (7)0.1816 (9)0.0391 (5)0.029 (4)0.50
O20.2429 (5)0.0914 (5)0.1612 (3)0.060 (3)
O30.3450 (5)0.1717 (6)0.1221 (3)0.084 (3)
O40.3951 (5)0.0981 (6)0.0507 (4)0.090 (3)
O50.4948 (4)0.1706 (6)0.1251 (3)0.072 (3)
O60.4537 (5)0.2423 (5)0.0337 (3)0.065 (3)
O70.5002 (5)0.3493 (5)0.0291 (3)0.064 (3)
O80.3538 (5)0.3703 (5)0.0718 (3)0.083 (3)
O90.4062 (5)0.3955 (5)0.0265 (3)0.069 (3)
O100.4013 (5)0.4725 (5)0.1145 (3)0.068 (3)
O110.2353 (5)0.4438 (6)0.0677 (4)0.087 (3)
O12A0.2849 (9)0.4501 (13)0.0254 (7)0.043 (6)0.50
O12B0.2927 (14)0.4877 (14)0.0385 (9)0.057 (9)*0.50
O130.1700 (5)0.5541 (5)0.0185 (3)0.064 (3)
O140.1565 (4)0.4247 (6)0.0429 (3)0.079 (3)
O150.1428 (4)0.3897 (5)0.1359 (3)0.061 (3)
O160.0955 (6)0.2809 (6)0.0605 (4)0.097 (4)
O170.2229 (5)0.2482 (6)0.1281 (4)0.090 (3)
O18A0.1691 (8)0.2190 (8)0.0272 (5)0.029 (4)0.50
O18B0.1992 (7)0.2358 (9)0.0414 (5)0.031 (4)0.50
O190.4037 (5)0.3075 (5)0.1058 (3)0.067 (3)
O200.2782 (4)0.3836 (6)0.1090 (3)0.079 (3)
O210.3627 (7)0.6467 (9)0.0636 (5)0.157 (5)
O220.6160 (6)0.2176 (6)0.0381 (4)0.096 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0396 (8)0.0504 (8)0.0407 (8)0.0109 (6)0.0055 (6)0.0107 (7)
Mo20.0335 (7)0.0450 (8)0.0510 (8)0.0066 (6)0.0085 (6)0.0027 (7)
Mo30.0542 (9)0.0530 (9)0.0335 (7)0.0146 (7)0.0085 (6)0.0077 (7)
Mo40.0344 (7)0.0582 (9)0.0412 (8)0.0001 (6)0.0016 (6)0.0041 (7)
Mo50.0592 (9)0.0338 (7)0.0639 (9)0.0095 (7)0.0260 (7)0.0070 (7)
Mo60.0765 (10)0.0469 (8)0.0300 (7)0.0085 (7)0.0094 (7)0.0062 (6)
Ni10.0458 (11)0.0548 (13)0.0445 (11)0.0074 (10)0.0111 (9)0.0094 (10)
Si10.031 (3)0.032 (3)0.022 (3)0.001 (2)0.001 (2)0.001 (2)
C10.062 (13)0.16 (2)0.071 (14)0.042 (14)0.031 (11)0.054 (14)
C20.050 (12)0.14 (2)0.074 (14)0.007 (12)0.007 (11)0.057 (13)
C30.035 (7)0.063 (8)0.058 (8)0.000 (7)0.001 (6)0.021 (7)
C40.033 (9)0.058 (12)0.059 (11)0.009 (8)0.011 (8)0.002 (10)
C50.071 (13)0.114 (19)0.063 (14)0.017 (13)0.011 (11)0.029 (13)
C60.078 (15)0.112 (19)0.084 (16)0.020 (13)0.017 (13)0.009 (14)
C70.063 (12)0.072 (13)0.062 (12)0.001 (10)0.001 (9)0.005 (10)
C80.064 (11)0.065 (12)0.044 (10)0.004 (10)0.002 (9)0.015 (9)
C90.080 (13)0.110 (15)0.040 (10)0.019 (12)0.023 (10)0.008 (10)
C100.063 (12)0.092 (14)0.077 (13)0.005 (10)0.020 (10)0.003 (11)
C110.053 (10)0.055 (10)0.046 (10)0.010 (8)0.023 (8)0.002 (8)
C120.038 (9)0.034 (9)0.042 (9)0.002 (7)0.008 (7)0.002 (7)
C130.051 (11)0.081 (13)0.069 (12)0.000 (9)0.010 (9)0.015 (10)
C140.061 (12)0.078 (12)0.054 (11)0.008 (9)0.015 (9)0.006 (10)
C150.077 (12)0.045 (9)0.031 (9)0.014 (9)0.012 (9)0.008 (7)
C160.029 (8)0.056 (10)0.050 (9)0.002 (7)0.009 (7)0.015 (8)
C170.115 (16)0.067 (13)0.051 (12)0.015 (12)0.024 (11)0.022 (10)
C180.095 (14)0.072 (14)0.066 (13)0.036 (11)0.023 (11)0.009 (11)
C190.069 (12)0.034 (10)0.077 (13)0.009 (9)0.035 (10)0.004 (10)
C200.067 (11)0.064 (12)0.039 (10)0.016 (10)0.002 (8)0.006 (9)
C210.080 (13)0.070 (13)0.076 (13)0.001 (11)0.019 (10)0.019 (11)
C220.094 (16)0.077 (15)0.122 (19)0.015 (13)0.006 (13)0.029 (14)
C230.082 (14)0.128 (19)0.053 (12)0.002 (14)0.027 (10)0.005 (13)
C240.063 (12)0.066 (12)0.067 (12)0.001 (9)0.005 (9)0.013 (10)
N10.070 (10)0.086 (11)0.064 (10)0.027 (8)0.002 (8)0.003 (9)
N20.050 (8)0.078 (10)0.041 (8)0.021 (7)0.011 (6)0.002 (7)
N30.048 (8)0.070 (10)0.047 (8)0.006 (7)0.014 (7)0.001 (7)
N40.071 (10)0.083 (10)0.035 (8)0.002 (8)0.014 (7)0.020 (7)
N50.048 (8)0.064 (9)0.049 (8)0.001 (7)0.003 (7)0.013 (7)
N60.049 (8)0.032 (7)0.051 (8)0.009 (5)0.014 (6)0.010 (6)
N70.069 (9)0.073 (10)0.056 (9)0.005 (8)0.014 (7)0.002 (8)
N80.058 (8)0.057 (9)0.042 (8)0.001 (7)0.015 (6)0.008 (7)
N90.040 (8)0.064 (9)0.041 (8)0.007 (7)0.002 (6)0.003 (7)
O1A0.032 (7)0.031 (7)0.020 (7)0.002 (6)0.008 (6)0.003 (6)
O1B0.022 (7)0.036 (8)0.029 (7)0.001 (6)0.006 (6)0.006 (6)
O20.063 (6)0.070 (7)0.043 (6)0.003 (5)0.002 (5)0.023 (5)
O30.089 (7)0.087 (7)0.092 (7)0.045 (5)0.051 (5)0.039 (5)
O40.094 (7)0.101 (7)0.088 (7)0.046 (6)0.050 (5)0.038 (6)
O50.049 (6)0.105 (9)0.050 (6)0.027 (6)0.009 (5)0.002 (6)
O60.111 (9)0.049 (6)0.047 (6)0.023 (6)0.042 (6)0.010 (5)
O70.060 (7)0.063 (7)0.077 (7)0.012 (5)0.033 (5)0.006 (6)
O80.088 (6)0.041 (5)0.087 (6)0.010 (5)0.046 (5)0.010 (5)
O90.108 (8)0.063 (7)0.052 (6)0.044 (6)0.051 (6)0.026 (5)
O100.094 (8)0.063 (7)0.047 (6)0.031 (6)0.019 (5)0.023 (5)
O110.080 (6)0.101 (7)0.093 (7)0.047 (5)0.049 (5)0.054 (6)
O12A0.012 (10)0.064 (17)0.047 (14)0.011 (11)0.002 (9)0.013 (13)
O130.065 (7)0.034 (6)0.089 (8)0.013 (5)0.008 (6)0.006 (5)
O140.040 (6)0.131 (10)0.067 (7)0.003 (6)0.015 (5)0.049 (7)
O150.056 (6)0.078 (7)0.054 (6)0.004 (5)0.025 (5)0.014 (5)
O160.104 (7)0.066 (6)0.085 (7)0.006 (6)0.048 (5)0.005 (5)
O170.091 (7)0.053 (6)0.094 (7)0.013 (5)0.037 (5)0.011 (5)
O18A0.032 (10)0.027 (10)0.025 (9)0.002 (8)0.000 (8)0.010 (7)
O18B0.014 (8)0.040 (11)0.043 (11)0.010 (7)0.015 (8)0.000 (8)
O190.106 (8)0.056 (7)0.054 (6)0.025 (6)0.048 (6)0.010 (5)
O200.031 (6)0.132 (10)0.073 (7)0.012 (6)0.011 (5)0.059 (7)
O210.157 (5)0.157 (5)0.157 (5)0.0005 (11)0.0390 (16)0.0004 (11)
O220.096 (4)0.096 (4)0.096 (4)0.0005 (10)0.0228 (13)0.0002 (11)
Geometric parameters (Å, º) top
Mo1—O101.657 (8)C3—C41.397 (18)
Mo1—O201.763 (8)C4—N31.344 (17)
Mo1—O191.808 (8)C4—C51.37 (2)
Mo1—O12A1.924 (18)C5—C61.30 (2)
Mo1—O92.000 (8)C5—H50.9300
Mo1—O12B2.02 (3)C6—C71.35 (2)
Mo1—O1A2.340 (13)C6—H60.9300
Mo1—O18Ai2.394 (14)C7—C81.398 (18)
Mo2—O71.666 (8)C7—H70.9300
Mo2—O91.802 (8)C8—N31.298 (16)
Mo2—O81.813 (8)C8—H80.9300
Mo2—O61.961 (8)C9—N41.298 (16)
Mo2—O16i2.006 (9)C9—C101.395 (18)
Mo2—O18Bi2.337 (13)C9—H90.9300
Mo2—O18Ai2.420 (14)C10—C111.372 (17)
Mo3—O151.673 (8)C10—H100.9300
Mo3—O161.798 (9)C11—N51.326 (15)
Mo3—O141.830 (9)C11—C121.455 (16)
Mo3—O171.979 (9)C12—N61.342 (14)
Mo3—O202.019 (8)C12—C131.404 (16)
Mo3—O18B2.343 (14)C13—C141.340 (17)
Mo3—O1A2.414 (13)C13—H130.9300
Mo4—O51.647 (8)C14—C151.376 (17)
Mo4—O41.814 (9)C14—H140.9300
Mo4—O61.838 (8)C15—C161.351 (16)
Mo4—O31.964 (9)C15—H150.9300
Mo4—O191.981 (9)C16—N61.359 (14)
Mo4—O1B2.366 (13)C16—H160.9300
Mo4—O18Ai2.415 (13)C17—N71.332 (17)
Mo5—O131.662 (8)C17—C181.352 (18)
Mo5—O12A1.724 (17)C17—H170.9300
Mo5—O111.824 (9)C18—C191.383 (18)
Mo5—O141.958 (8)C18—H180.9300
Mo5—O4i1.997 (9)C19—N81.337 (16)
Mo5—O12B2.06 (2)C19—C201.426 (18)
Mo5—O1Bi2.385 (14)C20—C211.321 (18)
Mo5—O1A2.411 (13)C20—N91.355 (17)
Mo6—O21.653 (8)C21—C221.35 (2)
Mo6—O171.844 (9)C21—H210.9300
Mo6—O31.827 (9)C22—C231.35 (2)
Mo6—O11i1.946 (9)C22—H220.9300
Mo6—O8i1.954 (9)C23—C241.410 (19)
Mo6—O1B2.422 (13)C23—H230.9300
Mo6—O18B2.426 (14)C24—N91.282 (15)
Ni1—N82.047 (11)C24—H240.9300
Ni1—N52.093 (11)N1—N21.345 (14)
Ni1—N22.066 (11)N1—H1A0.8600
Ni1—N62.104 (10)N4—N51.305 (13)
Ni1—N32.096 (12)N4—H40.8600
Ni1—N92.121 (11)N7—N81.345 (13)
Si1—O18A1.597 (13)N7—H7A0.8600
Si1—O18Ai1.597 (13)O1A—O18Ai1.798 (18)
Si1—O18Bi1.670 (13)O1B—Mo5i2.385 (14)
Si1—O18B1.670 (13)O4—Mo5i1.997 (9)
Si1—O1Ai1.622 (14)O8—Mo6i1.954 (9)
Si1—O1A1.622 (14)O11—Mo6i1.946 (9)
Si1—O1Bi1.625 (13)O12A—O12B0.71 (3)
Si1—O1B1.625 (13)O16—Mo2i2.006 (9)
C1—N11.399 (19)O18A—O18B1.858 (19)
C1—C21.39 (2)O18A—O1Ai1.798 (18)
C1—H10.9300O18A—Mo2i2.420 (14)
C2—C31.45 (2)O18A—Mo1i2.394 (14)
C2—H20.9300O18A—Mo4i2.415 (13)
C3—N21.327 (16)O18B—Mo2i2.337 (13)
O10—Mo1—O20103.7 (4)O18A—Si1—O1Bi69.1 (6)
O10—Mo1—O19102.4 (4)O18Ai—Si1—O1Bi110.9 (6)
O20—Mo1—O1996.9 (4)O18Bi—Si1—O1Bi74.1 (6)
O10—Mo1—O12A107.0 (7)O18B—Si1—O1Bi105.9 (6)
O20—Mo1—O12A88.7 (6)O1Ai—Si1—O1Bi107.6 (7)
O19—Mo1—O12A147.9 (7)O1A—Si1—O1Bi72.4 (7)
O10—Mo1—O997.4 (4)O18A—Si1—O1B110.9 (6)
O20—Mo1—O9157.0 (4)O18Ai—Si1—O1B69.1 (6)
O19—Mo1—O987.2 (3)O18Bi—Si1—O1B105.9 (6)
O12A—Mo1—O976.5 (6)O18B—Si1—O1B74.1 (6)
O10—Mo1—O12B87.2 (7)O1Ai—Si1—O1B72.4 (7)
O20—Mo1—O12B88.3 (8)O1A—Si1—O1B107.6 (7)
O19—Mo1—O12B167.6 (7)O1Bi—Si1—O1B180.0 (11)
O12A—Mo1—O12B20.5 (8)N1—C1—C2105.9 (17)
O9—Mo1—O12B83.7 (8)N1—C1—H1127.0
O10—Mo1—O1A157.3 (5)C2—C1—H1127.0
O20—Mo1—O1A64.4 (4)C1—C2—C3105.9 (18)
O19—Mo1—O1A98.4 (5)C1—C2—H2127.1
O12A—Mo1—O1A55.7 (7)C3—C2—H2127.1
O9—Mo1—O1A92.6 (4)N2—C3—C4118.6 (16)
O12B—Mo1—O1A73.7 (7)N2—C3—C2108.4 (16)
O10—Mo1—O18Ai156.5 (5)C4—C3—C2133.0 (18)
O20—Mo1—O18Ai97.6 (5)N3—C4—C5123.1 (16)
O19—Mo1—O18Ai64.8 (4)N3—C4—C3115.1 (16)
O12A—Mo1—O18Ai83.1 (7)C5—C4—C3121.8 (19)
O9—Mo1—O18Ai63.6 (4)C6—C5—C4120 (2)
O12B—Mo1—O18Ai103.4 (7)C6—C5—H5120.1
O1A—Mo1—O18Ai44.6 (4)C4—C5—H5120.1
O7—Mo2—O9102.5 (4)C5—C6—C7120 (2)
O7—Mo2—O8103.0 (5)C5—C6—H6120.0
O9—Mo2—O895.8 (4)C7—C6—H6120.0
O7—Mo2—O698.1 (4)C6—C7—C8117.4 (17)
O9—Mo2—O689.1 (3)C6—C7—H7121.3
O8—Mo2—O6156.8 (4)C8—C7—H7121.3
O7—Mo2—O16i97.7 (4)N3—C8—C7123.9 (15)
O9—Mo2—O16i158.4 (4)N3—C8—H8118.0
O8—Mo2—O16i86.9 (4)C7—C8—H8118.0
O6—Mo2—O16i80.6 (4)N4—C9—C10106.6 (14)
O7—Mo2—O18Bi155.2 (5)N4—C9—H9126.7
O9—Mo2—O18Bi100.0 (5)C10—C9—H9126.7
O8—Mo2—O18Bi64.3 (5)C11—C10—C9104.5 (14)
O6—Mo2—O18Bi92.4 (4)C11—C10—H10127.8
O16i—Mo2—O18Bi61.9 (4)C9—C10—H10127.8
O7—Mo2—O18Ai157.1 (4)N5—C11—C10109.6 (13)
O9—Mo2—O18Ai65.4 (4)N5—C11—C12118.7 (13)
O8—Mo2—O18Ai97.8 (5)C10—C11—C12131.8 (15)
O6—Mo2—O18Ai63.6 (4)N6—C12—C13121.3 (13)
O16i—Mo2—O18Ai92.9 (5)N6—C12—C11115.5 (12)
O18Bi—Mo2—O18Ai45.9 (4)C13—C12—C11123.3 (14)
O15—Mo3—O16102.8 (5)C14—C13—C12117.9 (15)
O15—Mo3—O14100.8 (4)C14—C13—H13121.1
O16—Mo3—O1496.3 (4)C12—C13—H13121.1
O15—Mo3—O1799.0 (4)C13—C14—C15121.5 (15)
O16—Mo3—O1791.0 (4)C13—C14—H14119.3
O14—Mo3—O17156.8 (4)C15—C14—H14119.3
O15—Mo3—O2098.5 (4)C16—C15—C14118.9 (13)
O16—Mo3—O20157.7 (5)C16—C15—H15120.5
O14—Mo3—O2086.1 (4)C14—C15—H15120.5
O17—Mo3—O2079.1 (4)C15—C16—N6121.5 (12)
O15—Mo3—O18B157.7 (5)C15—C16—H16119.3
O16—Mo3—O18B64.3 (5)N6—C16—H16119.3
O14—Mo3—O18B98.7 (5)N7—C17—C18107.9 (15)
O17—Mo3—O18B64.8 (4)N7—C17—H17126.1
O20—Mo3—O18B93.4 (4)C18—C17—H17126.1
O15—Mo3—O1A153.8 (4)C17—C18—C19106.4 (15)
O16—Mo3—O1A100.9 (5)C17—C18—H18126.8
O14—Mo3—O1A65.4 (4)C19—C18—H18126.8
O17—Mo3—O1A91.6 (5)N8—C19—C20118.9 (15)
O20—Mo3—O1A59.9 (4)N8—C19—C18108.7 (15)
O18B—Mo3—O1A47.2 (5)C20—C19—C18132.3 (16)
O5—Mo4—O4101.8 (5)C21—C20—N9123.3 (15)
O5—Mo4—O6102.2 (4)C21—C20—C19124.2 (17)
O4—Mo4—O694.5 (4)N9—C20—C19112.5 (13)
O5—Mo4—O3100.3 (4)C20—C21—C22121.8 (18)
O4—Mo4—O389.6 (4)C20—C21—H21119.1
O6—Mo4—O3155.7 (4)C22—C21—H21119.1
O5—Mo4—O1999.5 (4)C23—C22—C21115.7 (18)
O4—Mo4—O19157.9 (4)C23—C22—H22122.1
O6—Mo4—O1986.6 (3)C21—C22—H22122.1
O3—Mo4—O1980.9 (4)C22—C23—C24120.8 (17)
O5—Mo4—O1B156.7 (5)C22—C23—H23119.6
O4—Mo4—O1B65.0 (5)C24—C23—H23119.6
O6—Mo4—O1B98.0 (4)N9—C24—C23121.7 (16)
O3—Mo4—O1B62.2 (4)N9—C24—H24119.2
O19—Mo4—O1B93.0 (4)C23—C24—H24119.2
O5—Mo4—O18Ai157.3 (5)N2—N1—C1110.7 (15)
O4—Mo4—O18Ai98.1 (5)N2—N1—H1A124.7
O6—Mo4—O18Ai65.2 (4)C1—N1—H1A124.7
O3—Mo4—O18Ai90.5 (5)N1—N2—C3109.0 (14)
O19—Mo4—O18Ai62.4 (4)N1—N2—Ni1136.7 (12)
O1B—Mo4—O18Ai44.9 (5)C3—N2—Ni1114.3 (11)
O13—Mo5—O12A109.9 (8)C8—N3—C4115.6 (14)
O13—Mo5—O11102.2 (5)C8—N3—Ni1129.8 (12)
O12A—Mo5—O1190.2 (7)C4—N3—Ni1114.4 (11)
O13—Mo5—O1498.8 (4)C9—N4—N5112.7 (12)
O12A—Mo5—O1489.3 (7)C9—N4—H4123.7
O11—Mo5—O14157.8 (4)N5—N4—H4123.7
O13—Mo5—O4i99.9 (4)C11—N5—N4106.7 (12)
O12A—Mo5—O4i149.6 (8)C11—N5—Ni1113.0 (10)
O11—Mo5—O4i88.9 (4)N4—N5—Ni1140.1 (10)
O14—Mo5—O4i80.5 (4)C12—N6—C16119.0 (11)
O13—Mo5—O12B91.4 (7)C12—N6—Ni1113.8 (9)
O12A—Mo5—O12B19.1 (10)C16—N6—Ni1127.2 (9)
O11—Mo5—O12B99.0 (8)C17—N7—N8110.1 (13)
O14—Mo5—O12B87.4 (8)C17—N7—H7A124.9
O4i—Mo5—O12B164.5 (8)N8—N7—H7A124.9
O13—Mo5—O1Bi156.8 (4)N7—N8—C19106.8 (12)
O12A—Mo5—O1Bi90.0 (8)N7—N8—Ni1137.6 (11)
O11—Mo5—O1Bi64.7 (4)C19—N8—Ni1115.6 (11)
O14—Mo5—O1Bi93.1 (4)C24—N9—C20116.6 (13)
O4i—Mo5—O1Bi62.4 (4)C24—N9—Ni1127.4 (11)
O12B—Mo5—O1Bi109.0 (7)C20—N9—Ni1115.8 (9)
O13—Mo5—O1A155.5 (4)Si1—O1A—O18Ai55.4 (6)
O12A—Mo5—O1A55.8 (8)Si1—O1A—Mo1124.6 (7)
O11—Mo5—O1A97.8 (5)O18Ai—O1A—Mo169.3 (6)
O14—Mo5—O1A63.9 (4)Si1—O1A—Mo5119.5 (7)
O4i—Mo5—O1A94.3 (4)O18Ai—O1A—Mo5127.6 (8)
O12B—Mo5—O1A71.6 (7)Mo1—O1A—Mo595.5 (5)
O1Bi—Mo5—O1A47.1 (4)Si1—O1A—Mo3120.1 (7)
O2—Mo6—O17101.4 (5)O18Ai—O1A—Mo3136.3 (8)
O2—Mo6—O3103.9 (4)Mo1—O1A—Mo396.4 (5)
O17—Mo6—O392.0 (4)Mo5—O1A—Mo393.8 (5)
O2—Mo6—O11i100.3 (4)Si1—O1B—Mo4123.5 (7)
O17—Mo6—O11i157.5 (4)Si1—O1B—Mo5i120.7 (7)
O3—Mo6—O11i88.6 (4)Mo4—O1B—Mo5i96.1 (5)
O2—Mo6—O8i99.1 (4)Si1—O1B—Mo6119.8 (7)
O17—Mo6—O8i89.2 (4)Mo4—O1B—Mo695.7 (5)
O3—Mo6—O8i156.2 (4)Mo5i—O1B—Mo694.3 (5)
O11i—Mo6—O8i81.5 (4)Mo6—O3—Mo4138.9 (5)
O2—Mo6—O1B156.7 (4)Mo4—O4—Mo5i136.0 (6)
O17—Mo6—O1B98.1 (5)Mo4—O6—Mo2136.9 (5)
O3—Mo6—O1B62.5 (4)Mo2—O8—Mo6i139.1 (6)
O11i—Mo6—O1B62.4 (4)Mo2—O9—Mo1136.3 (5)
O8i—Mo6—O1B93.8 (4)Mo5—O11—Mo6i138.4 (6)
O2—Mo6—O18B154.1 (4)O12B—O12A—Mo5108 (3)
O17—Mo6—O18B64.7 (4)O12B—O12A—Mo188 (3)
O3—Mo6—O18B98.5 (5)Mo5—O12A—Mo1149.2 (11)
O11i—Mo6—O18B93.0 (5)O12A—O12B—Mo553 (3)
O8i—Mo6—O18B60.8 (4)O12A—O12B—Mo172 (3)
O1B—Mo6—O18B48.4 (4)Mo5—O12B—Mo1119.2 (11)
N8—Ni1—N593.6 (4)Mo3—O14—Mo5136.8 (5)
N8—Ni1—N296.0 (5)Mo3—O16—Mo2i135.8 (6)
N5—Ni1—N2168.3 (5)Mo6—O17—Mo3134.6 (5)
N8—Ni1—N692.0 (4)Si1—O18A—O18B57.2 (6)
N5—Ni1—N679.0 (4)Si1—O18A—O1Ai56.7 (6)
N2—Ni1—N694.0 (4)O18B—O18A—O1Ai94.5 (8)
N8—Ni1—N3170.2 (5)Si1—O18A—Mo2i121.6 (7)
N5—Ni1—N393.8 (5)O18B—O18A—Mo2i64.7 (6)
N2—Ni1—N377.4 (5)O1Ai—O18A—Mo2i126.8 (8)
N6—Ni1—N395.6 (4)Si1—O18A—Mo1i122.7 (7)
N8—Ni1—N977.0 (5)O18B—O18A—Mo1i135.4 (8)
N5—Ni1—N992.6 (4)O1Ai—O18A—Mo1i66.1 (6)
N2—Ni1—N996.0 (4)Mo2i—O18A—Mo1i94.3 (5)
N6—Ni1—N9165.8 (4)Si1—O18A—Mo4i122.2 (7)
N3—Ni1—N996.3 (5)O18B—O18A—Mo4i124.0 (8)
O18A—Si1—O18Ai180.0 (15)O1Ai—O18A—Mo4i134.5 (8)
O18A—Si1—O18Bi110.7 (7)Mo2i—O18A—Mo4i93.9 (5)
O18Ai—Si1—O18Bi69.3 (7)Mo1i—O18A—Mo4i94.7 (5)
O18A—Si1—O18B69.3 (7)Si1—O18B—O18A53.5 (6)
O18Ai—Si1—O18B110.7 (7)Si1—O18B—Mo2i122.6 (7)
O18Bi—Si1—O18B180.0 (12)O18A—O18B—Mo2i69.4 (6)
O18A—Si1—O1Ai67.9 (7)Si1—O18B—Mo3121.7 (7)
O18Ai—Si1—O1Ai112.1 (7)O18A—O18B—Mo3130.1 (8)
O18Bi—Si1—O1Ai70.7 (7)Mo2i—O18B—Mo397.7 (5)
O18B—Si1—O1Ai109.3 (7)Si1—O18B—Mo6117.6 (6)
O18A—Si1—O1A112.1 (7)O18A—O18B—Mo6132.7 (8)
O18Ai—Si1—O1A67.9 (7)Mo2i—O18B—Mo695.6 (5)
O18Bi—Si1—O1A109.3 (7)Mo3—O18B—Mo695.4 (5)
O18B—Si1—O1A70.7 (7)Mo1—O19—Mo4138.0 (5)
O1Ai—Si1—O1A180.0 (12)Mo1—O20—Mo3139.0 (5)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21ii0.862.012.850 (19)165
N4—H4···O17iii0.862.022.786 (13)148
N7—H7A···O22iv0.861.942.760 (16)159
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x, y+1, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C8H7N3)3]2[SiMo12O40]·4H2O
Mr2879.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.687 (4), 16.299 (3), 27.604 (6)
β (°) 104.10 (3)
V3)8154 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.766, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
28737, 7188, 3439
Rint0.125
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.121, 1.00
No. of reflections7188
No. of parameters587
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.78, 0.66

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N82.047 (11)Ni1—N92.121 (11)
Ni1—N52.093 (11)Si1—O18A1.597 (13)
Ni1—N22.066 (11)Si1—O18B1.670 (13)
Ni1—N62.104 (10)Si1—O1A1.622 (14)
Ni1—N32.096 (12)Si1—O1B1.625 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21i0.862.012.850 (19)165
N4—H4···O17ii0.862.022.786 (13)148
N7—H7A···O22iii0.861.942.760 (16)159
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Chinese Academy of Sciences (`Hundred Talents Program') and the Ministry of Science and Technology of China (grant No. 2007CB607608), Shandong Provincial Education Department and Shandong Institute of Education is gratefully acknowledged.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. D., Lu, C. Z., Chen, S. M., Zhuang, H. H. & Huang, J. S. (2003). Polyhedron, 22, 3091–3098.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Shi, C., Li, B. & Hu, B. (2010). Acta Cryst. E66, m26–m27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Wei, P., Zhu, W., Li, B. & Hu, B. (2010). Acta Cryst. E66, m127–m128.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds