metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(pyrazine-2-carbox­amide-κN4)mercury(II)]-di-μ-bromido]

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir

(Received 1 January 2010; accepted 10 January 2010; online 16 January 2010)

In the crystal structure of the title compound, [HgBr2(C5H5N3O)2]n, the HgII cation is located on an inversion center and is coordinated by two N atoms from the pyrazine rings and four bridging Br anions in a distorted octa­hedral geometry. The Br anions bridge the HgII cations with significantly different Hg—Br bond distances of 2.4775 (8) and 3.1122 (8) Å, forming polymeric chains running along the a axis. Inter­molecular N—H⋯O and N—H⋯N hydrogen bonds are effective in the stabilization of the crystal structure.

Related literature

For metal-binding properties of pyridine and pyrazine ligands, see: Sasan et al. (2008[Sasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem. 139, 773-780.]); Khavasi et al. (2009[Khavasi, H. R., Sasan, K., Pirouzmand, M. & Ebrahimi, S. N. (2009). Inorg. Chem. 48, 5593-5595.]); Petro & Mukherjee (1999[Petro, A. K. & Mukherjee, R. (1999). Inorg. Chem. 38, 1388-1393.]); Sigh & Mukherjee (2005[Sigh, A. K. & Mukherjee, R. (2005). Dalton Trans. pp. 2886-2891.]). For the coordination modes of pyrazine­amide, see: Hausmann & Brooker (2004[Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530-1531.]); Cati & Stoeckli-Evans (2004[Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177-m179.]); Miyazaki et al. (2007[Miyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed. 46, 905-908.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C5H5N3O)2]

  • Mr = 606.63

  • Triclinic, [P \overline 1]

  • a = 3.9628 (5) Å

  • b = 6.5162 (9) Å

  • c = 15.0388 (19) Å

  • α = 101.783 (10)°

  • β = 93.418 (11)°

  • γ = 95.214 (11)°

  • V = 377.36 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 15.50 mm−1

  • T = 298 K

  • 0.50 × 0.06 × 0.03 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.345, Tmax = 0.630

  • 4311 measured reflections

  • 2002 independent reflections

  • 1933 reflections with I > 2σ(I)

  • Rint = 0.144

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.173

  • S = 1.11

  • 2002 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 3.93 e Å−3

  • Δρmin = −5.48 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Br1 2.4775 (8)
Hg1—Br1i 3.1122 (8)
Hg1—N2 2.758 (6)
Symmetry code: (i) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1ii 0.86 2.02 2.881 (11) 174
N3—H3B⋯N1iii 0.86 2.53 3.214 (11) 137
Symmetry codes: (ii) -x+2, -y, -z+2; (iii) -x+1, -y+1, -z+2.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A large variety of pyridine and pyrazine amide ligands have been synthesized for investigating their metal-binding properties (Sasan et al., 2008; Khavasi et al., 2009; Petro & Mukherjee, 1999; Sigh & Mukherjee, 2005). The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann & Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al., 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Br atoms. The bridging function of bromo atoms leads to a one-dimensional chain structure. The Hg—Br and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

Related literature top

For metal-binding properties of pyridine and pyrazine ligands, see: Sasan et al. (2008); Khavasi et al. (2009); Petro & Mukherjee (1999); Sigh & Mukherjee (2005). For the coordination modes of pyrazineamide, see: Hausmann & Brooker (2004); Cati & Stoeckli-Evans (2004); Miyazaki et al. (2007).

Experimental top

For the preparation of the title compound, a solution of pyrazineamide (0.246 g, 2.0 mmol) in methanol (10 ml) was added to a solution of HgBr2 (0.360 g, 1.0 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray analysis were obtained by slow evaporation from methanolic solution after one week (yield 0.500 g, 82.5%).

Refinement top

All of the H atoms were positioned geometrically with C–H = 0.93 and N—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The largest peak and deepest hole are near to the Hg1 atom (0.90 and 0.79 Å, respectively).

Structure description top

A large variety of pyridine and pyrazine amide ligands have been synthesized for investigating their metal-binding properties (Sasan et al., 2008; Khavasi et al., 2009; Petro & Mukherjee, 1999; Sigh & Mukherjee, 2005). The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann & Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al., 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Br atoms. The bridging function of bromo atoms leads to a one-dimensional chain structure. The Hg—Br and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.

For metal-binding properties of pyridine and pyrazine ligands, see: Sasan et al. (2008); Khavasi et al. (2009); Petro & Mukherjee (1999); Sigh & Mukherjee (2005). For the coordination modes of pyrazineamide, see: Hausmann & Brooker (2004); Cati & Stoeckli-Evans (2004); Miyazaki et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
catena-Poly[[bis(pyrazine-2-carboxamide-κN4)mercury(II)]-di-µ-bromido] top
Crystal data top
[HgBr2(C5H5N3O)2]Z = 1
Mr = 606.63F(000) = 278
Triclinic, P1Dx = 2.669 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.9628 (5) ÅCell parameters from 765 reflections
b = 6.5162 (9) Åθ = 3.2–29.1°
c = 15.0388 (19) ŵ = 15.50 mm1
α = 101.783 (10)°T = 298 K
β = 93.418 (11)°Needle, colorless
γ = 95.214 (11)°0.5 × 0.06 × 0.03 mm
V = 377.36 (9) Å3
Data collection top
Stoe IPDS II
diffractometer
1933 reflections with I > 2σ(I)
rotation method scansRint = 0.144
Absorption correction: multi-scan
(X-RED and X-SHAPE; Stoe & Cie, 2005)
θmax = 29.1°, θmin = 3.2°
Tmin = 0.345, Tmax = 0.630h = 55
4311 measured reflectionsk = 88
2002 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.1262P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max < 0.001
S = 1.11Δρmax = 3.93 e Å3
2002 reflectionsΔρmin = 5.48 e Å3
97 parameters
Crystal data top
[HgBr2(C5H5N3O)2]γ = 95.214 (11)°
Mr = 606.63V = 377.36 (9) Å3
Triclinic, P1Z = 1
a = 3.9628 (5) ÅMo Kα radiation
b = 6.5162 (9) ŵ = 15.50 mm1
c = 15.0388 (19) ÅT = 298 K
α = 101.783 (10)°0.5 × 0.06 × 0.03 mm
β = 93.418 (11)°
Data collection top
Stoe IPDS II
diffractometer
2002 independent reflections
Absorption correction: multi-scan
(X-RED and X-SHAPE; Stoe & Cie, 2005)
1933 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.630Rint = 0.144
4311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.11Δρmax = 3.93 e Å3
2002 reflectionsΔρmin = 5.48 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.402 (2)0.5193 (13)0.7914 (6)0.0456 (17)
H10.32150.65060.80640.055*
C20.400 (2)0.4210 (13)0.7010 (6)0.0444 (16)
H20.31560.48760.65660.053*
C30.629 (2)0.1448 (13)0.7407 (5)0.0414 (15)
H30.70490.01230.72520.05*
C40.638 (2)0.2438 (14)0.8329 (6)0.0381 (15)
C50.790 (2)0.1363 (13)0.9029 (5)0.0413 (15)
N10.519 (2)0.4278 (10)0.8588 (5)0.0420 (14)
N20.5148 (18)0.2350 (10)0.6752 (4)0.0422 (13)
N30.779 (2)0.2309 (12)0.9885 (5)0.0525 (17)
H3A0.86330.17661.03130.063*
H3B0.68830.34711.00170.063*
O10.914 (2)0.0290 (12)0.8783 (5)0.0577 (19)
Hg10.500.50.0390 (2)
Br10.86218 (19)0.24778 (12)0.55380 (6)0.0394 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (5)0.036 (3)0.038 (4)0.015 (3)0.006 (3)0.011 (3)
C20.055 (4)0.042 (4)0.037 (3)0.004 (3)0.009 (3)0.014 (3)
C30.056 (4)0.039 (3)0.030 (3)0.013 (3)0.006 (3)0.006 (3)
C40.048 (4)0.037 (3)0.028 (3)0.006 (3)0.005 (3)0.004 (3)
C50.055 (4)0.041 (4)0.029 (3)0.011 (3)0.002 (3)0.009 (3)
N10.062 (4)0.031 (3)0.032 (3)0.007 (3)0.007 (3)0.007 (2)
N20.057 (3)0.040 (3)0.029 (3)0.007 (3)0.007 (2)0.010 (2)
N30.085 (5)0.045 (3)0.030 (3)0.023 (4)0.005 (3)0.009 (3)
O10.095 (6)0.049 (3)0.031 (3)0.032 (4)0.005 (3)0.007 (2)
Hg10.0387 (3)0.0433 (3)0.0380 (3)0.01479 (17)0.00149 (16)0.01255 (19)
Br10.0390 (4)0.0374 (4)0.0453 (5)0.0116 (3)0.0000 (3)0.0146 (3)
Geometric parameters (Å, º) top
C1—N11.356 (10)C5—O11.224 (11)
C1—C21.378 (12)C5—N31.313 (10)
C1—H10.93N3—H3A0.86
C2—N21.325 (11)N3—H3B0.86
C2—H20.93Hg1—Br12.4775 (8)
C3—N21.323 (9)Hg1—Br1i2.4775 (8)
C3—C41.402 (11)Hg1—Br1ii3.1122 (8)
C3—H30.93Hg1—Br1iii3.1122 (8)
C4—N11.321 (12)Hg1—N22.758 (6)
C4—C51.505 (12)Hg1—N2i2.758 (6)
N1—C1—C2121.2 (8)N3—C5—C4116.1 (8)
N1—C1—H1119.4C4—N1—C1116.5 (7)
C2—C1—H1119.4C3—N2—C2116.8 (7)
N2—C2—C1122.2 (7)C5—N3—H3A120
N2—C2—H2118.9C5—N3—H3B120
C1—C2—H2118.9H3A—N3—H3B120
N2—C3—C4121.7 (8)Br1—Hg1—Br1i180.00 (4)
N2—C3—H3119.1Br1—Hg1—Br1ii90.44 (2)
C4—C3—H3119.1Br1i—Hg1—Br1ii89.56 (2)
N1—C4—C3121.5 (8)Br1—Hg1—Br1iii89.56 (2)
N1—C4—C5120.1 (7)Br1i—Hg1—Br1iii90.44 (2)
C3—C4—C5118.4 (8)Br1ii—Hg1—Br1iii180.000 (17)
O1—C5—N3124.2 (8)Hg1—Br1—Hg1iv89.56 (2)
O1—C5—C4119.7 (7)
N1—C1—C2—N20.7 (15)C3—C4—C5—N3177.2 (9)
N2—C3—C4—N12.9 (14)C3—C4—N1—C12.6 (12)
N2—C3—C4—C5176.4 (8)C5—C4—N1—C1176.7 (9)
N1—C4—C5—O1176.4 (8)C2—C1—N1—C41.6 (13)
C3—C4—C5—O13.0 (14)C4—C3—N2—C21.9 (12)
N1—C4—C5—N33.4 (13)C1—C2—N2—C30.8 (13)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1v0.862.022.881 (11)174
N3—H3B···N1vi0.862.533.214 (11)137
Symmetry codes: (v) x+2, y, z+2; (vi) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[HgBr2(C5H5N3O)2]
Mr606.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)3.9628 (5), 6.5162 (9), 15.0388 (19)
α, β, γ (°)101.783 (10), 93.418 (11), 95.214 (11)
V3)377.36 (9)
Z1
Radiation typeMo Kα
µ (mm1)15.50
Crystal size (mm)0.5 × 0.06 × 0.03
Data collection
DiffractometerStoe IPDS II
Absorption correctionMulti-scan
(X-RED and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.345, 0.630
No. of measured, independent and
observed [I > 2σ(I)] reflections
4311, 2002, 1933
Rint0.144
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.173, 1.11
No. of reflections2002
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.93, 5.48

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Hg1—Br12.4775 (8)Hg1—N22.758 (6)
Hg1—Br1i3.1122 (8)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1ii0.862.02002.881 (11)174.00
N3—H3B···N1iii0.862.53003.214 (11)137.00
Symmetry codes: (ii) x+2, y, z+2; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors wish to acknowledge Shahid Beheshti University, G·C., for financial support.

References

First citationCati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531.  Web of Science CSD CrossRef Google Scholar
First citationKhavasi, H. R., Sasan, K., Pirouzmand, M. & Ebrahimi, S. N. (2009). Inorg. Chem. 48, 5593–5595.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMiyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed. 46, 905–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetro, A. K. & Mukherjee, R. (1999). Inorg. Chem. 38, 1388–1393.  Google Scholar
First citationSasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem. 139, 773–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSigh, A. K. & Mukherjee, R. (2005). Dalton Trans. pp. 2886–2891.  Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds