metal-organic compounds
catena-Poly[[bis(pyrazine-2-carboxamide-κN4)mercury(II)]-di-μ-bromido]
aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: h-khavasi@sbu.ac.ir
In the 2(C5H5N3O)2]n, the HgII cation is located on an inversion center and is coordinated by two N atoms from the pyrazine rings and four bridging Br− anions in a distorted octahedral geometry. The Br− anions bridge the HgII cations with significantly different Hg—Br bond distances of 2.4775 (8) and 3.1122 (8) Å, forming polymeric chains running along the a axis. Intermolecular N—H⋯O and N—H⋯N hydrogen bonds are effective in the stabilization of the crystal structure.
of the title compound, [HgBrRelated literature
For metal-binding properties of pyridine and pyrazine ligands, see: Sasan et al. (2008); Khavasi et al. (2009); Petro & Mukherjee (1999); Sigh & Mukherjee (2005). For the coordination modes of pyrazineamide, see: Hausmann & Brooker (2004); Cati & Stoeckli-Evans (2004); Miyazaki et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810001182/xu2716sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810001182/xu2716Isup2.hkl
For the preparation of the title compound, a solution of pyrazineamide (0.246 g, 2.0 mmol) in methanol (10 ml) was added to a solution of HgBr2 (0.360 g, 1.0 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray analysis were obtained by slow evaporation from methanolic solution after one week (yield 0.500 g, 82.5%).
All of the H atoms were positioned geometrically with C–H = 0.93 and N—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The largest peak and deepest hole are near to the Hg1 atom (0.90 and 0.79 Å, respectively).
A large variety of pyridine and pyrazine amide ligands have been synthesized for investigating their metal-binding properties (Sasan et al., 2008; Khavasi et al., 2009; Petro & Mukherjee, 1999; Sigh & Mukherjee, 2005). The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann & Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al., 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.
The
of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine and four bridging Br atoms. The bridging function of bromo atoms leads to a one-dimensional chain structure. The Hg—Br and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.For metal-binding properties of pyridine and pyrazine ligands, see: Sasan et al. (2008); Khavasi et al. (2009); Petro & Mukherjee (1999); Sigh & Mukherjee (2005). For the coordination modes of pyrazineamide, see: Hausmann & Brooker (2004); Cati & Stoeckli-Evans (2004); Miyazaki et al. (2007).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level. | |
Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines. |
[HgBr2(C5H5N3O)2] | Z = 1 |
Mr = 606.63 | F(000) = 278 |
Triclinic, P1 | Dx = 2.669 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9628 (5) Å | Cell parameters from 765 reflections |
b = 6.5162 (9) Å | θ = 3.2–29.1° |
c = 15.0388 (19) Å | µ = 15.50 mm−1 |
α = 101.783 (10)° | T = 298 K |
β = 93.418 (11)° | Needle, colorless |
γ = 95.214 (11)° | 0.5 × 0.06 × 0.03 mm |
V = 377.36 (9) Å3 |
Stoe IPDS II diffractometer | 1933 reflections with I > 2σ(I) |
rotation method scans | Rint = 0.144 |
Absorption correction: multi-scan (X-RED and X-SHAPE; Stoe & Cie, 2005) | θmax = 29.1°, θmin = 3.2° |
Tmin = 0.345, Tmax = 0.630 | h = −5→5 |
4311 measured reflections | k = −8→8 |
2002 independent reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.065 | w = 1/[σ2(Fo2) + (0.1262P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.173 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 3.93 e Å−3 |
2002 reflections | Δρmin = −5.48 e Å−3 |
97 parameters |
[HgBr2(C5H5N3O)2] | γ = 95.214 (11)° |
Mr = 606.63 | V = 377.36 (9) Å3 |
Triclinic, P1 | Z = 1 |
a = 3.9628 (5) Å | Mo Kα radiation |
b = 6.5162 (9) Å | µ = 15.50 mm−1 |
c = 15.0388 (19) Å | T = 298 K |
α = 101.783 (10)° | 0.5 × 0.06 × 0.03 mm |
β = 93.418 (11)° |
Stoe IPDS II diffractometer | 2002 independent reflections |
Absorption correction: multi-scan (X-RED and X-SHAPE; Stoe & Cie, 2005) | 1933 reflections with I > 2σ(I) |
Tmin = 0.345, Tmax = 0.630 | Rint = 0.144 |
4311 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.173 | H-atom parameters constrained |
S = 1.11 | Δρmax = 3.93 e Å−3 |
2002 reflections | Δρmin = −5.48 e Å−3 |
97 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.402 (2) | 0.5193 (13) | 0.7914 (6) | 0.0456 (17) | |
H1 | 0.3215 | 0.6506 | 0.8064 | 0.055* | |
C2 | 0.400 (2) | 0.4210 (13) | 0.7010 (6) | 0.0444 (16) | |
H2 | 0.3156 | 0.4876 | 0.6566 | 0.053* | |
C3 | 0.629 (2) | 0.1448 (13) | 0.7407 (5) | 0.0414 (15) | |
H3 | 0.7049 | 0.0123 | 0.7252 | 0.05* | |
C4 | 0.638 (2) | 0.2438 (14) | 0.8329 (6) | 0.0381 (15) | |
C5 | 0.790 (2) | 0.1363 (13) | 0.9029 (5) | 0.0413 (15) | |
N1 | 0.519 (2) | 0.4278 (10) | 0.8588 (5) | 0.0420 (14) | |
N2 | 0.5148 (18) | 0.2350 (10) | 0.6752 (4) | 0.0422 (13) | |
N3 | 0.779 (2) | 0.2309 (12) | 0.9885 (5) | 0.0525 (17) | |
H3A | 0.8633 | 0.1766 | 1.0313 | 0.063* | |
H3B | 0.6883 | 0.3471 | 1.0017 | 0.063* | |
O1 | 0.914 (2) | −0.0290 (12) | 0.8783 (5) | 0.0577 (19) | |
Hg1 | 0.5 | 0 | 0.5 | 0.0390 (2) | |
Br1 | 0.86218 (19) | −0.24778 (12) | 0.55380 (6) | 0.0394 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.065 (5) | 0.036 (3) | 0.038 (4) | 0.015 (3) | −0.006 (3) | 0.011 (3) |
C2 | 0.055 (4) | 0.042 (4) | 0.037 (3) | 0.004 (3) | −0.009 (3) | 0.014 (3) |
C3 | 0.056 (4) | 0.039 (3) | 0.030 (3) | 0.013 (3) | −0.006 (3) | 0.006 (3) |
C4 | 0.048 (4) | 0.037 (3) | 0.028 (3) | 0.006 (3) | −0.005 (3) | 0.004 (3) |
C5 | 0.055 (4) | 0.041 (4) | 0.029 (3) | 0.011 (3) | −0.002 (3) | 0.009 (3) |
N1 | 0.062 (4) | 0.031 (3) | 0.032 (3) | 0.007 (3) | −0.007 (3) | 0.007 (2) |
N2 | 0.057 (3) | 0.040 (3) | 0.029 (3) | 0.007 (3) | −0.007 (2) | 0.010 (2) |
N3 | 0.085 (5) | 0.045 (3) | 0.030 (3) | 0.023 (4) | −0.005 (3) | 0.009 (3) |
O1 | 0.095 (6) | 0.049 (3) | 0.031 (3) | 0.032 (4) | −0.005 (3) | 0.007 (2) |
Hg1 | 0.0387 (3) | 0.0433 (3) | 0.0380 (3) | 0.01479 (17) | −0.00149 (16) | 0.01255 (19) |
Br1 | 0.0390 (4) | 0.0374 (4) | 0.0453 (5) | 0.0116 (3) | 0.0000 (3) | 0.0146 (3) |
C1—N1 | 1.356 (10) | C5—O1 | 1.224 (11) |
C1—C2 | 1.378 (12) | C5—N3 | 1.313 (10) |
C1—H1 | 0.93 | N3—H3A | 0.86 |
C2—N2 | 1.325 (11) | N3—H3B | 0.86 |
C2—H2 | 0.93 | Hg1—Br1 | 2.4775 (8) |
C3—N2 | 1.323 (9) | Hg1—Br1i | 2.4775 (8) |
C3—C4 | 1.402 (11) | Hg1—Br1ii | 3.1122 (8) |
C3—H3 | 0.93 | Hg1—Br1iii | 3.1122 (8) |
C4—N1 | 1.321 (12) | Hg1—N2 | 2.758 (6) |
C4—C5 | 1.505 (12) | Hg1—N2i | 2.758 (6) |
N1—C1—C2 | 121.2 (8) | N3—C5—C4 | 116.1 (8) |
N1—C1—H1 | 119.4 | C4—N1—C1 | 116.5 (7) |
C2—C1—H1 | 119.4 | C3—N2—C2 | 116.8 (7) |
N2—C2—C1 | 122.2 (7) | C5—N3—H3A | 120 |
N2—C2—H2 | 118.9 | C5—N3—H3B | 120 |
C1—C2—H2 | 118.9 | H3A—N3—H3B | 120 |
N2—C3—C4 | 121.7 (8) | Br1—Hg1—Br1i | 180.00 (4) |
N2—C3—H3 | 119.1 | Br1—Hg1—Br1ii | 90.44 (2) |
C4—C3—H3 | 119.1 | Br1i—Hg1—Br1ii | 89.56 (2) |
N1—C4—C3 | 121.5 (8) | Br1—Hg1—Br1iii | 89.56 (2) |
N1—C4—C5 | 120.1 (7) | Br1i—Hg1—Br1iii | 90.44 (2) |
C3—C4—C5 | 118.4 (8) | Br1ii—Hg1—Br1iii | 180.000 (17) |
O1—C5—N3 | 124.2 (8) | Hg1—Br1—Hg1iv | 89.56 (2) |
O1—C5—C4 | 119.7 (7) | ||
N1—C1—C2—N2 | −0.7 (15) | C3—C4—C5—N3 | −177.2 (9) |
N2—C3—C4—N1 | 2.9 (14) | C3—C4—N1—C1 | −2.6 (12) |
N2—C3—C4—C5 | −176.4 (8) | C5—C4—N1—C1 | 176.7 (9) |
N1—C4—C5—O1 | −176.4 (8) | C2—C1—N1—C4 | 1.6 (13) |
C3—C4—C5—O1 | 3.0 (14) | C4—C3—N2—C2 | −1.9 (12) |
N1—C4—C5—N3 | 3.4 (13) | C1—C2—N2—C3 | 0.8 (13) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) x−1, y, z; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1v | 0.86 | 2.02 | 2.881 (11) | 174 |
N3—H3B···N1vi | 0.86 | 2.53 | 3.214 (11) | 137 |
Symmetry codes: (v) −x+2, −y, −z+2; (vi) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [HgBr2(C5H5N3O)2] |
Mr | 606.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 3.9628 (5), 6.5162 (9), 15.0388 (19) |
α, β, γ (°) | 101.783 (10), 93.418 (11), 95.214 (11) |
V (Å3) | 377.36 (9) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 15.50 |
Crystal size (mm) | 0.5 × 0.06 × 0.03 |
Data collection | |
Diffractometer | Stoe IPDS II |
Absorption correction | Multi-scan (X-RED and X-SHAPE; Stoe & Cie, 2005) |
Tmin, Tmax | 0.345, 0.630 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4311, 2002, 1933 |
Rint | 0.144 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.173, 1.11 |
No. of reflections | 2002 |
No. of parameters | 97 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 3.93, −5.48 |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Hg1—Br1 | 2.4775 (8) | Hg1—N2 | 2.758 (6) |
Hg1—Br1i | 3.1122 (8) |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1ii | 0.86 | 2.0200 | 2.881 (11) | 174.00 |
N3—H3B···N1iii | 0.86 | 2.5300 | 3.214 (11) | 137.00 |
Symmetry codes: (ii) −x+2, −y, −z+2; (iii) −x+1, −y+1, −z+2. |
Acknowledgements
The authors wish to acknowledge Shahid Beheshti University, G·C., for financial support.
References
Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, m177–m179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1530–1531. Web of Science CSD CrossRef Google Scholar
Khavasi, H. R., Sasan, K., Pirouzmand, M. & Ebrahimi, S. N. (2009). Inorg. Chem. 48, 5593–5595. Web of Science CSD CrossRef PubMed CAS Google Scholar
Miyazaki, S., Ohkubo, K., Kojima, T. & Fukuzumi, S. (2007). Angew. Chem. Int. Ed. 46, 905–908. Web of Science CSD CrossRef CAS Google Scholar
Petro, A. K. & Mukherjee, R. (1999). Inorg. Chem. 38, 1388–1393. Google Scholar
Sasan, K., Khavasi, H. R. & Davari, M. D. (2008). Monatsh. Chem. 139, 773–780. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sigh, A. K. & Mukherjee, R. (2005). Dalton Trans. pp. 2886–2891. Google Scholar
Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A large variety of pyridine and pyrazine amide ligands have been synthesized for investigating their metal-binding properties (Sasan et al., 2008; Khavasi et al., 2009; Petro & Mukherjee, 1999; Sigh & Mukherjee, 2005). The coordination chemistry of parazineamides is rich. Examples of coordination via the pyrazine N atoms, the carbonyl O atoms and the amide N atoms of the ligand in a non-, mono-, or bis-deprotonated form are known (Hausmann & Brooker, 2004; Cati & Stoeckli-Evans, 2004; Miyazaki et al., 2007) and metal complexes of the ligands have been used extensively to mimic the properties of biologically active systems. Here we synthesized the title compound, (I), and report here its crystal structure.
The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is six-coordinated in a distorted octahedral configuration by two N atoms from pyrazine amides and four bridging Br atoms. The bridging function of bromo atoms leads to a one-dimensional chain structure. The Hg—Br and Hg—N bond lengths and angles (Table 1) are within normal ranges. In the crystal structure (Fig. 2), intermolecular N—H···O and N—H···N hydrogen bonds (Table 2) result in the formation of a supramolecular structure, in which they may be effective in the stabilization of the structure.