organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Hy­droxy­bi­phenyl-3-yl)isoindolin-1-one

aLaboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: wyz@zju.edu.cn

(Received 11 January 2010; accepted 19 January 2010; online 27 January 2010)

In the mol­ecular structure of the title compound, C20H15NO2, the isoindolin-1-one unit is planar, the maximum atomic deviation being 0.048 (2) Å. The two biphenyl rings are twisted with respect to the isoindolin-1-one plane, making dihedral angles of 33.21 (9) and 33.34 (9)°. The two benzene rings of the biphenyl substituent are oriented at a dihedral angle of 35.43 (11)° to each other. An intra­molecular O—H⋯O inter­action occurs and inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the biological activity of isoindolin-1-ones, see: Nozawa et al. (1997[Nozawa, Y., Yamamoto, K., Ito, M., Sakai, N., Mizoue, K., Mizobe, F. & Hanada, K. (1997). J. Antibiot. 50, 635-640.]); Atack et al. (2006[Atack, J. R., Pike, A., Marshall, G., Stanley, J., Lincoln, R., Cook, S. M., Lewis, R. T., Blackaby, W. P., Goodacre, S. C., McKernan, R. M., Dawson, G. R., Wafford, K. A. & Reynolds, D. S. (2006). Neuropharmacology, 50, 677-689.]); Lunn et al. (2004[Lunn, M. R., Root, D. E., Martino, A. M., Flaherty, S. P., Kelley, B. P., Coovert, D. D., Burghes, A. H., Man, N., Morris, G. E., Zhou, J., Androphy, E. J., Sumner, C. J. & Stockwell, B. R. (2004). Chem. Biol. 11, 1489-1493.]). For the reaction conditions for the synthesis of the title compound, see: Wu et al. (2007[Wu, J., Nie, L. & Dai, W.-M. (2007). Synlett, pp. 2728-2732.]). For the palladium-catalysed intra­molecular deca­rbonylative coupling mechanism, see: Baudoin (2007[Baudoin, O. (2007). Angew. Chem. Int. Ed. 46, 1373-1375.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15NO2

  • Mr = 301.33

  • Tetragonal, P 43 21 2

  • a = 7.5123 (2) Å

  • c = 52.3543 (17) Å

  • V = 2954.60 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 294 K

  • 0.32 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.822, Tmax = 0.900

  • 10482 measured reflections

  • 1676 independent reflections

  • 1556 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.08

  • 1676 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.79 2.575 (2) 162
C20—H20⋯O1i 0.93 2.37 3.283 (3) 168
Symmetry code: (i) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a derivative of isoindolin-1-ones, which has been reported to deliver various biological activities such as neuritogenic activity (Nozawa et al., 1997); anxiolytic activity (Atack et al., 2006), survival motor neuron (SMN)-reporter upregulation activity (Lunn et al., 2004). In our laboratory the crystals of title compound was obtained unexpectedly when 4-(2'-bromobenzyl)-6-phenylbenz[1,4]oxazine-2,3-dione was subjected to the palladium-catalyzed intramolecular direct arylation (Wu et al., 2007). It seems that the substrate underwent an intramolecular decarbonylative coupling under the palladium-catalyzed conditions (Baudoin, 2007). The structure of the title compound has been characterized by spectroscopic methods with further confirmation by X-ray analysis. We report here its crystal strutture.

In the molecular structure of the title compound, there are one biphenyl moiety and one isoindolin-1-one linked through C11—N1 single bond (Fig. 1). The isoindolin-1-one moiety has a coplanar structure, the maximum atomic deviation being 0.048 (2) Å. Two phenyl rings are twisted with respect to the isoindolin-1-one plane with dihedral angles of 33.21 (9) and 33.34 (9)°, respectively. The two phenyl rings are oriented at 35.43 (11)°. The O—H···O and C—H···O hydrogen bonding is present in the crystal structure (Table 1).

Related literature top

For the biological activity of isoindolin-1-ones, see: Nozawa et al. (1997); Atack et al. (2006); Lunn et al. (2004). For the reaction conditions for the synthesis of the title compound, see: Wu et al. (2007). For the palladium-catalysed intramolecular decarbonylative coupling mechanism, see: Baudoin (2007).

Experimental top

A 10 mL flask was charged with Pd(OAc)2 (6.7 mg, 0.03 mmol), 1,1'-bis(diphenylphosphino)ferrocene (dppf) (16.6 mg, 0.03 mmol), and K2CO3 (83.0 mg, 0.6 mmol). The loaded flask was evacuated and backfilled with N2 (repeated for three times). To the degassed flask was added a solution of 4-(2'-bromobenzyl)-6-phenylbenz[1,4]oxazine-2,3-dione (122.4 mg, 0.3 mmol) in degassed DMA (3 mL). The resultant mixture was heated at 393 K for 2 h under a nitrogen atmosphere. After cooling to room temperature, the reaction was quenched by adding CH2Cl2 (20 mL), and the resultant mixture was washing with H2O (3 × 10 mL) to remove DMA. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtrated, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel with elution by 20% EtOAc in petroleum ether (333–363 K) to give 2-(4'-hydroxybiphenyl-3'-yl)isoindolin- 1-one (70.0 mg, 78%), m.p. 453–454 K (CH2Cl2-hexane). Single crystals suitable for X-ray diffraction of the title compound were grown in the mixed solvent of CH2Cl2 and hexane.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.97 and O—H = 0.82 Å, and included in the refinement in riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). As no significant anomalous scattering effects were observed, Friedel pairs were merged.

Structure description top

The title compound is a derivative of isoindolin-1-ones, which has been reported to deliver various biological activities such as neuritogenic activity (Nozawa et al., 1997); anxiolytic activity (Atack et al., 2006), survival motor neuron (SMN)-reporter upregulation activity (Lunn et al., 2004). In our laboratory the crystals of title compound was obtained unexpectedly when 4-(2'-bromobenzyl)-6-phenylbenz[1,4]oxazine-2,3-dione was subjected to the palladium-catalyzed intramolecular direct arylation (Wu et al., 2007). It seems that the substrate underwent an intramolecular decarbonylative coupling under the palladium-catalyzed conditions (Baudoin, 2007). The structure of the title compound has been characterized by spectroscopic methods with further confirmation by X-ray analysis. We report here its crystal strutture.

In the molecular structure of the title compound, there are one biphenyl moiety and one isoindolin-1-one linked through C11—N1 single bond (Fig. 1). The isoindolin-1-one moiety has a coplanar structure, the maximum atomic deviation being 0.048 (2) Å. Two phenyl rings are twisted with respect to the isoindolin-1-one plane with dihedral angles of 33.21 (9) and 33.34 (9)°, respectively. The two phenyl rings are oriented at 35.43 (11)°. The O—H···O and C—H···O hydrogen bonding is present in the crystal structure (Table 1).

For the biological activity of isoindolin-1-ones, see: Nozawa et al. (1997); Atack et al. (2006); Lunn et al. (2004). For the reaction conditions for the synthesis of the title compound, see: Wu et al. (2007). For the palladium-catalysed intramolecular decarbonylative coupling mechanism, see: Baudoin (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at 40% probability level and H atoms are shown as small circles of arbitary radii.
2-(4-Hydroxybiphenyl-3-yl)isoindolin-1-one top
Crystal data top
C20H15NO2Dx = 1.355 Mg m3
Mr = 301.33Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P43212Cell parameters from 3246 reflections
Hall symbol: P 4nw 2abwθ = 3.5–65.0°
a = 7.5123 (2) ŵ = 0.70 mm1
c = 52.3543 (17) ÅT = 294 K
V = 2954.60 (15) Å3Prism, colorless
Z = 80.32 × 0.22 × 0.20 mm
F(000) = 1264
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1676 independent reflections
Radiation source: fine-focus sealed tube1556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.0 pixels mm-1θmax = 67.1°, θmin = 3.4°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.822, Tmax = 0.900l = 5661
10482 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.7354P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1676 reflectionsΔρmax = 0.16 e Å3
210 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00108 (16)
Crystal data top
C20H15NO2Z = 8
Mr = 301.33Cu Kα radiation
Tetragonal, P43212µ = 0.70 mm1
a = 7.5123 (2) ÅT = 294 K
c = 52.3543 (17) Å0.32 × 0.22 × 0.20 mm
V = 2954.60 (15) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1676 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1556 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.900Rint = 0.041
10482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
1676 reflectionsΔρmin = 0.15 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.19213 (19)0.1923 (2)0.94864 (3)0.0332 (4)
O21.2708 (2)0.0751 (2)0.92001 (2)0.0343 (4)
H21.26420.00210.93100.052*
N10.9322 (2)0.1133 (2)0.92751 (3)0.0227 (4)
C10.6483 (3)0.0856 (3)0.83609 (4)0.0298 (5)
H10.59240.05960.85150.036*
C20.5463 (3)0.1296 (3)0.81496 (4)0.0349 (5)
H2A0.42290.13250.81630.042*
C30.6272 (3)0.1694 (3)0.79190 (4)0.0348 (5)
H30.55890.20040.77780.042*
C40.8105 (3)0.1625 (3)0.79011 (3)0.0326 (5)
H40.86550.18750.77460.039*
C50.9131 (3)0.1186 (3)0.81118 (3)0.0282 (5)
H51.03640.11500.80970.034*
C60.8337 (3)0.0797 (3)0.83461 (3)0.0239 (4)
C70.9453 (3)0.0361 (3)0.85723 (3)0.0242 (4)
C81.1044 (3)0.0590 (3)0.85490 (3)0.0282 (5)
H81.13990.10080.83900.034*
C91.2093 (3)0.0914 (3)0.87605 (4)0.0297 (5)
H91.31530.15390.87410.036*
C101.1605 (3)0.0328 (3)0.90024 (3)0.0266 (5)
C110.9992 (3)0.0590 (3)0.90309 (3)0.0232 (4)
C120.8957 (3)0.0937 (3)0.88161 (3)0.0231 (4)
H120.79020.15720.88350.028*
C131.0282 (3)0.1716 (3)0.94795 (3)0.0252 (4)
C140.7394 (3)0.1129 (3)0.93267 (3)0.0232 (4)
H14A0.68930.00530.93060.028*
H14B0.67700.19500.92150.028*
C150.7311 (3)0.1730 (3)0.96011 (3)0.0224 (4)
C160.9020 (3)0.2040 (3)0.96878 (3)0.0236 (4)
C170.9354 (3)0.2596 (3)0.99368 (3)0.0282 (5)
H171.05100.27910.99940.034*
C180.7913 (3)0.2848 (3)1.00959 (3)0.0295 (5)
H180.80970.31961.02640.035*
C190.6183 (3)0.2586 (3)1.00072 (4)0.0289 (5)
H190.52280.27881.01160.035*
C200.5861 (3)0.2026 (3)0.97573 (3)0.0272 (4)
H200.47060.18570.96980.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0203 (8)0.0453 (10)0.0340 (7)0.0038 (7)0.0027 (6)0.0023 (7)
O20.0300 (8)0.0425 (10)0.0305 (7)0.0109 (7)0.0058 (6)0.0042 (6)
N10.0195 (8)0.0270 (9)0.0216 (7)0.0004 (7)0.0002 (6)0.0013 (6)
C10.0282 (11)0.0328 (12)0.0283 (9)0.0004 (9)0.0017 (8)0.0037 (9)
C20.0233 (11)0.0391 (13)0.0423 (11)0.0032 (9)0.0050 (9)0.0101 (10)
C30.0365 (13)0.0347 (13)0.0332 (10)0.0021 (10)0.0129 (9)0.0059 (9)
C40.0382 (13)0.0369 (13)0.0226 (9)0.0042 (10)0.0041 (9)0.0032 (9)
C50.0257 (11)0.0323 (12)0.0265 (9)0.0009 (9)0.0011 (8)0.0033 (8)
C60.0245 (10)0.0211 (10)0.0260 (9)0.0004 (8)0.0004 (8)0.0057 (8)
C70.0247 (11)0.0224 (10)0.0255 (9)0.0019 (8)0.0021 (8)0.0001 (8)
C80.0296 (11)0.0277 (11)0.0274 (9)0.0031 (10)0.0052 (8)0.0017 (8)
C90.0265 (12)0.0291 (11)0.0336 (9)0.0065 (9)0.0043 (9)0.0014 (9)
C100.0226 (11)0.0268 (11)0.0302 (9)0.0014 (8)0.0004 (8)0.0042 (8)
C110.0246 (10)0.0218 (10)0.0232 (9)0.0019 (8)0.0031 (7)0.0013 (8)
C120.0204 (10)0.0231 (10)0.0259 (9)0.0004 (8)0.0005 (7)0.0000 (8)
C130.0233 (11)0.0255 (11)0.0268 (9)0.0021 (8)0.0037 (8)0.0032 (8)
C140.0208 (10)0.0281 (10)0.0206 (8)0.0015 (8)0.0006 (7)0.0010 (7)
C150.0265 (11)0.0205 (10)0.0202 (8)0.0014 (8)0.0026 (7)0.0035 (7)
C160.0244 (10)0.0220 (10)0.0245 (8)0.0004 (8)0.0009 (8)0.0014 (8)
C170.0292 (11)0.0268 (11)0.0286 (9)0.0015 (9)0.0072 (8)0.0027 (8)
C180.0388 (12)0.0278 (11)0.0218 (8)0.0020 (9)0.0041 (8)0.0015 (8)
C190.0303 (11)0.0313 (12)0.0253 (8)0.0021 (9)0.0029 (8)0.0000 (9)
C200.0234 (11)0.0319 (12)0.0263 (8)0.0008 (9)0.0012 (8)0.0032 (8)
Geometric parameters (Å, º) top
O1—C131.242 (3)C8—H80.9300
O2—C101.363 (2)C9—C101.390 (3)
O2—H20.8200C9—H90.9300
N1—C131.363 (2)C10—C111.402 (3)
N1—C111.433 (2)C11—C121.393 (3)
N1—C141.474 (3)C12—H120.9300
C1—C21.386 (3)C13—C161.466 (3)
C1—C61.396 (3)C14—C151.507 (2)
C1—H10.9300C14—H14A0.9700
C2—C31.384 (3)C14—H14B0.9700
C2—H2A0.9300C15—C201.380 (3)
C3—C41.381 (3)C15—C161.382 (3)
C3—H30.9300C16—C171.392 (3)
C4—C51.386 (3)C17—C181.379 (3)
C4—H40.9300C17—H170.9300
C5—C61.395 (3)C18—C191.394 (3)
C5—H50.9300C18—H180.9300
C6—C71.487 (3)C19—C201.396 (3)
C7—C81.398 (3)C19—H190.9300
C7—C121.398 (3)C20—H200.9300
C8—C91.381 (3)
C10—O2—H2109.5C12—C11—C10119.27 (17)
C13—N1—C11127.30 (17)C12—C11—N1118.10 (17)
C13—N1—C14112.13 (15)C10—C11—N1122.59 (16)
C11—N1—C14120.56 (15)C11—C12—C7122.03 (18)
C2—C1—C6121.00 (19)C11—C12—H12119.0
C2—C1—H1119.5C7—C12—H12119.0
C6—C1—H1119.5O1—C13—N1126.02 (18)
C3—C2—C1120.3 (2)O1—C13—C16126.79 (18)
C3—C2—H2A119.8N1—C13—C16107.19 (17)
C1—C2—H2A119.8N1—C14—C15102.41 (15)
C4—C3—C2119.3 (2)N1—C14—H14A111.3
C4—C3—H3120.4C15—C14—H14A111.3
C2—C3—H3120.4N1—C14—H14B111.3
C3—C4—C5120.6 (2)C15—C14—H14B111.3
C3—C4—H4119.7H14A—C14—H14B109.2
C5—C4—H4119.7C20—C15—C16120.77 (16)
C4—C5—C6120.8 (2)C20—C15—C14130.21 (18)
C4—C5—H5119.6C16—C15—C14108.99 (16)
C6—C5—H5119.6C15—C16—C17121.75 (18)
C5—C6—C1117.99 (18)C15—C16—C13109.17 (15)
C5—C6—C7120.34 (18)C17—C16—C13129.07 (19)
C1—C6—C7121.66 (18)C18—C17—C16117.72 (19)
C8—C7—C12117.76 (17)C18—C17—H17121.1
C8—C7—C6121.68 (16)C16—C17—H17121.1
C12—C7—C6120.54 (18)C17—C18—C19120.76 (17)
C9—C8—C7120.55 (17)C17—C18—H18119.6
C9—C8—H8119.7C19—C18—H18119.6
C7—C8—H8119.7C18—C19—C20121.11 (19)
C8—C9—C10121.62 (19)C18—C19—H19119.4
C8—C9—H9119.2C20—C19—H19119.4
C10—C9—H9119.2C15—C20—C19117.84 (19)
O2—C10—C9117.24 (18)C15—C20—H20121.1
O2—C10—C11123.97 (17)C19—C20—H20121.1
C9—C10—C11118.74 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.792.575 (2)162
C20—H20···O1i0.932.373.283 (3)168
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H15NO2
Mr301.33
Crystal system, space groupTetragonal, P43212
Temperature (K)294
a, c (Å)7.5123 (2), 52.3543 (17)
V3)2954.60 (15)
Z8
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.32 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.822, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
10482, 1676, 1556
Rint0.041
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.08
No. of reflections1676
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.792.575 (2)162
C20—H20···O1i0.932.373.283 (3)168
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by a research grant from the Natural Science Foundation of China (grant No. 20672092). Professor Wei-Min Dai is thanked for his valuable suggestions. Mr Ji-Yong Liu of the X-ray crystallography facility of Zhejiang University is acknowledged for his assistance with the crystal structural analysis.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAtack, J. R., Pike, A., Marshall, G., Stanley, J., Lincoln, R., Cook, S. M., Lewis, R. T., Blackaby, W. P., Goodacre, S. C., McKernan, R. M., Dawson, G. R., Wafford, K. A. & Reynolds, D. S. (2006). Neuropharmacology, 50, 677–689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaudoin, O. (2007). Angew. Chem. Int. Ed. 46, 1373–1375.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLunn, M. R., Root, D. E., Martino, A. M., Flaherty, S. P., Kelley, B. P., Coovert, D. D., Burghes, A. H., Man, N., Morris, G. E., Zhou, J., Androphy, E. J., Sumner, C. J. & Stockwell, B. R. (2004). Chem. Biol. 11, 1489–1493.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNozawa, Y., Yamamoto, K., Ito, M., Sakai, N., Mizoue, K., Mizobe, F. & Hanada, K. (1997). J. Antibiot. 50, 635–640.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Nie, L. & Dai, W.-M. (2007). Synlett, pp. 2728–2732.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds