metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{tris­­[3-(2-pyrid­yl)-1H-pyrazole]manganese(II)} dodeca­molybdo(V,VI)phosphate hexa­hydrate

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, bAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, ShanDong Institute of Education, Jinan 250013, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 20 January 2010; accepted 25 January 2010; online 30 January 2010)

The asymmetric unit of the title compound, [Mn(C8H7N3)3]2[PMo12O40]·6H2O, consists of a complex [Mn(C8H7N3)3]2+ cation, half of a mixed-valent MoV,VI α-Keggin-type [PMo12O40]4− heteropolyanion, and three uncoordinated water mol­ecules. The Mn2+ cation is surrounded by six N atoms from three chelating 3-(2-pyrid­yl)-1H-pyrazole ligands in a distorted octa­hedral coordination. In the heteropolyanion, two O atoms of the central PO4 group ([\overline{1}] symmetry) are equally disordered about an inversion centre. N—H⋯O and O—H⋯O hydrogen bonding between the cations, anions and the uncoordinated water mol­ecules leads to a consolidation of the structure.

Related literature

For general background to polyoxometalates, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.]). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]); Zhang, Wei et al. (2009[Zhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424-4428.]). For the structure and chemistry of reduced heteropolyanions with composition [PMo12O40]4−, see: Artero & Proust (2000[Artero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393-2400]); Kurmoo et al. (1998[Kurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater. 7, 545-550.]).; Niu et al. (1999[Niu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem. 24, 108-114.]). For the role of amines in hydro­thermal synthesis, see: Yang et al. (2003[Yang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem. 22, 137-142.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H7N3)3]2[PMo12O40]·6H2O

  • Mr = 2911.22

  • Monoclinic, C 2/c

  • a = 18.897 (4) Å

  • b = 16.360 (3) Å

  • c = 27.615 (6) Å

  • β = 104.90 (3)°

  • V = 8250 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.845

  • 15879 measured reflections

  • 7042 independent reflections

  • 5890 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.00

  • 7042 reflections

  • 610 parameters

  • H-atom parameters constrained

  • Δρmax = 1.52 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N8 2.224 (6)
Mn1—N5 2.224 (5)
Mn1—N2 2.250 (5)
Mn1—N4 2.259 (6)
Mn1—N1 2.260 (5)
Mn1—N7 2.283 (5)
P1—O21Ai 1.495 (7)
P1—O21Bi 1.519 (7)
P1—O19Bi 1.531 (6)
P1—O19Ai 1.562 (6)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯O1W 0.86 1.96 2.786 (9) 160
N6—H6⋯O2W 0.86 2.10 2.951 (13) 171
N3—H3A⋯O17ii 0.86 1.97 2.814 (7) 165
Symmetry code: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the asymmetric unit of the title compound consists of three subunits, viz. of a complex [Mn(C8H7N3)3]2+ cation, a heteropolyanion [PMo12O40]4- and of three uncoordinated water molecules. The Mn(II) ion is distorted octahedrally coordinated by six N atoms from three chelating 3-(2-pyridyl)-1H-pyrazole ligands. The Mn—N bond lengths are in the range of 2.224 (6)—2.283 (5) Å.

The heteropolyanion [PMo12O40]4- is an one electron-reduced derivative of [PMo12O40]3-, similar to other reported representatives (Artero & Proust, 2000; Kurmoo et al., 1998; Niu et al., 1999). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003).

In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the P atom is located at the centre of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered PO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The P—O bond distances are in the normal range of 1.495 (7)—1.562 (6) Å. The Mo—O bond distances vary widely from 1.644 (4) to 2.517 (6) Å. The shortest Mo—O bonds are in the range of 1.644 (4)—1.666 (4) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.455 (7)—2.517 (6) Å for those oxygen atoms connected with both Mo and P atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

Related literature top

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structure and chemistry of reduced heteropolyanions with composition [PMo12O40]4-, see: Artero & Proust (2000); Kurmoo et al. (1998).; Niu et al. (1999). For the role of amines in hydrothermal synthesis, see: Yang et al. (2003).

Experimental top

A mixture of 3-(2-pyridyl)-1H-pyrazole (0.5 mmoL 0.07 g), sodium molybdate (0.4 mmoL, 0.10 g), manganese(II) sulfate monohydrate (0.3 mmol, 0.05 g), and dipotassium hydrogenphosphate (0.22 mmol, 0.05 g) in 10 ml distilled water was sealed in a 25 ml Teflon-lined stainless steel autoclave and was kept at 433 K for three days. Pink crystals suitable for the X-ray experiment were obtained. Anal. C48H54Mn2Mo12N18O46P: C, 19.80; H, 1.82; N, 8.66. Found: C, 19.71; H, 1.74; N, 8.58 %. IR(cm-1): 3456, 1676, 1605, 1433, 1363, 1306, 1015, 959, 773, 739, 694, 942.

TGA curve shows that the lattice water molecules and the organic ligands seperate above 372 and 683 K, respectively. The overall thermal decomposition process can be described by the followed equation: 4C48H54Mn2Mo12N18O46P + 325O2 = 108H2O + 192CO2 + 36N2O5 + 8MnO + 2P2O5 + 48MoO3

Refinement top

All hydrogen atoms bound to aromatic carbon atoms were refined in calculated positions using a riding model with a C—H distance of 0.93 Å and Uiso = 1.2Ueq(C). Hydrogen atoms attached to aromatic N atoms were refined with a N—H distance of 0.86 Å and Uiso = 1.2Ueq(N). The hydrogen atoms of the three uncoordinated water molecules could not be located unambiguously from difference Fourier maps, probably due to disorder of the water molecules. Thus the structure was refined without the H atoms of the water molecules (which includes the water O atoms O1W, O2W, O3W). In the PO4 unit, the two oxygen atoms (O19 and O21) are equally disordered about the inversion centre. In the final difference Fourier map the highest peak is 2.86 Å from atom O2w and the deepest hole is 1.09 Å from atom O9. The highest peak is located in the voids of the crystal structure and may be associated with an additional water molecule. However, refinement of this position did not result in a reasonable model. Hence this position was also excluded from the final refinement.

Structure description top

The design and synthesis of polyoxometalates has attracted continuous research interest not only because of their appealing structural and topological novelties, but also due to their interesting optical, electronic, magnetic, and catalytic properties, as well as their potential medical applications (Pope & Müller, 1991). In our research group, organic amines, such as 3-(2-pyridyl)pyrazole and pyrazine, are used to effectively modify polyoxomolybdates under hydrothermal condictions (Zhang, Dou et al., 2009; Zhang, Wei et al., 2009). Here, we describe the synthesis and structural characterization of the title compound.

As shown in Figure 1, the asymmetric unit of the title compound consists of three subunits, viz. of a complex [Mn(C8H7N3)3]2+ cation, a heteropolyanion [PMo12O40]4- and of three uncoordinated water molecules. The Mn(II) ion is distorted octahedrally coordinated by six N atoms from three chelating 3-(2-pyridyl)-1H-pyrazole ligands. The Mn—N bond lengths are in the range of 2.224 (6)—2.283 (5) Å.

The heteropolyanion [PMo12O40]4- is an one electron-reduced derivative of [PMo12O40]3-, similar to other reported representatives (Artero & Proust, 2000; Kurmoo et al., 1998; Niu et al., 1999). The employed organic ligand appears to adjust the pH value, and additionally supplies reducing electrons, which is a commonly observed feature of hydrothermal syntheses when organic amines are used to prepare various hybrid materials, zeolites or metal phosphates (Yang et al., 2003).

In the Keggin-type heteropolyanion, each Mo atom is surrounded by six O atoms and the P atom is located at the centre of the anion. There are four kinds of O atoms present in the anion according to their coordination environments: Oa (O atoms in the disordered PO4 tetrahedron), Ob (bridging O atoms between two triplet groups of MoO6 octahedra), Oc (bridging O atoms within one triplet group of MoO6 octahedra) and Od (terminal O atoms). The P—O bond distances are in the normal range of 1.495 (7)—1.562 (6) Å. The Mo—O bond distances vary widely from 1.644 (4) to 2.517 (6) Å. The shortest Mo—O bonds are in the range of 1.644 (4)—1.666 (4) Å for the terminal oxygen atoms. The longest Mo—O lengths are in the range of 2.455 (7)—2.517 (6) Å for those oxygen atoms connected with both Mo and P atoms.

N—H···O and O—H···O hydrogen bonding between the cationic and anionic moieties and the uncoordinated water molecules leads to a consolidation of the structure (Fig. 2; Table 2).

For general background to polyoxometalates, see: Pope & Müller (1991). For polyoxometalates modified with amines, see: Zhang, Dou et al. (2009); Zhang, Wei et al. (2009). For the structure and chemistry of reduced heteropolyanions with composition [PMo12O40]4-, see: Artero & Proust (2000); Kurmoo et al. (1998).; Niu et al. (1999). For the role of amines in hydrothermal synthesis, see: Yang et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The building blocks of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with N—H···O and O—H···O hydrogen bonds as dashed lines. Water molecules have been omitted for clarity.
Bis{tris[3-(2-pyridyl)-1H-pyrazole]manganese(II)} dodecamolybdo(V,VI)phosphate hexahydrate top
Crystal data top
[Mn(C8H7N3)3]2[PMo12O40]·6H2OF(000) = 5620
Mr = 2911.22Dx = 2.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7042 reflections
a = 18.897 (4) Åθ = 2.9–25.0°
b = 16.360 (3) ŵ = 2.18 mm1
c = 27.615 (6) ÅT = 293 K
β = 104.90 (3)°Block, pink
V = 8250 (3) Å30.12 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7042 independent reflections
Radiation source: fine-focus sealed tube5890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1922
Tmin = 0.780, Tmax = 0.845k = 1918
15879 measured reflectionsl = 3215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.058P)2 + 43.0549P]
where P = (Fo2 + 2Fc2)/3
7042 reflections(Δ/σ)max = 0.001
610 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Mn(C8H7N3)3]2[PMo12O40]·6H2OV = 8250 (3) Å3
Mr = 2911.22Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.897 (4) ŵ = 2.18 mm1
b = 16.360 (3) ÅT = 293 K
c = 27.615 (6) Å0.12 × 0.10 × 0.08 mm
β = 104.90 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7042 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5890 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.845Rint = 0.019
15879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.058P)2 + 43.0549P]
where P = (Fo2 + 2Fc2)/3
7042 reflectionsΔρmax = 1.52 e Å3
610 parametersΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2008 (4)0.9012 (4)0.0945 (2)0.0468 (15)
H10.24350.89570.08400.056*
C20.1413 (4)0.9354 (4)0.0625 (2)0.0514 (16)
H20.14410.95470.03140.062*
C30.0778 (4)0.9412 (4)0.0766 (2)0.0520 (16)
H30.03640.96400.05510.062*
C40.0755 (3)0.9131 (4)0.1228 (2)0.0484 (15)
H40.03220.91580.13280.058*
C50.1377 (3)0.8807 (3)0.1543 (2)0.0365 (12)
C60.1409 (3)0.8535 (4)0.2053 (2)0.0404 (13)
C70.0856 (4)0.8496 (5)0.2303 (2)0.064 (2)
H70.03650.86350.21810.076*
C80.1203 (4)0.8206 (5)0.2770 (2)0.067 (2)
H80.09850.81150.30320.080*
C90.3304 (4)0.9890 (4)0.2657 (3)0.0570 (17)
H90.29960.96790.28400.068*
C100.3564 (5)1.0653 (5)0.2751 (3)0.069 (2)
H100.34281.09580.29970.083*
C110.3992 (6)1.0970 (7)0.2513 (4)0.098 (3)
H110.41731.14950.25910.118*
C120.4172 (5)1.0565 (6)0.2166 (4)0.082 (3)
H120.44731.08010.19860.098*
C130.3917 (3)0.9775 (4)0.2058 (3)0.0552 (17)
C140.4124 (3)0.9290 (5)0.1680 (3)0.0552 (17)
C150.4646 (5)0.9425 (7)0.1395 (4)0.091 (3)
H150.49560.98710.14080.109*
C160.4578 (4)0.8683 (7)0.1073 (3)0.088 (3)
H160.48370.85620.08380.105*
C170.4104 (4)0.7489 (5)0.2977 (3)0.0660 (19)
H170.41440.80310.30830.079*
C180.4495 (5)0.6912 (6)0.3289 (3)0.079 (2)
H180.47940.70570.36010.095*
C190.4441 (6)0.6112 (6)0.3136 (4)0.092 (3)
H190.47040.57090.33430.111*
C200.3994 (5)0.5909 (5)0.2674 (3)0.079 (2)
H200.39550.53720.25600.095*
C210.3607 (4)0.6534 (4)0.2384 (2)0.0487 (15)
C220.3089 (4)0.6366 (4)0.1895 (2)0.0505 (15)
C230.2897 (5)0.5646 (5)0.1635 (3)0.070 (2)
H230.30900.51280.17270.083*
C240.2363 (5)0.5851 (5)0.1211 (3)0.073 (2)
H240.21180.54980.09590.088*
Mn10.29740 (5)0.82270 (6)0.19825 (4)0.0462 (2)
Mo10.24323 (3)0.14506 (3)0.112281 (17)0.03994 (14)
Mo20.18961 (3)0.45615 (3)0.01922 (2)0.04104 (14)
Mo30.42154 (2)0.31322 (3)0.019107 (18)0.03646 (13)
Mo40.35196 (3)0.41058 (3)0.074082 (17)0.03616 (13)
Mo50.41597 (3)0.20430 (3)0.092200 (17)0.03748 (14)
Mo60.17852 (3)0.34986 (3)0.091187 (17)0.03910 (14)
N10.2007 (3)0.8748 (3)0.14048 (17)0.0390 (11)
N20.2040 (3)0.8284 (3)0.23478 (17)0.0415 (11)
N30.1895 (3)0.8080 (3)0.27848 (18)0.0526 (14)
H3A0.22150.78910.30410.063*
N40.3478 (3)0.9425 (3)0.2304 (2)0.0534 (13)
N50.3778 (3)0.8576 (4)0.1555 (2)0.0570 (14)
N60.4054 (4)0.8223 (4)0.1200 (3)0.0742 (18)
H60.39120.77550.10670.089*
N70.3668 (3)0.7316 (3)0.2531 (2)0.0497 (13)
N80.2709 (3)0.6996 (3)0.1642 (2)0.0524 (13)
N90.2268 (3)0.6667 (4)0.1234 (2)0.0609 (15)
H9A0.19580.69420.10110.073*
O10.4056 (3)0.3944 (3)0.02306 (16)0.0595 (12)
O20.1489 (2)0.3974 (3)0.13557 (15)0.0558 (12)
O30.2416 (3)0.0967 (3)0.16414 (14)0.0567 (12)
O40.3463 (3)0.1779 (3)0.12631 (19)0.0705 (15)
O50.4037 (3)0.3167 (3)0.10546 (17)0.0636 (13)
O60.2797 (2)0.3910 (3)0.10699 (17)0.0666 (14)
O70.4517 (3)0.2416 (3)0.03601 (16)0.0601 (12)
O80.4019 (3)0.4847 (3)0.10750 (16)0.0588 (12)
O90.4004 (3)0.2128 (3)0.0597 (2)0.086 (2)
O100.5010 (2)0.3399 (3)0.02956 (19)0.0588 (12)
O110.2847 (2)0.4701 (4)0.02450 (18)0.0755 (16)
O120.1037 (3)0.3971 (3)0.0559 (2)0.0782 (17)
O130.1456 (3)0.1368 (3)0.0741 (2)0.086 (2)
O140.1576 (2)0.4261 (4)0.03989 (18)0.0736 (16)
O150.1624 (3)0.5528 (3)0.0271 (2)0.0646 (13)
O160.2695 (3)0.0609 (4)0.0729 (2)0.0851 (19)
O170.2240 (3)0.2553 (3)0.1280 (2)0.0731 (15)
O180.4931 (2)0.1832 (3)0.13411 (16)0.0629 (13)
O19A0.2040 (4)0.2382 (4)0.0391 (2)0.0276 (14)0.50
O21A0.3249 (4)0.2805 (4)0.0255 (2)0.0273 (14)0.50
O19B0.2906 (4)0.1881 (4)0.0389 (2)0.0281 (14)0.50
O21B0.2470 (4)0.3319 (4)0.0253 (2)0.0287 (15)0.50
O1W0.1174 (4)0.7183 (5)0.0408 (3)0.107 (2)
O2W0.3674 (7)0.6650 (7)0.0673 (5)0.193 (6)
O3W0.5347 (7)0.0708 (9)0.0266 (7)0.232 (7)
P10.25000.25000.00000.0222 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (4)0.047 (4)0.047 (3)0.001 (3)0.017 (3)0.013 (3)
C20.062 (4)0.049 (4)0.040 (3)0.014 (3)0.008 (3)0.011 (3)
C30.040 (4)0.058 (4)0.046 (3)0.004 (3)0.010 (3)0.009 (3)
C40.038 (3)0.061 (4)0.044 (3)0.002 (3)0.007 (3)0.003 (3)
C50.033 (3)0.038 (3)0.035 (3)0.002 (2)0.002 (2)0.000 (2)
C60.035 (3)0.046 (3)0.039 (3)0.000 (3)0.009 (3)0.003 (3)
C70.043 (4)0.101 (6)0.051 (4)0.013 (4)0.019 (3)0.018 (4)
C80.067 (5)0.096 (6)0.041 (3)0.001 (4)0.022 (3)0.014 (4)
C90.063 (4)0.054 (4)0.059 (4)0.003 (4)0.025 (4)0.014 (3)
C100.080 (6)0.063 (5)0.055 (4)0.001 (4)0.001 (4)0.005 (4)
C110.092 (6)0.096 (6)0.095 (6)0.001 (5)0.001 (5)0.004 (6)
C120.063 (5)0.075 (6)0.088 (6)0.017 (5)0.016 (5)0.024 (5)
C130.031 (3)0.058 (4)0.064 (4)0.005 (3)0.012 (3)0.023 (3)
C140.033 (3)0.070 (5)0.059 (4)0.001 (3)0.004 (3)0.025 (4)
C150.055 (4)0.115 (6)0.095 (5)0.009 (5)0.006 (4)0.040 (5)
C160.048 (4)0.159 (10)0.063 (5)0.046 (5)0.026 (4)0.033 (6)
C170.068 (5)0.059 (5)0.062 (4)0.004 (4)0.000 (4)0.001 (4)
C180.075 (6)0.079 (6)0.071 (5)0.001 (5)0.004 (4)0.011 (5)
C190.097 (6)0.075 (5)0.086 (5)0.013 (5)0.011 (5)0.027 (5)
C200.085 (6)0.050 (4)0.090 (6)0.014 (4)0.000 (5)0.007 (4)
C210.046 (4)0.046 (4)0.055 (4)0.009 (3)0.015 (3)0.008 (3)
C220.050 (4)0.046 (4)0.059 (4)0.007 (3)0.021 (3)0.002 (3)
C230.094 (6)0.051 (4)0.068 (5)0.015 (4)0.028 (5)0.003 (4)
C240.097 (6)0.060 (5)0.063 (5)0.003 (5)0.022 (5)0.018 (4)
Mn10.0361 (5)0.0403 (5)0.0618 (6)0.0050 (4)0.0118 (4)0.0090 (4)
Mo10.0514 (3)0.0399 (3)0.0269 (2)0.0058 (2)0.0069 (2)0.0034 (2)
Mo20.0427 (3)0.0312 (3)0.0513 (3)0.0064 (2)0.0160 (2)0.0036 (2)
Mo30.0249 (3)0.0423 (3)0.0419 (3)0.0054 (2)0.0080 (2)0.0026 (2)
Mo40.0297 (3)0.0395 (3)0.0371 (2)0.0073 (2)0.0047 (2)0.0095 (2)
Mo50.0265 (3)0.0484 (3)0.0336 (2)0.0016 (2)0.0004 (2)0.0013 (2)
Mo60.0401 (3)0.0467 (3)0.0304 (2)0.0085 (2)0.0088 (2)0.0092 (2)
N10.037 (3)0.038 (3)0.042 (2)0.001 (2)0.010 (2)0.008 (2)
N20.038 (3)0.047 (3)0.037 (2)0.001 (2)0.006 (2)0.006 (2)
N30.054 (3)0.063 (4)0.036 (2)0.003 (3)0.003 (2)0.014 (2)
N40.044 (3)0.046 (3)0.068 (3)0.002 (3)0.010 (3)0.010 (3)
N50.042 (3)0.067 (4)0.067 (3)0.010 (3)0.021 (3)0.013 (3)
N60.057 (4)0.082 (5)0.082 (4)0.020 (4)0.014 (4)0.006 (4)
N70.045 (3)0.045 (3)0.058 (3)0.006 (2)0.011 (3)0.003 (3)
N80.048 (3)0.051 (3)0.056 (3)0.005 (3)0.008 (3)0.001 (3)
N90.062 (4)0.062 (4)0.053 (3)0.005 (3)0.004 (3)0.003 (3)
O10.092 (3)0.048 (2)0.050 (2)0.022 (2)0.038 (2)0.010 (2)
O20.048 (3)0.076 (3)0.047 (2)0.002 (2)0.017 (2)0.024 (2)
O30.060 (3)0.073 (3)0.034 (2)0.014 (2)0.006 (2)0.016 (2)
O40.064 (3)0.079 (3)0.083 (3)0.037 (3)0.046 (3)0.041 (3)
O50.097 (4)0.052 (3)0.056 (3)0.024 (3)0.045 (3)0.012 (2)
O60.036 (2)0.105 (4)0.059 (3)0.001 (2)0.012 (2)0.033 (3)
O70.093 (3)0.050 (3)0.049 (2)0.022 (2)0.039 (2)0.008 (2)
O80.075 (3)0.049 (3)0.051 (2)0.021 (2)0.013 (2)0.016 (2)
O90.087 (4)0.040 (3)0.089 (4)0.011 (3)0.053 (3)0.015 (3)
O100.044 (3)0.061 (3)0.080 (3)0.005 (2)0.033 (2)0.002 (3)
O110.041 (3)0.124 (4)0.063 (3)0.008 (3)0.016 (2)0.045 (3)
O120.076 (3)0.083 (4)0.093 (4)0.044 (3)0.054 (3)0.048 (3)
O130.082 (4)0.042 (3)0.092 (4)0.014 (3)0.053 (3)0.020 (3)
O140.031 (2)0.126 (4)0.061 (3)0.000 (3)0.007 (2)0.041 (3)
O150.053 (3)0.042 (3)0.094 (4)0.010 (2)0.010 (3)0.012 (2)
O160.073 (3)0.096 (4)0.107 (4)0.053 (3)0.059 (3)0.066 (4)
O170.065 (3)0.043 (3)0.079 (3)0.003 (2)0.038 (3)0.013 (2)
O180.044 (3)0.089 (4)0.043 (2)0.023 (3)0.010 (2)0.001 (2)
O19A0.029 (4)0.030 (4)0.023 (3)0.002 (3)0.005 (3)0.004 (3)
O21A0.024 (3)0.029 (4)0.029 (3)0.002 (3)0.007 (3)0.001 (3)
O19B0.029 (4)0.030 (4)0.023 (3)0.002 (3)0.002 (3)0.001 (3)
O21B0.027 (4)0.028 (4)0.031 (3)0.001 (3)0.007 (3)0.002 (3)
O1W0.086 (5)0.107 (5)0.108 (5)0.011 (4)0.012 (4)0.006 (4)
O2W0.207 (11)0.137 (8)0.301 (15)0.038 (8)0.187 (12)0.053 (9)
O3W0.169 (11)0.183 (13)0.41 (2)0.001 (9)0.190 (14)0.068 (13)
P10.0213 (9)0.0235 (9)0.0209 (7)0.0005 (7)0.0036 (7)0.0016 (7)
Geometric parameters (Å, º) top
C1—N11.342 (7)Mo1—O19B2.517 (6)
C1—C21.358 (9)Mo2—O151.660 (4)
C1—H10.9300Mo2—O16i1.860 (5)
C2—C31.356 (9)Mo2—O111.903 (5)
C2—H20.9300Mo2—O121.936 (5)
C3—C41.366 (9)Mo2—O141.944 (4)
C3—H30.9300Mo2—O19Bi2.471 (7)
C4—C51.376 (8)Mo2—O21B2.478 (7)
C4—H40.9300Mo3—O101.658 (4)
C5—N11.344 (7)Mo3—O11.841 (4)
C5—C61.463 (7)Mo3—O71.889 (4)
C6—N21.324 (7)Mo3—O13i1.895 (5)
C6—C71.394 (8)Mo3—O91.971 (5)
C7—C81.375 (9)Mo3—O19Ai2.443 (7)
C7—H70.9300Mo3—O21A2.510 (6)
C8—N31.315 (9)Mo4—O81.662 (4)
C8—H80.9300Mo4—O61.852 (4)
C9—N41.341 (9)Mo4—O111.882 (5)
C9—C101.341 (10)Mo4—O51.906 (5)
C9—H90.9300Mo4—O11.954 (4)
C10—C111.278 (13)Mo4—O21B2.455 (7)
C10—H100.9300Mo4—O21A2.498 (7)
C11—C121.281 (13)Mo5—O181.647 (4)
C11—H110.9300Mo5—O41.857 (4)
C12—C131.384 (11)Mo5—O51.900 (5)
C12—H120.9300Mo5—O12i1.924 (5)
C13—N41.330 (8)Mo5—O71.943 (4)
C13—C141.445 (10)Mo5—O19B2.461 (7)
C14—N51.339 (9)Mo5—O21A2.506 (7)
C14—C151.428 (11)Mo6—O21.666 (4)
C15—C161.490 (14)Mo6—O9i1.834 (5)
C15—H150.9300Mo6—O141.852 (5)
C16—N61.360 (11)Mo6—O171.928 (5)
C16—H160.9300Mo6—O61.967 (5)
C17—N71.325 (9)Mo6—O19A2.449 (6)
C17—C181.361 (11)Mo6—O21B2.506 (6)
C17—H170.9300N2—N31.346 (7)
C18—C191.370 (12)N3—H3A0.8600
C18—H180.9300N5—N61.354 (8)
C19—C201.377 (12)N6—H60.8600
C19—H190.9300N8—N91.331 (8)
C20—C211.386 (10)N9—H9A0.8600
C20—H200.9300O9—Mo6i1.834 (5)
C21—N71.337 (8)O12—Mo5i1.924 (5)
C21—C221.477 (10)O13—Mo3i1.895 (5)
C22—N81.345 (8)O16—Mo2i1.860 (5)
C22—C231.380 (10)O19A—P11.562 (6)
C23—C241.376 (11)O19A—O21Ai1.752 (9)
C23—H230.9300O19A—Mo3i2.443 (7)
C24—N91.352 (9)O21A—P11.495 (7)
C24—H240.9300O21A—O21B1.693 (9)
Mn1—N82.224 (6)O21A—O19B1.723 (9)
Mn1—N52.224 (5)O21A—O19Ai1.752 (9)
Mn1—N22.250 (5)O19B—P11.531 (6)
Mn1—N42.259 (6)O19B—O21Bi1.764 (9)
Mn1—N12.260 (5)O19B—Mo2i2.471 (7)
Mn1—N72.283 (5)O21B—P11.519 (7)
Mo1—O31.644 (4)O21B—O19Bi1.764 (9)
Mo1—O131.880 (5)P1—O21Ai1.495 (7)
Mo1—O161.899 (5)P1—O21Bi1.519 (7)
Mo1—O171.911 (5)P1—O19Bi1.531 (6)
Mo1—O41.960 (5)P1—O19Ai1.562 (6)
Mo1—O19A2.488 (6)
N1—C1—C2123.0 (6)O18—Mo5—O4102.1 (3)
N1—C1—H1118.5O18—Mo5—O5101.3 (2)
C2—C1—H1118.5O4—Mo5—O589.4 (2)
C3—C2—C1119.2 (6)O18—Mo5—O12i101.7 (3)
C3—C2—H2120.4O4—Mo5—O12i89.8 (2)
C1—C2—H2120.4O5—Mo5—O12i156.6 (3)
C2—C3—C4119.1 (6)O18—Mo5—O7101.6 (2)
C2—C3—H3120.5O4—Mo5—O7156.3 (2)
C4—C3—H3120.5O5—Mo5—O786.25 (18)
C3—C4—C5119.5 (6)O12i—Mo5—O785.1 (2)
C3—C4—H4120.2O18—Mo5—O19B159.9 (2)
C5—C4—H4120.2O4—Mo5—O19B65.1 (2)
N1—C5—C4121.6 (5)O5—Mo5—O19B94.2 (2)
N1—C5—C6115.5 (5)O12i—Mo5—O19B64.4 (2)
C4—C5—C6122.9 (5)O7—Mo5—O19B92.0 (2)
N2—C6—C7110.6 (5)O18—Mo5—O21A159.5 (2)
N2—C6—C5119.7 (5)O4—Mo5—O21A92.6 (2)
C7—C6—C5129.8 (6)O5—Mo5—O21A64.3 (2)
C8—C7—C6104.1 (6)O12i—Mo5—O21A92.4 (3)
C8—C7—H7127.9O7—Mo5—O21A64.6 (2)
C6—C7—H7127.9O19B—Mo5—O21A40.6 (2)
N3—C8—C7108.2 (6)O2—Mo6—O9i102.9 (3)
N3—C8—H8125.9O2—Mo6—O14101.7 (3)
C7—C8—H8125.9O9i—Mo6—O1491.5 (2)
N4—C9—C10121.5 (7)O2—Mo6—O17100.2 (2)
N4—C9—H9119.2O9i—Mo6—O1790.0 (2)
C10—C9—H9119.2O14—Mo6—O17157.2 (2)
C11—C10—C9121.8 (9)O2—Mo6—O699.7 (2)
C11—C10—H10119.1O9i—Mo6—O6157.2 (3)
C9—C10—H10119.1O14—Mo6—O686.7 (2)
C10—C11—C12120.1 (11)O17—Mo6—O683.2 (2)
C10—C11—H11120.0O2—Mo6—O19A159.3 (2)
C12—C11—H11120.0O9i—Mo6—O19A64.1 (3)
C11—C12—C13119.9 (10)O14—Mo6—O19A95.1 (2)
C11—C12—H12120.1O17—Mo6—O19A65.3 (2)
C13—C12—H12120.1O6—Mo6—O19A93.4 (2)
N4—C13—C12121.4 (8)O2—Mo6—O21B157.4 (2)
N4—C13—C14117.0 (6)O9i—Mo6—O21B95.7 (3)
C12—C13—C14121.6 (7)O14—Mo6—O21B64.7 (2)
N5—C14—C15110.8 (8)O17—Mo6—O21B92.5 (2)
N5—C14—C13117.4 (6)O6—Mo6—O21B63.1 (2)
C15—C14—C13131.8 (8)O19A—Mo6—O21B43.1 (2)
C14—C15—C16103.7 (8)C1—N1—C5117.5 (5)
C14—C15—H15128.2C1—N1—Mn1126.3 (4)
C16—C15—H15128.2C5—N1—Mn1116.2 (3)
N6—C16—C15104.8 (7)C6—N2—N3105.7 (5)
N6—C16—H16127.6C6—N2—Mn1115.0 (4)
C15—C16—H16127.6N3—N2—Mn1139.1 (4)
N7—C17—C18123.2 (7)C8—N3—N2111.3 (5)
N7—C17—H17118.4C8—N3—H3A124.3
C18—C17—H17118.4N2—N3—H3A124.3
C17—C18—C19118.8 (8)C13—N4—C9115.3 (6)
C17—C18—H18120.6C13—N4—Mn1115.3 (5)
C19—C18—H18120.6C9—N4—Mn1128.4 (4)
C18—C19—C20119.7 (8)C14—N5—N6107.7 (6)
C18—C19—H19120.1C14—N5—Mn1116.3 (5)
C20—C19—H19120.1N6—N5—Mn1135.9 (5)
C19—C20—C21117.6 (8)N5—N6—C16113.1 (7)
C19—C20—H20121.2N5—N6—H6123.5
C21—C20—H20121.2C16—N6—H6123.5
N7—C21—C20122.6 (7)C17—N7—C21118.1 (6)
N7—C21—C22116.1 (6)C17—N7—Mn1126.2 (5)
C20—C21—C22121.2 (6)C21—N7—Mn1115.7 (4)
N8—C22—C23110.6 (6)N9—N8—C22105.3 (5)
N8—C22—C21118.2 (6)N9—N8—Mn1138.4 (4)
C23—C22—C21131.3 (6)C22—N8—Mn1116.3 (4)
C24—C23—C22105.8 (7)N8—N9—C24112.2 (6)
C24—C23—H23127.1N8—N9—H9A123.9
C22—C23—H23127.1C24—N9—H9A123.9
N9—C24—C23106.1 (7)Mo3—O1—Mo4138.9 (3)
N9—C24—H24126.9Mo5—O4—Mo1139.6 (3)
C23—C24—H24126.9Mo5—O5—Mo4140.0 (3)
N8—Mn1—N596.8 (2)Mo4—O6—Mo6138.4 (3)
N8—Mn1—N296.26 (19)Mo3—O7—Mo5138.0 (3)
N5—Mn1—N2161.7 (2)Mo6i—O9—Mo3139.2 (4)
N8—Mn1—N4168.0 (2)Mo4—O11—Mo2138.7 (3)
N5—Mn1—N473.1 (2)Mo5i—O12—Mo2136.6 (3)
N2—Mn1—N495.04 (19)Mo1—O13—Mo3i140.9 (4)
N8—Mn1—N189.41 (19)Mo6—O14—Mo2139.6 (3)
N5—Mn1—N193.85 (18)Mo2i—O16—Mo1142.1 (3)
N2—Mn1—N173.49 (17)Mo1—O17—Mo6136.3 (3)
N4—Mn1—N197.64 (19)P1—O19A—O21Ai53.2 (3)
N8—Mn1—N773.6 (2)P1—O19A—Mo3i124.6 (3)
N5—Mn1—N799.5 (2)O21Ai—O19A—Mo3i71.3 (3)
N2—Mn1—N796.45 (18)P1—O19A—Mo6122.9 (4)
N4—Mn1—N7101.2 (2)O21Ai—O19A—Mo6132.2 (4)
N1—Mn1—N7159.42 (19)Mo3i—O19A—Mo693.6 (2)
O3—Mo1—O13102.6 (3)P1—O19A—Mo1122.3 (4)
O3—Mo1—O16102.5 (3)O21Ai—O19A—Mo1132.0 (4)
O13—Mo1—O1689.5 (2)Mo3i—O19A—Mo192.4 (2)
O3—Mo1—O17102.1 (2)Mo6—O19A—Mo192.4 (2)
O13—Mo1—O1788.8 (2)P1—O21A—O21B56.5 (3)
O16—Mo1—O17155.1 (3)P1—O21A—O19B56.3 (3)
O3—Mo1—O4101.5 (2)O21B—O21A—O19B93.5 (4)
O13—Mo1—O4155.9 (3)P1—O21A—O19Ai56.9 (3)
O16—Mo1—O485.4 (2)O21B—O21A—O19Ai92.4 (4)
O17—Mo1—O486.2 (2)O19B—O21A—O19Ai91.7 (4)
O3—Mo1—O19A159.2 (2)P1—O21A—Mo4125.2 (4)
O13—Mo1—O19A62.9 (2)O21B—O21A—Mo468.7 (3)
O16—Mo1—O19A92.6 (3)O19B—O21A—Mo4132.0 (4)
O17—Mo1—O19A64.6 (2)O19Ai—O21A—Mo4131.5 (4)
O4—Mo1—O19A93.8 (2)P1—O21A—Mo5124.6 (4)
O3—Mo1—O19B157.9 (2)O21B—O21A—Mo5132.9 (4)
O13—Mo1—O19B94.0 (3)O19B—O21A—Mo568.3 (3)
O16—Mo1—O19B62.7 (2)O19Ai—O21A—Mo5129.5 (4)
O17—Mo1—O19B92.6 (2)Mo4—O21A—Mo591.2 (2)
O4—Mo1—O19B62.7 (2)P1—O21A—Mo3124.1 (3)
O19A—Mo1—O19B42.9 (2)O21B—O21A—Mo3129.4 (4)
O15—Mo2—O16i102.5 (3)O19B—O21A—Mo3130.9 (4)
O15—Mo2—O11100.3 (3)O19Ai—O21A—Mo367.3 (3)
O16i—Mo2—O1190.3 (2)Mo4—O21A—Mo390.4 (2)
O15—Mo2—O12102.5 (3)Mo5—O21A—Mo391.0 (2)
O16i—Mo2—O1288.4 (2)P1—O19B—O21A54.3 (3)
O11—Mo2—O12156.8 (3)P1—O19B—O21Bi54.3 (3)
O15—Mo2—O14101.4 (3)O21A—O19B—O21Bi91.3 (4)
O16i—Mo2—O14156.0 (3)P1—O19B—Mo5125.4 (4)
O11—Mo2—O1486.80 (19)O21A—O19B—Mo571.1 (3)
O12—Mo2—O1485.0 (2)O21Bi—O19B—Mo5134.3 (4)
O15—Mo2—O19Bi160.1 (2)P1—O19B—Mo2i123.7 (3)
O16i—Mo2—O19Bi64.2 (2)O21A—O19B—Mo2i134.8 (4)
O11—Mo2—O19Bi94.7 (2)O21Bi—O19B—Mo2i69.3 (3)
O12—Mo2—O19Bi64.1 (2)Mo5—O19B—Mo2i93.3 (2)
O14—Mo2—O19Bi92.3 (2)P1—O19B—Mo1122.2 (3)
O15—Mo2—O21B158.2 (2)O21A—O19B—Mo1130.5 (4)
O16i—Mo2—O21B93.1 (3)O21Bi—O19B—Mo1128.6 (4)
O11—Mo2—O21B64.0 (2)Mo5—O19B—Mo192.0 (2)
O12—Mo2—O21B93.0 (2)Mo2i—O19B—Mo190.9 (2)
O14—Mo2—O21B64.3 (2)P1—O21B—O21A55.1 (3)
O19Bi—Mo2—O21B41.8 (2)P1—O21B—O19Bi55.0 (3)
O10—Mo3—O1102.9 (2)O21A—O21B—O19Bi92.0 (4)
O10—Mo3—O7101.8 (2)P1—O21B—Mo4126.5 (4)
O1—Mo3—O790.13 (18)O21A—O21B—Mo471.4 (3)
O10—Mo3—O13i101.3 (3)O19Bi—O21B—Mo4135.1 (4)
O1—Mo3—O13i90.7 (2)P1—O21B—Mo2123.9 (4)
O7—Mo3—O13i156.1 (3)O21A—O21B—Mo2132.7 (4)
O10—Mo3—O9100.4 (3)O19Bi—O21B—Mo268.9 (3)
O1—Mo3—O9156.7 (3)Mo4—O21B—Mo291.7 (2)
O7—Mo3—O985.2 (2)P1—O21B—Mo6121.7 (3)
O13i—Mo3—O984.7 (2)O21A—O21B—Mo6131.9 (4)
O10—Mo3—O19Ai157.1 (2)O19Bi—O21B—Mo6127.0 (4)
O1—Mo3—O19Ai94.8 (2)Mo4—O21B—Mo692.0 (2)
O7—Mo3—O19Ai92.4 (2)Mo2—O21B—Mo691.3 (2)
O13i—Mo3—O19Ai63.7 (2)O21A—P1—O21Ai180.0 (8)
O9—Mo3—O19Ai62.7 (2)O21A—P1—O21B68.4 (4)
O10—Mo3—O21A161.3 (2)O21Ai—P1—O21B111.6 (4)
O1—Mo3—O21A65.5 (2)O21A—P1—O21Bi111.6 (4)
O7—Mo3—O21A65.1 (2)O21Ai—P1—O21Bi68.4 (4)
O13i—Mo3—O21A93.7 (3)O21B—P1—O21Bi180.0 (5)
O9—Mo3—O21A92.0 (3)O21A—P1—O19Bi110.6 (4)
O19Ai—Mo3—O21A41.4 (2)O21Ai—P1—O19Bi69.4 (4)
O8—Mo4—O6103.8 (2)O21B—P1—O19Bi70.6 (3)
O8—Mo4—O11102.0 (3)O21Bi—P1—O19Bi109.4 (3)
O6—Mo4—O1190.04 (19)O21A—P1—O19B69.4 (4)
O8—Mo4—O5100.6 (2)O21Ai—P1—O19B110.6 (4)
O6—Mo4—O589.7 (2)O21B—P1—O19B109.4 (3)
O11—Mo4—O5156.8 (3)O21Bi—P1—O19B70.6 (3)
O8—Mo4—O1100.0 (2)O19Bi—P1—O19B180.0 (8)
O6—Mo4—O1156.2 (2)O21A—P1—O19Ai69.9 (3)
O11—Mo4—O185.7 (2)O21Ai—P1—O19Ai110.1 (3)
O5—Mo4—O185.27 (18)O21B—P1—O19Ai107.6 (3)
O8—Mo4—O21B161.8 (2)O21Bi—P1—O19Ai72.4 (3)
O6—Mo4—O21B65.5 (2)O19Bi—P1—O19Ai72.6 (3)
O11—Mo4—O21B64.7 (2)O19B—P1—O19Ai107.4 (3)
O5—Mo4—O21B94.2 (2)O21A—P1—O19A110.1 (3)
O1—Mo4—O21B91.7 (2)O21Ai—P1—O19A69.9 (3)
O8—Mo4—O21A158.2 (2)O21B—P1—O19A72.4 (3)
O6—Mo4—O21A92.4 (2)O21Bi—P1—O19A107.6 (3)
O11—Mo4—O21A92.5 (3)O19Bi—P1—O19A107.4 (3)
O5—Mo4—O21A64.4 (2)O19B—P1—O19A72.6 (3)
O1—Mo4—O21A64.5 (2)O19Ai—P1—O19A180.0 (4)
O21B—Mo4—O21A40.0 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O1W0.861.962.786 (9)160
N6—H6···O2W0.862.102.951 (13)171
N3—H3A···O17ii0.861.972.814 (7)165
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C8H7N3)3]2[PMo12O40]·6H2O
Mr2911.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.897 (4), 16.360 (3), 27.615 (6)
β (°) 104.90 (3)
V3)8250 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.780, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
15879, 7042, 5890
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.00
No. of reflections7042
No. of parameters610
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.058P)2 + 43.0549P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.52, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N82.224 (6)Mn1—N72.283 (5)
Mn1—N52.224 (5)P1—O21Ai1.495 (7)
Mn1—N22.250 (5)P1—O21Bi1.519 (7)
Mn1—N42.259 (6)P1—O19Bi1.531 (6)
Mn1—N12.260 (5)P1—O19Ai1.562 (6)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O1W0.861.962.786 (9)159.9
N6—H6···O2W0.862.102.951 (13)171.2
N3—H3A···O17ii0.861.972.814 (7)165.0
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Chinese Academy of Sciences (`Hundred Talents Program') and the Ministry of Science and Technology of China (grant No. 2007CB607608), Shandong Provincial Education Department and Shandong Institute of Education are gratefully acknowledged.

References

First citationArtero, V. & Proust, A. (2000). Eur. J. Inorg. Chem. pp. 2393–2400  CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKurmoo, M., Bonamico, M., Bellitto, C., Fares, V., Federici, F., Guionneau, P., Ducasse, L., Kitagawa, H. & Day, P. (1998). Adv. Mater. 7, 545–550.  CrossRef Google Scholar
First citationNiu, J. Y., Shan, B. Z. & You, X. Z. (1999). Transition Met. Chem. 24, 108–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W. B., Lu, C. Z., Wu, C. D. & Zhuang, H. H. (2003). Chin. J. Struct. Chem. 22, 137–142.  CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Wei, P. H., Sun, D. F., Ni, Z. H., Dou, J. M., Li, B., Shi, C. W. & Hu, B. (2009). Cryst. Growth Des. 9, 4424–4428.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds