metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­methyl­phenyl­ammonium) tetra­bromidocuprate(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 December 2009; accepted 4 January 2010; online 16 January 2010)

The crystal structure of the title compound, (C9H14N)2[CuBr4], consists of two quarternary ammonium cations and a tetra­hedral cuprate anions. Weak C—H⋯Br hydrogen bonding is present between the cation and anion in the crystal structure.

Related literature

For bis­(4-dimethyl­amino­pyridinium) tetra­bromidocuprate, see: Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m972.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H14N)2[CuBr4]

  • Mr = 655.60

  • Monoclinic, C 2/c

  • a = 16.0146 (11) Å

  • b = 9.8007 (7) Å

  • c = 31.363 (2) Å

  • β = 94.459 (1)°

  • V = 4907.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.41 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.215, Tmax = 0.525

  • 25029 measured reflections

  • 4318 independent reflections

  • 2994 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.28

  • 4318 reflections

  • 202 parameters

  • 27 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

Br1—Cu1 2.4055 (11)
Br2—Cu1 2.4057 (11)
Br3—Cu1 2.4136 (11)
Br4—Cu1 2.4039 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯Br3i 0.96 2.91 3.840 (9) 164
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For bis(4-dimethylaminopyridinium) tetrabromidocuprate, see: Lo & Ng (2009).

Experimental top

Copper sulfate pentahydrate (0.52 g, 2 mmol) and trimethylphenylammonium tribromide (0.78 g, 2 mmol) were heated in ethanol (50 ml) for 2 h. After filtering of the reaction mixture, light blue crystals were obtained upon slow evaporation of the greenish-blue filtrate.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The phenyl rings were refined as rigid hexagons of 1.39 ° sides. One trimethylamino group shows somewhat large temperature factors. For investigate possible disorder, all carbon-nitrogen distances were restrained to within 0.01 Å of each other, as were the carbon–carbon distances. The six carbon atoms were restrained to lie within a circle. The temperature factors of the primed atoms were set to those of the unprimed ones. However, this disorder model had short H···H contacts, and the refinement was abandoned. The group was refined without disorder but subject to the same distance restraints. Also, the anisotropic temperature factors were restrained to be nearly isotropic.

The suggested weighting scheme included a large second parameter. This was arbitrarily set at 5.00; this gave a satisfactory Goodness-of-Fit.

Structure description top

For bis(4-dimethylaminopyridinium) tetrabromidocuprate, see: Lo & Ng (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of bis(trimethylphenylammonium) tetrabromidocuprate at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(trimethylphenylammonium) tetrabromidocuprate(II) top
Crystal data top
(C9H14N)2[CuBr4]F(000) = 2552
Mr = 655.60Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4958 reflections
a = 16.0146 (11) Åθ = 2.4–22.3°
b = 9.8007 (7) ŵ = 7.41 mm1
c = 31.363 (2) ÅT = 295 K
β = 94.459 (1)°Prism, blue
V = 4907.7 (6) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
4318 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.215, Tmax = 0.525k = 1111
25029 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.05P)2 + 5.00]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.61 e Å3
27 restraintsΔρmin = 0.80 e Å3
Crystal data top
(C9H14N)2[CuBr4]V = 4907.7 (6) Å3
Mr = 655.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.0146 (11) ŵ = 7.41 mm1
b = 9.8007 (7) ÅT = 295 K
c = 31.363 (2) Å0.30 × 0.20 × 0.10 mm
β = 94.459 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4318 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2994 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.525Rint = 0.060
25029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04827 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.28Δρmax = 0.61 e Å3
4318 reflectionsΔρmin = 0.80 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.55154 (4)0.30390 (9)0.16560 (3)0.0741 (3)
Br20.79401 (4)0.33759 (8)0.18242 (3)0.0617 (2)
Br30.69988 (5)0.09626 (8)0.09258 (2)0.0637 (2)
Br40.67593 (5)0.49013 (7)0.07793 (3)0.0639 (2)
Cu10.67856 (5)0.30817 (8)0.12941 (3)0.0521 (3)
N10.5591 (4)0.7361 (6)0.45281 (19)0.0704 (18)
N20.7051 (3)0.3098 (5)0.31014 (15)0.0434 (13)
C10.5386 (8)0.7895 (12)0.4099 (3)0.167 (5)
H1A0.52690.88530.41150.250*
H1B0.49020.74290.39710.250*
H1C0.58510.77530.39290.250*
C20.6406 (5)0.7921 (9)0.4693 (3)0.114 (4)
H2A0.63800.89000.46910.171*
H2B0.68320.76210.45160.171*
H2C0.65360.76080.49810.171*
C30.5684 (6)0.5866 (9)0.4500 (3)0.123 (4)
H3A0.54130.55480.42350.184*
H3B0.54320.54430.47340.184*
H3C0.62680.56360.45130.184*
C40.4924 (3)0.7708 (5)0.47999 (14)0.0524 (17)
C50.4129 (3)0.8104 (5)0.46368 (13)0.062 (2)
H50.40140.82060.43430.075*
C60.3506 (2)0.8347 (5)0.49123 (19)0.080 (3)
H60.29740.86120.48030.096*
C70.3679 (3)0.8195 (6)0.53509 (18)0.082 (3)
H70.32620.83570.55350.098*
C80.4474 (4)0.7799 (7)0.55141 (12)0.106 (4)
H80.45890.76970.58080.127*
C90.5097 (3)0.7556 (6)0.52385 (15)0.089 (3)
H90.56290.72910.53480.107*
C100.6678 (5)0.4474 (7)0.3025 (3)0.087 (3)
H10A0.69290.51040.32320.130*
H10B0.60850.44310.30520.130*
H10C0.67780.47760.27430.130*
C110.6610 (5)0.2155 (8)0.2782 (2)0.072 (2)
H11A0.67830.23510.25020.108*
H11B0.60160.22820.27830.108*
H11C0.67490.12270.28560.108*
C120.6895 (5)0.2659 (9)0.3546 (2)0.075 (2)
H12A0.72110.32260.37490.112*
H12B0.70640.17260.35870.112*
H12C0.63090.27440.35860.112*
C130.79634 (19)0.3098 (4)0.30638 (14)0.0436 (15)
C140.8423 (3)0.4295 (4)0.30389 (15)0.0606 (19)
H140.81540.51350.30430.073*
C150.9283 (3)0.4235 (5)0.30075 (16)0.080 (3)
H150.95900.50350.29910.096*
C160.9684 (2)0.2978 (7)0.30009 (17)0.083 (3)
H161.02590.29380.29800.099*
C170.9225 (3)0.1781 (5)0.30258 (18)0.079 (3)
H170.94930.09400.30210.095*
C180.8364 (3)0.1841 (4)0.30573 (16)0.062 (2)
H180.80570.10400.30740.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0404 (4)0.1076 (7)0.0762 (6)0.0036 (4)0.0179 (4)0.0069 (5)
Br20.0425 (4)0.0797 (5)0.0608 (5)0.0046 (4)0.0100 (3)0.0093 (4)
Br30.0839 (6)0.0540 (5)0.0539 (5)0.0020 (4)0.0094 (4)0.0078 (4)
Br40.0684 (5)0.0573 (5)0.0654 (5)0.0038 (4)0.0005 (4)0.0146 (4)
Cu10.0433 (5)0.0610 (5)0.0518 (5)0.0006 (4)0.0032 (4)0.0000 (4)
N10.062 (4)0.095 (5)0.057 (4)0.014 (4)0.021 (3)0.011 (4)
N20.044 (3)0.047 (3)0.040 (3)0.000 (2)0.008 (2)0.003 (3)
C10.167 (9)0.222 (10)0.120 (8)0.019 (8)0.064 (7)0.013 (8)
C20.089 (6)0.127 (7)0.133 (7)0.029 (5)0.049 (6)0.037 (6)
C30.118 (7)0.108 (7)0.148 (8)0.010 (6)0.050 (6)0.058 (6)
C40.054 (4)0.054 (4)0.050 (5)0.001 (3)0.006 (4)0.003 (3)
C50.062 (5)0.073 (5)0.050 (5)0.006 (4)0.008 (4)0.007 (4)
C60.049 (5)0.083 (6)0.109 (8)0.014 (4)0.005 (5)0.010 (5)
C70.070 (6)0.092 (6)0.088 (7)0.022 (5)0.032 (5)0.009 (5)
C80.112 (8)0.160 (10)0.047 (5)0.059 (7)0.019 (5)0.017 (6)
C90.069 (5)0.149 (8)0.049 (5)0.043 (6)0.000 (4)0.002 (5)
C100.070 (5)0.070 (6)0.120 (8)0.008 (4)0.002 (5)0.021 (5)
C110.055 (5)0.095 (6)0.065 (5)0.013 (4)0.004 (4)0.014 (5)
C120.058 (5)0.119 (7)0.050 (5)0.003 (5)0.022 (4)0.010 (5)
C130.044 (4)0.054 (4)0.034 (4)0.007 (3)0.004 (3)0.002 (3)
C140.070 (5)0.056 (5)0.056 (5)0.016 (4)0.012 (4)0.003 (4)
C150.066 (6)0.115 (8)0.061 (5)0.045 (5)0.016 (4)0.000 (5)
C160.048 (5)0.144 (9)0.057 (5)0.011 (6)0.011 (4)0.004 (6)
C170.052 (5)0.108 (7)0.079 (6)0.016 (5)0.012 (4)0.004 (5)
C180.047 (4)0.066 (5)0.073 (5)0.006 (4)0.009 (4)0.007 (4)
Geometric parameters (Å, º) top
Br1—Cu12.4055 (11)C6—H60.9300
Br2—Cu12.4057 (11)C7—C81.3900
Br3—Cu12.4136 (11)C7—H70.9300
Br4—Cu12.4039 (11)C8—C91.3900
N1—C41.457 (7)C8—H80.9300
N1—C11.457 (8)C9—H90.9300
N1—C21.472 (8)C10—H10A0.9600
N1—C31.476 (8)C10—H10B0.9600
N2—C131.475 (6)C10—H10C0.9600
N2—C101.487 (6)C11—H11A0.9600
N2—C121.498 (6)C11—H11B0.9600
N2—C111.499 (6)C11—H11C0.9600
C1—H1A0.9600C12—H12A0.9600
C1—H1B0.9600C12—H12B0.9600
C1—H1C0.9600C12—H12C0.9600
C2—H2A0.9600C13—C141.3900
C2—H2B0.9600C13—C181.3900
C2—H2C0.9600C14—C151.3900
C3—H3A0.9600C14—H140.9300
C3—H3B0.9600C15—C161.3900
C3—H3C0.9600C15—H150.9300
C4—C51.3900C16—C171.3900
C4—C91.3900C16—H160.9300
C5—C61.3900C17—C181.3900
C5—H50.9300C17—H170.9300
C6—C71.3900C18—H180.9300
Br4—Cu1—Br2110.35 (4)C6—C7—C8120.0
Br4—Cu1—Br1111.01 (4)C6—C7—H7120.0
Br2—Cu1—Br1107.98 (4)C8—C7—H7120.0
Br4—Cu1—Br3108.21 (4)C9—C8—C7120.0
Br2—Cu1—Br3107.71 (4)C9—C8—H8120.0
Br1—Cu1—Br3111.54 (4)C7—C8—H8120.0
C4—N1—C1109.5 (7)C8—C9—C4120.0
C4—N1—C2112.2 (6)C8—C9—H9120.0
C1—N1—C2108.7 (6)C4—C9—H9120.0
C4—N1—C3110.4 (6)N2—C10—H10A109.5
C1—N1—C3108.6 (6)N2—C10—H10B109.5
C2—N1—C3107.4 (5)H10A—C10—H10B109.5
C13—N2—C10112.1 (5)N2—C10—H10C109.5
C13—N2—C12108.2 (5)H10A—C10—H10C109.5
C10—N2—C12108.4 (6)H10B—C10—H10C109.5
C13—N2—C11111.4 (4)N2—C11—H11A109.5
C10—N2—C11106.8 (6)N2—C11—H11B109.5
C12—N2—C11109.9 (5)H11A—C11—H11B109.5
N1—C1—H1A109.5N2—C11—H11C109.5
N1—C1—H1B109.5H11A—C11—H11C109.5
H1A—C1—H1B109.5H11B—C11—H11C109.5
N1—C1—H1C109.5N2—C12—H12A109.5
H1A—C1—H1C109.5N2—C12—H12B109.5
H1B—C1—H1C109.5H12A—C12—H12B109.5
N1—C2—H2A109.5N2—C12—H12C109.5
N1—C2—H2B109.5H12A—C12—H12C109.5
H2A—C2—H2B109.5H12B—C12—H12C109.5
N1—C2—H2C109.5C14—C13—C18120.0
H2A—C2—H2C109.5C14—C13—N2122.4 (3)
H2B—C2—H2C109.5C18—C13—N2117.6 (3)
N1—C3—H3A109.5C15—C14—C13120.0
N1—C3—H3B109.5C15—C14—H14120.0
H3A—C3—H3B109.5C13—C14—H14120.0
N1—C3—H3C109.5C14—C15—C16120.0
H3A—C3—H3C109.5C14—C15—H15120.0
H3B—C3—H3C109.5C16—C15—H15120.0
C5—C4—C9120.0C17—C16—C15120.0
C5—C4—N1122.8 (4)C17—C16—H16120.0
C9—C4—N1117.1 (4)C15—C16—H16120.0
C6—C5—C4120.0C16—C17—C18120.0
C6—C5—H5120.0C16—C17—H17120.0
C4—C5—H5120.0C18—C17—H17120.0
C5—C6—C7120.0C17—C18—C13120.0
C5—C6—H6120.0C17—C18—H18120.0
C7—C6—H6120.0C13—C18—H18120.0
C1—N1—C4—C517.7 (7)C10—N2—C13—C1411.0 (7)
C2—N1—C4—C5138.5 (5)C12—N2—C13—C14108.5 (5)
C3—N1—C4—C5101.8 (6)C11—N2—C13—C14130.6 (5)
C1—N1—C4—C9165.8 (5)C10—N2—C13—C18169.6 (5)
C2—N1—C4—C945.1 (6)C12—N2—C13—C1871.0 (6)
C3—N1—C4—C974.7 (6)C11—N2—C13—C1850.0 (6)
C9—C4—C5—C60.0C18—C13—C14—C150.0
N1—C4—C5—C6176.4 (5)N2—C13—C14—C15179.5 (4)
C4—C5—C6—C70.0C13—C14—C15—C160.0
C5—C6—C7—C80.0C14—C15—C16—C170.0
C6—C7—C8—C90.0C15—C16—C17—C180.0
C7—C8—C9—C40.0C16—C17—C18—C130.0
C5—C4—C9—C80.0C14—C13—C18—C170.0
N1—C4—C9—C8176.6 (5)N2—C13—C18—C17179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Br3i0.962.913.840 (9)164
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C9H14N)2[CuBr4]
Mr655.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)16.0146 (11), 9.8007 (7), 31.363 (2)
β (°) 94.459 (1)
V3)4907.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)7.41
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.215, 0.525
No. of measured, independent and
observed [I > 2σ(I)] reflections
25029, 4318, 2994
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.28
No. of reflections4318
No. of parameters202
No. of restraints27
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.80

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Br1—Cu12.4055 (11)Br3—Cu12.4136 (11)
Br2—Cu12.4057 (11)Br4—Cu12.4039 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Br3i0.962.913.840 (9)164
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds