metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­{[4-methyl-2-(m-tolyl­amino)pyridine-κN]copper(II)}

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 December 2009; accepted 30 December 2009; online 16 January 2010)

In the crystal structure of the title binuclear complex, [Cu2(CH3COO)4(C13H14N2)2], the four acetate groups each bridge a pair of CuII atoms. The coordination of the metal atoms is distorted square-pyramidal, with the bonding O atoms comprising a square basal plane and the coordinating N atom of the N-heterocycle occupying the apical position. In the two N-hetercycle ligands, the benzene rings are twisted with respect to the pyridine rings, making dihedral angles of 53.1 (2) and 54.2 (2)°. Intra­molecular N—H⋯O hydrogen bonding is present between the imino and carb­oxy groups. The crystal studied was a non-merohedral twin with a minor twin component of 21.4%.

Related literature

For the 2-(m-tolyl­amino)pyridine adduct, see: Fairuz et al. (2009[Fairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, m1690.]). For the treatment of diffraction data of twinned crystals, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C13H14N2)2]

  • Mr = 759.78

  • Triclinic, [P \overline 1]

  • a = 8.2489 (4) Å

  • b = 14.2110 (7) Å

  • c = 16.4484 (8) Å

  • α = 107.798 (1)°

  • β = 101.971 (1)°

  • γ = 97.661 (1)°

  • V = 1755.45 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 295 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.631, Tmax = 0.884

  • 21605 measured reflections

  • 7963 independent reflections

  • 6719 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.231

  • S = 1.12

  • 7963 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.985 (4)
Cu1—O4 1.961 (5)
Cu1—O6 1.963 (4)
Cu1—O8 1.956 (5)
Cu1—N1 2.215 (5)
Cu1—Cu 2.6576 (9)
Cu2—O2 1.968 (4)
Cu2—O3 2.001 (5)
Cu2—O5 1.957 (5)
Cu2—O7 1.981 (5)
Cu2—N3 2.208 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.99 2.830 (6) 165
N4—H4⋯O3 0.86 2.18 2.964 (8) 152

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the 2-(m-tolylamino)pyridine adduct, see: Fairuz et al. (2009). For the treatment of twinned diffraction data, see: Spek (2003).

Experimental top

Copper acetate (0.1 g, 0.5 mmol) was dissolved in acetonitrile (5 ml). The solution was mixed with a solution of 4-methyl-2-(m-tolylamino)pyridine (0.2 g, 1.1 mmol) dissolved in acetonitrile (15 ml). The green precipitate that formed was recrystallized from acetonitrile to give greenish-blue crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). The imino H-atoms were similarly treated. The final difference Fourier map had a peak in the vicinity of H14b.

The structure is a non-merohedral twin. Another crystal that was examined also show twinning. The diffraction data were detwinned by using PLATON (Spek, 2003).

Structure description top

For the 2-(m-tolylamino)pyridine adduct, see: Fairuz et al. (2009). For the treatment of twinned diffraction data, see: Spek (2003).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Cu2(C2H3O2)2(C13H14N2)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Tetra-µ-acetato-κ8O:O'-bis{[4-methyl-2-(m- tolylamino)pyridine-κN]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C13H14N2)2]Z = 2
Mr = 759.78F(000) = 788
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2489 (4) ÅCell parameters from 9994 reflections
b = 14.2110 (7) Åθ = 2.4–28.3°
c = 16.4484 (8) ŵ = 1.27 mm1
α = 107.798 (1)°T = 295 K
β = 101.971 (1)°Prism, blue
γ = 97.661 (1)°0.40 × 0.10 × 0.10 mm
V = 1755.45 (15) Å3
Data collection top
Bruker SMART APEX
diffractometer
7963 independent reflections
Radiation source: fine-focus sealed tube6719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.631, Tmax = 0.884k = 1818
21605 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0917P)2 + 6.9746P]
where P = (Fo2 + 2Fc2)/3
7963 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Cu2(C2H3O2)4(C13H14N2)2]γ = 97.661 (1)°
Mr = 759.78V = 1755.45 (15) Å3
Triclinic, P1Z = 2
a = 8.2489 (4) ÅMo Kα radiation
b = 14.2110 (7) ŵ = 1.27 mm1
c = 16.4484 (8) ÅT = 295 K
α = 107.798 (1)°0.40 × 0.10 × 0.10 mm
β = 101.971 (1)°
Data collection top
Bruker SMART APEX
diffractometer
7963 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6719 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.884Rint = 0.030
21605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.12Δρmax = 1.01 e Å3
7963 reflectionsΔρmin = 0.91 e Å3
442 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.86052 (8)0.69737 (5)0.46112 (4)0.03279 (19)
Cu20.79744 (9)0.63662 (5)0.28585 (4)0.0358 (2)
N10.9016 (6)0.7346 (4)0.6058 (3)0.0375 (10)
N20.6928 (7)0.8250 (4)0.6207 (3)0.0477 (13)
H20.67730.81150.56470.057*
N30.7634 (7)0.5752 (4)0.1414 (3)0.0446 (12)
N40.7788 (10)0.7301 (4)0.1219 (4)0.0630 (18)
H40.79810.75480.17850.076*
O10.6452 (6)0.7438 (4)0.4354 (3)0.0503 (11)
O20.6044 (6)0.7040 (4)0.2906 (3)0.0508 (11)
O30.9404 (6)0.7729 (4)0.3116 (3)0.0502 (11)
O40.9801 (6)0.8244 (3)0.4577 (3)0.0503 (11)
O51.0020 (6)0.5821 (4)0.3059 (3)0.0494 (11)
O61.0653 (6)0.6426 (4)0.4532 (3)0.0515 (12)
O70.6626 (6)0.5144 (4)0.2927 (3)0.0528 (12)
O80.7303 (6)0.5625 (4)0.4395 (3)0.0515 (11)
C10.5674 (8)0.7429 (5)0.3606 (4)0.0399 (12)
C20.4178 (10)0.7926 (6)0.3580 (5)0.0582 (19)
H2A0.32120.74700.31340.087*
H2B0.44350.85300.34420.087*
H2C0.39300.80960.41460.087*
C30.9957 (7)0.8375 (4)0.3880 (4)0.0403 (13)
C41.0904 (10)0.9404 (5)0.3968 (6)0.0580 (18)
H4A1.17580.96800.45220.087*
H4B1.01240.98470.39480.087*
H4C1.14300.93390.34910.087*
C51.0947 (7)0.5954 (5)0.3810 (4)0.0400 (12)
C61.2513 (9)0.5518 (6)0.3873 (5)0.0572 (18)
H6A1.34690.60330.42670.086*
H6B1.27080.52730.32970.086*
H6C1.23620.49710.40960.086*
C70.6589 (8)0.5004 (5)0.3637 (5)0.0437 (14)
C80.5583 (10)0.4005 (5)0.3577 (6)0.0594 (19)
H8A0.51460.40970.40870.089*
H8B0.63040.35260.35540.089*
H8C0.46580.37580.30510.089*
C91.0151 (8)0.6885 (5)0.6409 (4)0.0458 (14)
H91.07430.65250.60420.055*
C101.0498 (8)0.6906 (5)0.7262 (4)0.0474 (15)
H101.13120.65790.74660.057*
C110.9612 (8)0.7425 (5)0.7821 (4)0.0416 (13)
C120.8430 (8)0.7908 (5)0.7484 (4)0.0402 (13)
H120.78290.82690.78450.048*
C130.8138 (7)0.7852 (4)0.6601 (4)0.0331 (11)
C140.9903 (11)0.7440 (7)0.8763 (5)0.063 (2)
H14A0.89650.76330.89870.095*
H14B1.09290.79180.91230.095*
H14C0.99990.67790.87770.095*
C150.5887 (8)0.8861 (5)0.6609 (4)0.0404 (13)
C160.6562 (9)0.9697 (5)0.7366 (4)0.0438 (13)
H160.77150.98420.76440.053*
C170.5539 (10)1.0326 (5)0.7719 (4)0.0511 (16)
C180.3834 (11)1.0100 (7)0.7289 (6)0.066 (2)
H180.31361.05160.75150.079*
C190.3146 (11)0.9265 (7)0.6527 (7)0.072 (2)
H190.19990.91250.62390.086*
C200.4190 (9)0.8643 (6)0.6201 (5)0.0518 (16)
H200.37330.80700.56990.062*
C210.6282 (15)1.1255 (7)0.8540 (6)0.080 (3)
H21A0.59071.18290.84360.120*
H21B0.74971.13770.86780.120*
H21C0.59121.11480.90270.120*
C220.7531 (11)0.4764 (5)0.1082 (4)0.0535 (17)
H220.74950.43950.14600.064*
C230.7473 (11)0.4248 (5)0.0217 (5)0.0571 (18)
H230.73720.35510.00190.068*
C240.7568 (9)0.4778 (5)0.0355 (4)0.0495 (15)
C250.7643 (11)0.5799 (6)0.0030 (5)0.0568 (18)
H250.76760.61790.03990.068*
C260.7669 (9)0.6269 (5)0.0855 (4)0.0461 (14)
C270.7588 (13)0.4265 (6)0.1297 (5)0.069 (2)
H27A0.79020.36250.13580.104*
H27B0.83940.46830.14540.104*
H27C0.64800.41590.16810.104*
C280.7628 (9)0.7992 (5)0.0763 (4)0.0479 (15)
C290.6370 (9)0.7780 (6)0.0001 (5)0.0509 (16)
H290.56400.71490.02410.061*
C300.6161 (10)0.8499 (6)0.0424 (5)0.0590 (18)
C310.7265 (13)0.9410 (7)0.0052 (7)0.075 (2)
H310.71660.98980.03180.090*
C320.8540 (15)0.9624 (7)0.0719 (7)0.085 (3)
H320.92811.02520.09620.102*
C330.8715 (10)0.8916 (6)0.1122 (5)0.0600 (19)
H330.95690.90640.16380.072*
C340.4771 (12)0.8248 (9)0.1222 (6)0.083 (3)
H34A0.51570.85120.16360.124*
H34B0.38450.85400.10680.124*
H34C0.44000.75270.14850.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0316 (3)0.0375 (4)0.0286 (3)0.0092 (3)0.0081 (3)0.0095 (3)
Cu20.0371 (4)0.0404 (4)0.0286 (3)0.0096 (3)0.0090 (3)0.0092 (3)
N10.040 (3)0.043 (3)0.031 (2)0.015 (2)0.0123 (19)0.009 (2)
N20.060 (3)0.060 (3)0.028 (2)0.035 (3)0.016 (2)0.010 (2)
N30.057 (3)0.046 (3)0.031 (2)0.014 (2)0.008 (2)0.013 (2)
N40.111 (6)0.044 (3)0.033 (3)0.016 (3)0.017 (3)0.013 (2)
O10.050 (3)0.071 (3)0.035 (2)0.029 (2)0.0111 (19)0.018 (2)
O20.042 (2)0.073 (3)0.039 (2)0.025 (2)0.0098 (19)0.017 (2)
O30.057 (3)0.046 (2)0.045 (3)0.003 (2)0.016 (2)0.014 (2)
O40.060 (3)0.042 (2)0.043 (2)0.000 (2)0.012 (2)0.0105 (19)
O50.050 (3)0.062 (3)0.043 (2)0.026 (2)0.019 (2)0.017 (2)
O60.044 (2)0.075 (3)0.040 (2)0.029 (2)0.0148 (19)0.016 (2)
O70.057 (3)0.046 (3)0.046 (3)0.001 (2)0.016 (2)0.007 (2)
O80.058 (3)0.047 (3)0.044 (2)0.000 (2)0.008 (2)0.017 (2)
C10.037 (3)0.044 (3)0.043 (3)0.014 (2)0.012 (2)0.019 (3)
C20.055 (4)0.076 (5)0.061 (4)0.038 (4)0.021 (3)0.034 (4)
C30.034 (3)0.037 (3)0.052 (4)0.008 (2)0.015 (3)0.016 (3)
C40.059 (4)0.046 (4)0.073 (5)0.004 (3)0.028 (4)0.023 (3)
C50.035 (3)0.040 (3)0.047 (3)0.008 (2)0.013 (3)0.017 (3)
C60.045 (4)0.069 (5)0.066 (5)0.025 (3)0.021 (3)0.026 (4)
C70.032 (3)0.038 (3)0.059 (4)0.007 (2)0.014 (3)0.013 (3)
C80.054 (4)0.039 (3)0.082 (5)0.005 (3)0.022 (4)0.015 (3)
C90.045 (3)0.062 (4)0.036 (3)0.024 (3)0.014 (3)0.017 (3)
C100.046 (3)0.065 (4)0.037 (3)0.024 (3)0.008 (3)0.021 (3)
C110.043 (3)0.050 (3)0.037 (3)0.011 (3)0.014 (2)0.020 (3)
C120.047 (3)0.048 (3)0.030 (3)0.016 (3)0.013 (2)0.015 (2)
C130.035 (3)0.035 (3)0.030 (3)0.008 (2)0.011 (2)0.009 (2)
C140.077 (5)0.090 (6)0.047 (4)0.038 (5)0.028 (4)0.040 (4)
C150.045 (3)0.041 (3)0.040 (3)0.016 (3)0.018 (3)0.014 (2)
C160.050 (4)0.044 (3)0.043 (3)0.014 (3)0.017 (3)0.017 (3)
C170.071 (5)0.047 (4)0.042 (3)0.023 (3)0.027 (3)0.014 (3)
C180.060 (5)0.074 (5)0.075 (5)0.035 (4)0.033 (4)0.021 (4)
C190.045 (4)0.086 (6)0.086 (6)0.031 (4)0.021 (4)0.023 (5)
C200.046 (4)0.055 (4)0.053 (4)0.020 (3)0.013 (3)0.014 (3)
C210.117 (8)0.058 (5)0.057 (5)0.031 (5)0.024 (5)0.002 (4)
C220.082 (5)0.046 (4)0.037 (3)0.017 (3)0.019 (3)0.018 (3)
C230.083 (5)0.036 (3)0.045 (4)0.008 (3)0.017 (4)0.006 (3)
C240.058 (4)0.046 (3)0.035 (3)0.007 (3)0.014 (3)0.002 (3)
C250.085 (5)0.052 (4)0.037 (3)0.013 (4)0.023 (3)0.017 (3)
C260.058 (4)0.044 (3)0.035 (3)0.005 (3)0.011 (3)0.014 (3)
C270.098 (7)0.063 (5)0.040 (4)0.014 (4)0.027 (4)0.004 (3)
C280.060 (4)0.043 (3)0.044 (3)0.012 (3)0.019 (3)0.016 (3)
C290.051 (4)0.057 (4)0.044 (3)0.002 (3)0.013 (3)0.020 (3)
C300.058 (4)0.073 (5)0.063 (5)0.022 (4)0.032 (4)0.034 (4)
C310.099 (7)0.058 (5)0.080 (6)0.018 (5)0.025 (5)0.039 (5)
C320.108 (8)0.053 (5)0.085 (7)0.006 (5)0.011 (6)0.031 (5)
C330.060 (4)0.054 (4)0.056 (4)0.001 (3)0.005 (3)0.016 (3)
C340.065 (5)0.130 (9)0.066 (5)0.033 (6)0.019 (4)0.045 (6)
Geometric parameters (Å, º) top
Cu1—O11.985 (4)C10—H100.9300
Cu1—O41.961 (5)C11—C121.384 (8)
Cu1—O61.963 (4)C11—C141.511 (9)
Cu1—O81.956 (5)C12—C131.398 (8)
Cu1—N12.215 (5)C12—H120.9300
Cu1—Cu22.6576 (9)C14—H14A0.9600
Cu2—O21.968 (4)C14—H14B0.9600
Cu2—O32.001 (5)C14—H14C0.9600
Cu2—O51.957 (5)C15—C201.369 (9)
Cu2—O71.981 (5)C15—C161.380 (9)
Cu2—N32.208 (5)C16—C171.391 (9)
N1—C91.345 (8)C16—H160.9300
N1—C131.362 (7)C17—C181.382 (11)
N2—C131.357 (7)C17—C211.515 (10)
N2—C151.418 (7)C18—C191.384 (12)
N2—H20.8600C18—H180.9300
N3—C261.344 (8)C19—C201.384 (10)
N3—C221.325 (9)C19—H190.9300
N4—C261.386 (9)C20—H200.9300
N4—C281.409 (9)C21—H21A0.9600
N4—H40.8600C21—H21B0.9600
O1—C11.259 (7)C21—H21C0.9600
O2—C11.236 (7)C22—C231.376 (9)
O3—C31.255 (8)C22—H220.9300
O4—C31.245 (8)C23—C241.379 (10)
O5—C51.254 (8)C23—H230.9300
O6—C51.262 (7)C24—C251.373 (10)
O7—C71.248 (8)C24—C271.503 (9)
O8—C71.251 (8)C25—C261.397 (9)
C1—C21.501 (8)C25—H250.9300
C2—H2A0.9600C27—H27A0.9600
C2—H2B0.9600C27—H27B0.9600
C2—H2C0.9600C27—H27C0.9600
C3—C41.513 (9)C28—C291.373 (10)
C4—H4A0.9600C28—C331.367 (10)
C4—H4B0.9600C29—C301.413 (10)
C4—H4C0.9600C29—H290.9300
C5—C61.503 (9)C30—C311.360 (12)
C6—H6A0.9600C30—C341.464 (12)
C6—H6B0.9600C31—C321.390 (14)
C6—H6C0.9600C31—H310.9300
C7—C81.509 (9)C32—C331.371 (12)
C8—H8A0.9600C32—H320.9300
C8—H8B0.9600C33—H330.9300
C8—H8C0.9600C34—H34A0.9600
C9—C101.362 (9)C34—H34B0.9600
C9—H90.9300C34—H34C0.9600
C10—C111.390 (9)
O8—Cu1—O4168.87 (19)C10—C9—H9117.5
O8—Cu1—O690.3 (2)C9—C10—C11118.7 (6)
O4—Cu1—O689.0 (2)C9—C10—H10120.6
O8—Cu1—O189.5 (2)C11—C10—H10120.6
O4—Cu1—O188.3 (2)C10—C11—C12118.1 (6)
O6—Cu1—O1165.03 (19)C10—C11—C14120.8 (6)
O8—Cu1—N190.72 (19)C12—C11—C14121.0 (6)
O4—Cu1—N1100.40 (19)C11—C12—C13120.0 (5)
O6—Cu1—N196.21 (18)C11—C12—H12120.0
O1—Cu1—N198.76 (18)C13—C12—H12120.0
O8—Cu1—Cu284.27 (14)N1—C13—N2114.9 (5)
O4—Cu1—Cu284.61 (14)N1—C13—C12121.6 (5)
O6—Cu1—Cu283.56 (13)N2—C13—C12123.5 (5)
O1—Cu1—Cu281.53 (13)C11—C14—H14A109.5
N1—Cu1—Cu2174.98 (14)C11—C14—H14B109.5
O5—Cu2—O2168.97 (19)H14A—C14—H14B109.5
O5—Cu2—O789.7 (2)C11—C14—H14C109.5
O2—Cu2—O790.7 (2)H14A—C14—H14C109.5
O5—Cu2—O390.1 (2)H14B—C14—H14C109.5
O2—Cu2—O386.8 (2)C20—C15—C16119.8 (6)
O7—Cu2—O3165.6 (2)C20—C15—N2118.6 (6)
O5—Cu2—N390.5 (2)C16—C15—N2121.5 (6)
O2—Cu2—N3100.4 (2)C15—C16—C17120.7 (7)
O7—Cu2—N395.3 (2)C15—C16—H16119.6
O3—Cu2—N399.0 (2)C17—C16—H16119.6
O5—Cu2—Cu183.70 (13)C18—C17—C16118.5 (7)
O2—Cu2—Cu185.41 (13)C18—C17—C21120.6 (7)
O7—Cu2—Cu182.92 (14)C16—C17—C21120.9 (8)
O3—Cu2—Cu182.78 (14)C17—C18—C19121.2 (7)
N3—Cu2—Cu1173.93 (14)C17—C18—H18119.4
C9—N1—C13116.6 (5)C19—C18—H18119.4
C9—N1—Cu1113.6 (4)C20—C19—C18119.0 (8)
C13—N1—Cu1129.2 (4)C20—C19—H19120.5
C13—N2—C15127.8 (5)C18—C19—H19120.5
C13—N2—H2116.1C15—C20—C19120.8 (7)
C15—N2—H2116.1C15—C20—H20119.6
C26—N3—C22116.8 (6)C19—C20—H20119.6
C26—N3—Cu2127.7 (4)C17—C21—H21A109.5
C22—N3—Cu2115.2 (4)C17—C21—H21B109.5
C26—N4—C28127.2 (6)H21A—C21—H21B109.5
C26—N4—H4116.4C17—C21—H21C109.5
C28—N4—H4116.4H21A—C21—H21C109.5
C1—O1—Cu1125.2 (4)H21B—C21—H21C109.5
C1—O2—Cu2122.2 (4)N3—C22—C23124.4 (6)
C3—O3—Cu2123.2 (4)N3—C22—H22117.8
C3—O4—Cu1123.4 (4)C23—C22—H22117.8
C5—O5—Cu2124.1 (4)C22—C23—C24119.2 (6)
C5—O6—Cu1123.7 (4)C22—C23—H23120.4
C7—O7—Cu2123.7 (4)C24—C23—H23120.4
C7—O8—Cu1123.3 (4)C23—C24—C25117.4 (6)
O2—C1—O1125.1 (6)C23—C24—C27121.8 (7)
O2—C1—C2118.5 (6)C25—C24—C27120.8 (7)
O1—C1—C2116.4 (6)C24—C25—C26120.1 (7)
C1—C2—H2A109.5C24—C25—H25120.0
C1—C2—H2B109.5C26—C25—H25120.0
H2A—C2—H2B109.5N3—C26—N4115.7 (6)
C1—C2—H2C109.5N3—C26—C25122.0 (6)
H2A—C2—H2C109.5N4—C26—C25122.2 (6)
H2B—C2—H2C109.5C24—C27—H27A109.5
O4—C3—O3125.7 (6)C24—C27—H27B109.5
O4—C3—C4116.8 (6)H27A—C27—H27B109.5
O3—C3—C4117.5 (6)C24—C27—H27C109.5
C3—C4—H4A109.5H27A—C27—H27C109.5
C3—C4—H4B109.5H27B—C27—H27C109.5
H4A—C4—H4B109.5C29—C28—C33119.7 (7)
C3—C4—H4C109.5C29—C28—N4121.9 (7)
H4A—C4—H4C109.5C33—C28—N4118.3 (7)
H4B—C4—H4C109.5C28—C29—C30121.5 (7)
O5—C5—O6124.5 (6)C28—C29—H29119.3
O5—C5—C6118.9 (6)C30—C29—H29119.3
O6—C5—C6116.6 (6)C31—C30—C29117.4 (8)
C5—C6—H6A109.5C31—C30—C34123.1 (8)
C5—C6—H6B109.5C29—C30—C34119.5 (8)
H6A—C6—H6B109.5C30—C31—C32121.1 (8)
C5—C6—H6C109.5C30—C31—H31119.4
H6A—C6—H6C109.5C32—C31—H31119.4
H6B—C6—H6C109.5C33—C32—C31120.5 (8)
O7—C7—O8125.5 (6)C33—C32—H32119.7
O7—C7—C8117.3 (6)C31—C32—H32119.7
O8—C7—C8117.1 (7)C32—C33—C28119.8 (8)
C7—C8—H8A109.5C32—C33—H33120.1
C7—C8—H8B109.5C28—C33—H33120.1
H8A—C8—H8B109.5C30—C34—H34A109.5
C7—C8—H8C109.5C30—C34—H34B109.5
H8A—C8—H8C109.5H34A—C34—H34B109.5
H8B—C8—H8C109.5C30—C34—H34C109.5
N1—C9—C10124.9 (6)H34A—C34—H34C109.5
N1—C9—H9117.5H34B—C34—H34C109.5
O8—Cu1—Cu2—O586.6 (2)Cu2—Cu1—O8—C74.0 (5)
O4—Cu1—Cu2—O593.9 (2)Cu2—O2—C1—O10.5 (10)
O6—Cu1—Cu2—O54.4 (2)Cu2—O2—C1—C2179.9 (5)
O1—Cu1—Cu2—O5177.0 (2)Cu1—O1—C1—O27.4 (10)
O8—Cu1—Cu2—O295.1 (2)Cu1—O1—C1—C2173.1 (5)
O4—Cu1—Cu2—O284.3 (2)Cu1—O4—C3—O30.7 (9)
O6—Cu1—Cu2—O2173.9 (2)Cu1—O4—C3—C4179.5 (5)
O1—Cu1—Cu2—O24.8 (2)Cu2—O3—C3—O45.0 (9)
O8—Cu1—Cu2—O73.9 (2)Cu2—O3—C3—C4175.2 (5)
O4—Cu1—Cu2—O7175.6 (2)Cu2—O5—C5—O62.5 (9)
O6—Cu1—Cu2—O794.8 (2)Cu2—O5—C5—C6178.3 (5)
O1—Cu1—Cu2—O786.5 (2)Cu1—O6—C5—O53.7 (10)
O8—Cu1—Cu2—O3177.5 (2)Cu1—O6—C5—C6175.5 (5)
O4—Cu1—Cu2—O33.0 (2)Cu2—O7—C7—O84.3 (9)
O6—Cu1—Cu2—O386.6 (2)Cu2—O7—C7—C8176.4 (4)
O1—Cu1—Cu2—O392.1 (2)Cu1—O8—C7—O71.2 (9)
O8—Cu1—N1—C973.9 (5)Cu1—O8—C7—C8178.1 (4)
O4—Cu1—N1—C9106.6 (5)C13—N1—C9—C101.2 (10)
O6—Cu1—N1—C916.5 (5)Cu1—N1—C9—C10172.9 (6)
O1—Cu1—N1—C9163.6 (5)N1—C9—C10—C111.0 (12)
O8—Cu1—N1—C1396.5 (5)C9—C10—C11—C120.7 (10)
O4—Cu1—N1—C1383.0 (5)C9—C10—C11—C14177.8 (7)
O6—Cu1—N1—C13173.1 (5)C10—C11—C12—C130.9 (10)
O1—Cu1—N1—C136.9 (5)C14—C11—C12—C13177.6 (7)
O5—Cu2—N3—C26117.0 (6)C9—N1—C13—N2175.8 (6)
O2—Cu2—N3—C2661.6 (6)Cu1—N1—C13—N25.6 (8)
O7—Cu2—N3—C26153.3 (6)C9—N1—C13—C121.3 (9)
O3—Cu2—N3—C2626.8 (6)Cu1—N1—C13—C12171.5 (4)
O5—Cu2—N3—C2256.7 (6)C15—N2—C13—N1176.0 (6)
O2—Cu2—N3—C22124.7 (6)C15—N2—C13—C126.9 (11)
O7—Cu2—N3—C2233.1 (6)C11—C12—C13—N11.2 (9)
O3—Cu2—N3—C22146.9 (5)C11—C12—C13—N2175.7 (6)
O8—Cu1—O1—C192.0 (6)C13—N2—C15—C20134.6 (7)
O4—Cu1—O1—C177.1 (6)C13—N2—C15—C1649.4 (10)
O6—Cu1—O1—C12.5 (12)C20—C15—C16—C170.3 (10)
N1—Cu1—O1—C1177.4 (5)N2—C15—C16—C17175.7 (6)
Cu2—Cu1—O1—C17.7 (5)C15—C16—C17—C180.6 (10)
O5—Cu2—O2—C113.1 (15)C15—C16—C17—C21178.9 (7)
O7—Cu2—O2—C178.8 (5)C16—C17—C18—C190.4 (13)
O3—Cu2—O2—C187.0 (5)C21—C17—C18—C19178.7 (9)
N3—Cu2—O2—C1174.4 (5)C17—C18—C19—C200.8 (14)
Cu1—Cu2—O2—C14.0 (5)C16—C15—C20—C191.5 (11)
O5—Cu2—O3—C388.6 (5)N2—C15—C20—C19174.6 (7)
O2—Cu2—O3—C380.8 (5)C18—C19—C20—C151.7 (13)
O7—Cu2—O3—C30.7 (12)C26—N3—C22—C230.6 (12)
N3—Cu2—O3—C3179.1 (5)Cu2—N3—C22—C23173.8 (7)
Cu1—Cu2—O3—C35.0 (5)N3—C22—C23—C241.6 (13)
O8—Cu1—O4—C35.3 (15)C22—C23—C24—C252.7 (12)
O6—Cu1—O4—C381.3 (5)C22—C23—C24—C27177.3 (8)
O1—Cu1—O4—C384.0 (5)C23—C24—C25—C261.8 (12)
N1—Cu1—O4—C3177.4 (5)C27—C24—C25—C26178.2 (8)
Cu2—Cu1—O4—C32.4 (5)C22—N3—C26—N4179.6 (7)
O2—Cu2—O5—C54.1 (15)Cu2—N3—C26—N46.0 (10)
O7—Cu2—O5—C587.9 (5)C22—N3—C26—C251.6 (11)
O3—Cu2—O5—C577.7 (5)Cu2—N3—C26—C25172.0 (6)
N3—Cu2—O5—C5176.8 (5)C28—N4—C26—N3171.1 (7)
Cu1—Cu2—O5—C55.0 (5)C28—N4—C26—C2510.9 (13)
O8—Cu1—O6—C578.6 (5)C24—C25—C26—N30.4 (12)
O4—Cu1—O6—C590.3 (5)C24—C25—C26—N4178.3 (8)
O1—Cu1—O6—C510.7 (12)C26—N4—C28—C2944.1 (12)
N1—Cu1—O6—C5169.4 (5)C26—N4—C28—C33139.0 (8)
Cu2—Cu1—O6—C55.6 (5)C33—C28—C29—C300.4 (11)
O5—Cu2—O7—C778.3 (5)N4—C28—C29—C30176.4 (7)
O2—Cu2—O7—C790.7 (5)C28—C29—C30—C310.5 (12)
O3—Cu2—O7—C711.1 (12)C28—C29—C30—C34178.3 (8)
N3—Cu2—O7—C7168.8 (5)C29—C30—C31—C320.4 (14)
Cu1—Cu2—O7—C75.4 (5)C34—C30—C31—C32178.4 (10)
O4—Cu1—O8—C71.1 (15)C30—C31—C32—C330.1 (17)
O6—Cu1—O8—C787.5 (5)C31—C32—C33—C280.1 (16)
O1—Cu1—O8—C777.5 (5)C29—C28—C33—C320.0 (13)
N1—Cu1—O8—C7176.3 (5)N4—C28—C33—C32176.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.830 (6)165
N4—H4···O30.862.182.964 (8)152

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C13H14N2)2]
Mr759.78
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.2489 (4), 14.2110 (7), 16.4484 (8)
α, β, γ (°)107.798 (1), 101.971 (1), 97.661 (1)
V3)1755.45 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.631, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
21605, 7963, 6719
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.231, 1.12
No. of reflections7963
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.91

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O11.985 (4)Cu2—O21.968 (4)
Cu1—O41.961 (5)Cu2—O32.001 (5)
Cu1—O61.963 (4)Cu2—O51.957 (5)
Cu1—O81.956 (5)Cu2—O71.981 (5)
Cu1—N12.215 (5)Cu2—N32.208 (5)
Cu1—Cu22.6576 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.992.830 (6)165
N4—H4···O30.862.182.964 (8)152
 

Acknowledgements

We thank the University of Malaya (grant No. RG027/09AFR, PS374/09 A) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, m1690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds