organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-methyl-2-(4-methyl­benzo­yl)propanoate

aDepartment of Chemistry, 1400 Townsend Drive, Michigan Technological University, Houghton, MI 49931, USA
*Correspondence e-mail: rluck@mtu.edu

(Received 11 January 2010; accepted 25 January 2010; online 30 January 2010)

The title compound, C16H22O3, is bent with a dihedral angle of 75.3 (1)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, the mol­ecules are linked into infinite chains held together by weak C—H⋯O hydrogen-bonded inter­actions between an H atom on the benzene ring of one mol­ecule and an O atom on the ketone functionality of an adjacent mol­ecule. The chains are arranged with neighbouring tert-butyl and dimethyl groups on adjacent chains exhibiting hydro­phobic stacking, with short C—H⋯H—C contacts (2.37 Å) between adjacent chains

Related literature

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974[Logue, M. W. (1974). J. Org. Chem. 39, 3455-3456.]); Logue et al. (1975[Logue, M. W., Pollack, R. M. & Vitullo, V. P. (1975). J. Am. Chem. Soc. 97, 6868-6869.]). For related structures, see: Crosse et al. (2010a[Crosse, C. M., Logue, M. W., Luck, R. L., Pignotti, L. R. & Waineo, M. F. (2010a). Acta Cryst. E66, o495-o496.],b[Crosse, C. M., Kelly, E. C., Logue, M. W., Luck, R. L., Maass, J. S., Mehne, K. C. & Pignotti, L. R. (2010b). Acta Cryst. E66, o493-o494.]; Logue et al. (2010[Logue, M. W., Luck, R. L., Maynard, N. S., Orlowski, S. S., Pignotti, L. R., Putman, A. L. & Whelan, K. M. (2010). Acta Cryst. E66, o489-o490.]). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009[Mouri, S., Chen, Z., Matsunage, S. & Shibasaki, M. (2009). Chem. Commun. pp. 5138-5140.]); Noritake et al. (2008[Noritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. (2008). Eur. J. Org. Chem. pp. 3465-3468.]); Rigby & Dixon (2008[Rigby, C. L. & Dixon, D. J. (2008). Chem. Commun. pp. 3798-3800.]). For weak hydrogen-bonded inter­actions, see: Karle et al. (2009[Karle, I. L., Huang, L., Venkateshwarlu, P., Sarma, A. V. S. & Ranganathan, S. (2009). Heterocycles, 79, 471-486.]). For H⋯H inter­actions, see: Alkorta et al. (2008[Alkorta, I., Elguero, J. & Grabowski, S. J. (2008). J. Phys. Chem. 112, 2721-2727.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22O3

  • Mr = 262.34

  • Orthorhombic, P b c a

  • a = 8.605 (3) Å

  • b = 11.659 (3) Å

  • c = 31.347 (9) Å

  • V = 3144.9 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 K

  • 0.50 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.988

  • 4411 measured reflections

  • 2758 independent reflections

  • 1334 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 166 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.01

  • 2758 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O9i 0.93 2.71 3.407 (3) 133
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Treatment of 2,2-disubstituted t-butyl beta-keto esters with trifluoroacetic acid at room temperature quantitatively generates the corresponding 2,2-disubstituted β-keto acids, which were used to probe the nature of the transition state for the thermal decarboxylation of β-keto acids (Logue et al., 1975). Structurally similar indanone-derived β-keto ester derivatives have been prepared recently (Mouri et al., 2009; Noritake et al., 2008; Rigby & Dixon, 2008). The directing nature of weak C—H···O H-bonds has been noted to be of importance to afford the three dimensional structure observed in these kinds of molecules (Karle et al., 2009).

In this contribution we present the solid state structure of one such 2,2-disubstituted β-keto acid, i.e. the title compound being the tolyl derivative. This is the second paper in a series of four dealing with substituted derivatives (H–, CH3– (this paper), Cl- and NO2– on the para-position of the phenyl ring) of the title compound. A more detailed comparison of all four substitution compounds will be given in the fourth paper of this series (Crosse et al., 2010a).

The molecule, Fig. 1, displays a bent geometry with a dihedral angle between the phenyl ring and a plane composed of the ester functionality of 75.3 (1)°. Molecules are linked by C—H···O weak hydrogen bonds generating infinite chains parallel to the b axis as shown in Fig. 2. The aromatic rings are not involved in intercalation of stacking interactions either within or between the chains. The chains are arranged with neighbouring t-butyl and dimethyl groups on adjacent chains exhibiting hydrophobic stacking with short C—H···H—C contacts between adjacent chains, Fig. 2 (Alkorta et al., 2008).

Related literature top

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974); Logue et al. (1975). For related structures, see: Crosse et al. (2010a,b; Logue et al. (2010). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009); Noritake et al. (2008); Rigby & Dixon (2008). For weak hydrogen-bonded interactions, see: Karle et al. (2009). For H···H interactions, see: Alkorta et al. (2008). Paper is 2nd in series (ZL2265, ZL2266, ZL2267, ZL2264)

Experimental top

Crystals of the material were synthesized as reported earlier and were grown by evaporation of a solution in hexane (Logue, 1974). IR (neat, cm-1): 3003 (w, C—H), 2974, 1734 (v.s., ester C=O), 1671 (v.s., ketone C=O) 1608 (m, C—C), 1455 (m), 1386 (m), 1366 (s), 1273 (s, alkyl methyl C—H), 1247 (s), 1130 (v.s., ester C—O), 986 (s), 921 (m), 836 (s, C—H bend), 740 (s). 1H NMR (CDCl3) δ; 1.28 (s, 9H), 1.47 (s, 6H), 2.37 (s, 3H), 7.19 (d, 2H, J=8.0 Hz), 7.76 (d, 2H, J=8.8 Hz). 13C NMR (CDCl3) δ; 21.7, 24.1, 27.8, 54.1, 81.8, 129.2, 132.9, 143.5, 174.4, 198.9.

Refinement top

All H atoms were placed at calculated positions, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and refined using a riding model with Uiso(H) constrained to be 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) for all other C atoms. The quality of the data as reflected by only 48% of the reflections observed, large ADP's and inaccurate C—C bond lengths is low. The data had been collected on a 30 year old single point detector instrument not equipped with a low temperature device as part of a class project with undergraduate students. Due to the time constraints imposed by the class schedule a maximum exposure time of 60 s had to be alloted for measuring each reflection.

There are close contacts (i.e., <2.4 Å, (Alkorta et al., 2008)) between an H atom on C11 and one on the C18 atom of an adjacent molecule, Fig. 2. These contacts remain present irrespective of if all the H atoms are refined freely (which generates reasonable parameters) or if they are refined generated either with the AFIX 33 or AFIX 137 constraints (used here) as implemented in the Shelxtl software (Sheldrick, 2008).

Structure description top

Treatment of 2,2-disubstituted t-butyl beta-keto esters with trifluoroacetic acid at room temperature quantitatively generates the corresponding 2,2-disubstituted β-keto acids, which were used to probe the nature of the transition state for the thermal decarboxylation of β-keto acids (Logue et al., 1975). Structurally similar indanone-derived β-keto ester derivatives have been prepared recently (Mouri et al., 2009; Noritake et al., 2008; Rigby & Dixon, 2008). The directing nature of weak C—H···O H-bonds has been noted to be of importance to afford the three dimensional structure observed in these kinds of molecules (Karle et al., 2009).

In this contribution we present the solid state structure of one such 2,2-disubstituted β-keto acid, i.e. the title compound being the tolyl derivative. This is the second paper in a series of four dealing with substituted derivatives (H–, CH3– (this paper), Cl- and NO2– on the para-position of the phenyl ring) of the title compound. A more detailed comparison of all four substitution compounds will be given in the fourth paper of this series (Crosse et al., 2010a).

The molecule, Fig. 1, displays a bent geometry with a dihedral angle between the phenyl ring and a plane composed of the ester functionality of 75.3 (1)°. Molecules are linked by C—H···O weak hydrogen bonds generating infinite chains parallel to the b axis as shown in Fig. 2. The aromatic rings are not involved in intercalation of stacking interactions either within or between the chains. The chains are arranged with neighbouring t-butyl and dimethyl groups on adjacent chains exhibiting hydrophobic stacking with short C—H···H—C contacts between adjacent chains, Fig. 2 (Alkorta et al., 2008).

For the synthesis, spectroscopic characterization and reactivity of the title compound, see: Logue (1974); Logue et al. (1975). For related structures, see: Crosse et al. (2010a,b; Logue et al. (2010). For the syntheses and characterization of structurally similar indanone-derived β-keto ester derivatives, see: Mouri et al. (2009); Noritake et al. (2008); Rigby & Dixon (2008). For weak hydrogen-bonded interactions, see: Karle et al. (2009). For H···H interactions, see: Alkorta et al. (2008). Paper is 2nd in series (ZL2265, ZL2266, ZL2267, ZL2264)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A Mercury (Macrae et al., 2008) illustration of the title compound depicting the H-bonded linkages and the C—H···H—C interactions between the chains displayed along the horizontal middle of the diagram both using dashed blue lines.
tert-Butyl 2-methyl-2-(4-methylbenzoyl)propanoate top
Crystal data top
C16H22O3F(000) = 1136
Mr = 262.34Dx = 1.108 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.605 (3) Åθ = 10–15°
b = 11.659 (3) ŵ = 0.08 mm1
c = 31.347 (9) ÅT = 291 K
V = 3144.9 (16) Å3Prism, colourless
Z = 80.50 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1334 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 1.3°
non–profiled ω scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.969, Tmax = 0.988l = 3337
4411 measured reflections3 standard reflections every 166 min
2758 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2581P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2758 reflectionsΔρmax = 0.14 e Å3
178 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (5)
Crystal data top
C16H22O3V = 3144.9 (16) Å3
Mr = 262.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.605 (3) ŵ = 0.08 mm1
b = 11.659 (3) ÅT = 291 K
c = 31.347 (9) Å0.50 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1334 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.969, Tmax = 0.9883 standard reflections every 166 min
4411 measured reflections intensity decay: 2%
2758 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
2758 reflectionsΔρmin = 0.13 e Å3
178 parameters
Special details top

Experimental. Number of psi-scan sets used was 6. Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6338 (3)0.2128 (2)0.65195 (7)0.0474 (6)
C20.7278 (3)0.3098 (2)0.65125 (7)0.0558 (7)
H20.78060.32920.62640.067*
C30.7434 (3)0.3773 (2)0.68702 (8)0.0647 (8)
H30.80680.44170.68570.078*
C40.6681 (4)0.3524 (3)0.72464 (9)0.0701 (8)
C50.5731 (4)0.2569 (3)0.72513 (9)0.0789 (9)
H50.51930.23850.74990.095*
C60.5566 (3)0.1886 (2)0.68967 (8)0.0655 (8)
H60.49220.12470.6910.079*
C70.6872 (5)0.4275 (3)0.76352 (9)0.1102 (13)
H7A0.59820.4190.78170.165*
H7B0.69630.50620.75480.165*
H7C0.77910.40520.77870.165*
C80.6120 (3)0.1326 (2)0.61524 (8)0.0517 (7)
O90.5392 (2)0.04387 (16)0.62062 (6)0.0725 (6)
C100.6724 (3)0.1633 (2)0.57086 (8)0.0527 (7)
C110.5841 (3)0.2689 (2)0.55401 (8)0.0724 (9)
H1110.59990.33230.5730.109*
H1120.47520.25160.55240.109*
H1130.62210.28840.52620.109*
O120.9115 (2)0.25100 (18)0.54691 (6)0.0790 (6)
O130.91700 (19)0.11790 (14)0.59947 (5)0.0560 (5)
C140.6468 (4)0.0623 (3)0.54016 (8)0.0826 (9)
H14A0.68570.0820.51240.124*
H14B0.53780.04560.53830.124*
H14C0.7010.0040.55060.124*
C150.8467 (3)0.1858 (2)0.57099 (8)0.0557 (7)
C161.0892 (3)0.1174 (2)0.60458 (8)0.0608 (7)
C171.1112 (4)0.0345 (3)0.64115 (10)0.1023 (12)
H17A1.06630.03830.63380.153*
H17B1.06110.06410.66620.153*
H17C1.22020.02490.64670.153*
C181.1633 (4)0.0715 (3)0.56456 (10)0.0879 (10)
H1811.27160.05740.56970.132*
H1821.15220.12660.5420.132*
H1831.11320.00110.55650.132*
C191.1454 (4)0.2360 (3)0.61636 (11)0.0997 (11)
H19A1.08270.26580.63920.15*
H19B1.13720.28560.5920.15*
H19C1.25180.23210.62540.15*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (15)0.0492 (15)0.0498 (14)0.0041 (13)0.0019 (12)0.0026 (12)
C20.0596 (18)0.0602 (16)0.0476 (14)0.0026 (15)0.0060 (14)0.0001 (13)
C30.0670 (19)0.0641 (17)0.0630 (16)0.0065 (16)0.0012 (17)0.0118 (14)
C40.076 (2)0.077 (2)0.0570 (18)0.0119 (18)0.0004 (16)0.0141 (16)
C50.093 (2)0.091 (2)0.0528 (16)0.003 (2)0.0254 (17)0.0023 (17)
C60.0686 (19)0.0664 (18)0.0615 (17)0.0029 (16)0.0132 (15)0.0052 (15)
C70.130 (3)0.124 (3)0.077 (2)0.007 (3)0.006 (2)0.043 (2)
C80.0408 (17)0.0548 (16)0.0596 (16)0.0055 (14)0.0066 (12)0.0018 (14)
O90.0761 (15)0.0639 (12)0.0774 (12)0.0182 (11)0.0017 (11)0.0012 (10)
C100.0520 (17)0.0610 (17)0.0451 (14)0.0039 (14)0.0048 (13)0.0042 (13)
C110.069 (2)0.088 (2)0.0601 (17)0.0141 (17)0.0107 (15)0.0107 (15)
O120.0748 (14)0.0883 (14)0.0741 (12)0.0026 (12)0.0128 (11)0.0238 (12)
O130.0419 (11)0.0711 (12)0.0551 (10)0.0015 (9)0.0019 (9)0.0054 (9)
C140.077 (2)0.096 (2)0.074 (2)0.0039 (19)0.0078 (16)0.0319 (17)
C150.0585 (19)0.0615 (17)0.0471 (15)0.0036 (16)0.0019 (15)0.0046 (15)
C160.0424 (17)0.0749 (19)0.0651 (17)0.0023 (15)0.0056 (13)0.0028 (15)
C170.067 (2)0.139 (3)0.101 (2)0.002 (2)0.0184 (19)0.042 (2)
C180.062 (2)0.113 (3)0.089 (2)0.013 (2)0.0140 (17)0.005 (2)
C190.068 (2)0.103 (3)0.128 (3)0.013 (2)0.017 (2)0.022 (2)
Geometric parameters (Å, º) top
C1—C61.385 (3)C11—H1120.96
C1—C21.390 (3)C11—H1130.96
C1—C81.495 (3)O12—C151.207 (3)
C2—C31.376 (3)O13—C151.338 (3)
C2—H20.93O13—C161.491 (3)
C3—C41.376 (4)C14—H14A0.96
C3—H30.93C14—H14B0.96
C4—C51.382 (4)C14—H14C0.96
C4—C71.509 (4)C16—C181.505 (4)
C5—C61.375 (4)C16—C191.511 (4)
C5—H50.93C16—C171.511 (4)
C6—H60.93C17—H17A0.96
C7—H7A0.96C17—H17B0.96
C7—H7B0.96C17—H17C0.96
C7—H7C0.96C18—H1810.96
C8—O91.221 (3)C18—H1820.96
C8—C101.528 (3)C18—H1830.96
C10—C151.523 (4)C19—H19A0.96
C10—C141.537 (3)C19—H19B0.96
C10—C111.540 (3)C19—H19C0.96
C11—H1110.96
C6—C1—C2117.3 (2)H111—C11—H113109.5
C6—C1—C8118.0 (2)H112—C11—H113109.5
C2—C1—C8124.7 (2)C15—O13—C16121.6 (2)
C3—C2—C1120.6 (2)C10—C14—H14A109.5
C3—C2—H2119.7C10—C14—H14B109.5
C1—C2—H2119.7H14A—C14—H14B109.5
C4—C3—C2122.2 (3)C10—C14—H14C109.5
C4—C3—H3118.9H14A—C14—H14C109.5
C2—C3—H3118.9H14B—C14—H14C109.5
C3—C4—C5117.2 (3)O12—C15—O13125.5 (3)
C3—C4—C7121.2 (3)O12—C15—C10124.2 (3)
C5—C4—C7121.5 (3)O13—C15—C10110.2 (2)
C6—C5—C4121.3 (3)O13—C16—C18109.4 (2)
C6—C5—H5119.4O13—C16—C19109.9 (2)
C4—C5—H5119.4C18—C16—C19113.2 (3)
C5—C6—C1121.5 (3)O13—C16—C17102.0 (2)
C5—C6—H6119.3C18—C16—C17110.6 (3)
C1—C6—H6119.3C19—C16—C17111.1 (3)
C4—C7—H7A109.5C16—C17—H17A109.5
C4—C7—H7B109.5C16—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
C4—C7—H7C109.5C16—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
O9—C8—C1119.2 (2)C16—C18—H181109.5
O9—C8—C10119.9 (2)C16—C18—H182109.5
C1—C8—C10120.8 (2)H181—C18—H182109.5
C15—C10—C8111.9 (2)C16—C18—H183109.5
C15—C10—C14106.0 (2)H181—C18—H183109.5
C8—C10—C14110.0 (2)H182—C18—H183109.5
C15—C10—C11110.4 (2)C16—C19—H19A109.5
C8—C10—C11109.4 (2)C16—C19—H19B109.5
C14—C10—C11109.1 (2)H19A—C19—H19B109.5
C10—C11—H111109.5C16—C19—H19C109.5
C10—C11—H112109.5H19A—C19—H19C109.5
H111—C11—H112109.5H19B—C19—H19C109.5
C10—C11—H113109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O9i0.932.713.407 (3)133
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H22O3
Mr262.34
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)8.605 (3), 11.659 (3), 31.347 (9)
V3)3144.9 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4411, 2758, 1334
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.01
No. of reflections2758
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O9i0.932.713.407 (3)132.5
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

Financial assistance from the Chemistry Department of Michigan Technological University is acknowledged.

References

First citationAlkorta, I., Elguero, J. & Grabowski, S. J. (2008). J. Phys. Chem. 112, 2721–2727.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCrosse, C. M., Kelly, E. C., Logue, M. W., Luck, R. L., Maass, J. S., Mehne, K. C. & Pignotti, L. R. (2010b). Acta Cryst. E66, o493–o494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrosse, C. M., Logue, M. W., Luck, R. L., Pignotti, L. R. & Waineo, M. F. (2010a). Acta Cryst. E66, o495–o496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKarle, I. L., Huang, L., Venkateshwarlu, P., Sarma, A. V. S. & Ranganathan, S. (2009). Heterocycles, 79, 471–486.  PubMed CAS Google Scholar
First citationLogue, M. W. (1974). J. Org. Chem. 39, 3455–3456.  CrossRef CAS Web of Science Google Scholar
First citationLogue, M. W., Luck, R. L., Maynard, N. S., Orlowski, S. S., Pignotti, L. R., Putman, A. L. & Whelan, K. M. (2010). Acta Cryst. E66, o489–o490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLogue, M. W., Pollack, R. M. & Vitullo, V. P. (1975). J. Am. Chem. Soc. 97, 6868–6869.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMouri, S., Chen, Z., Matsunage, S. & Shibasaki, M. (2009). Chem. Commun. pp. 5138–5140.  Web of Science CrossRef Google Scholar
First citationNoritake, S., Shibata, N., Nakamura, S., Toru, T. & Shiro, M. (2008). Eur. J. Org. Chem. pp. 3465–3468.  Web of Science CSD CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigby, C. L. & Dixon, D. J. (2008). Chem. Commun. pp. 3798–3800.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds