organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-4,4,6-tri­methyl-3,4-di­hydro­pyrimidine-2(1H)-thione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 6 January 2010; accepted 14 January 2010; online 23 January 2010)

The dihydro­pyrimidine ring of the title compound, C13H15ClN2S, adopts an envelope conformation with five almost coplanar atoms (r.m.s. deviation = 0.054 Å) and the C atom bearing the two methyl substituents deviating from this plane by 0.441 (2) Å. The best plane through the five almost coplanar atoms forms a dihedral angle of 89.56 (5)° with the benzene ring. The crystal packing is characterized by centrosymmetric dimers connected by pairs of N—H⋯S hydrogen bonds.

Related literature

For details of the biological activity of pyrimidine-2-thio­nes, see: Alam et al. (2005[Alam, O., Imran, M. & Khan, S. A. (2005). Indian J. Heterocycl. Chem. 14, 293-296.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P. & Devakaram, R. V. (2006). Bioorg. Med. Chem. 14, 3113-3118.]); Leite et al. (2006[Leite, A. C. L., Lima, R. S., Moreira, D. R. M., Cardoso, M. V. O., Brito, A. C. G., Santos, L. M. F., Hernandes, M. Z., Kiperstok, A. C., Lima, R. S. & Soares, M. B. P. (2006). Bioorg. Med. Chem. 14, 3749-3757.]); Kappe (2000[Kappe, C. O. (2000). Acc. Chem. Res. 33, 879-888.]); Rovnyak et al. (1995[Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem. 38, 119-129.]); Swamy et al. (2005[Swamy, S. N., Basappa, Priya, B. S., Prabhuswamy, B., Doreswamy, B. H., Prasad, J. S. & Rangappa K. S. (2005). Eur. J. Med. Chem. 41, 531-538.]). For a related structure, see: Yamin et al. (2005[Yamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55-o57.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15ClN2S

  • Mr = 266.78

  • Monoclinic, C 2/c

  • a = 20.6710 (18) Å

  • b = 10.8343 (10) Å

  • c = 14.8619 (13) Å

  • β = 126.026 (5)°

  • V = 2691.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 173 K

  • 0.37 × 0.29 × 0.26 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.861, Tmax = 0.899

  • 7624 measured reflections

  • 2512 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.02

  • 2512 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯S1i 0.83 (2) 2.59 (2) 3.4054 (16) 169.1 (17)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound belongs to a novel and rare class of dihydropyrimidine-2-thiones. Their synthesis has been attracting widespread attention due to diverse pharmacological activities such as antibacterial (Alam et al., 2005), antitumour (Swamy et al., 2005), antioxidative (Sriram et al., 2006), analgesic and anti-inflammatory properties (Leite et al., 2006; Kappe, 2000). In addition, these compounds act as antihypertensive agents as well as calcium channel blockers and neuropeptide Y antagonists (Rovnyak et al., 1995). The formation of the closely related 4,4,6-trimethyl-1-phenyl-3,4-dihydropyrimidine-2(1H)-thione as a side product during the reaction of cinnamoyl isothiocyanate and aniline to afford the corresponding thiourea derivative has been reported (Yamin et al., 2005) The title compound was prepared by the reaction of 4-chloroaniline with 4-methylpent-3-en-2-one in presence of potassium thiocyanate in acetone.

The dihydropyrimidine ring of the title compound adopts an envelope conformation with five almost coplanar atoms (r.m.s. deviation 0.054 Å) and the carbon atom bearing the two methyl substituents deviating from this plane by 0.441 (2) Å. The best plane through the six ring atoms forms a dihedral angle of 89.42 (5)° with the phenyl ring. The crystal packing is characterized by centrosymmetric dimers connected by N—H···S hydrogen bonds.

Related literature top

For details of the biological activity of pyrimidine-2-thiones, see: Alam et al. (2005); Sriram et al. (2006); Leite et al. (2006); Kappe (2000); Rovnyak et al. (1995); Swamy et al. (2005). For related structures see: Yamin et al. (2005).

Experimental top

Potassium thiocyanate (5.4 mmol) was added to a stirred mixture of 4-methylpent-3-en-2-one (5.4 mmol), 4-chloroaniline (5.4 mmol) in dry acetone. The reaction mixture was refluxed for 3 hours. On completion of the reaction, the reaction mixture was cooled to room temperature and poured into ice-water. The precipitated compound was recrystallized from methanol to afford the title dihydropyrimidine-2-thione (62%). Recrystallization from methanol afforded the title compound as colourless crystals: Anal. calcd. for C13H15N2S: C, 58.53; H, 5.67; N, 10.50; S, 12.02%; found: C, 58.49; H, 5.72; N, 10.61; S, 12.14%;%.

Refinement top

Hydrogen atoms were located in a difference Fourier map but they were all included in calculated positions [Caromatic—H = 0.95 Å; Cmethyl—H = 0.98°] and refined as riding [Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl)]. The methyl groups were allowed to rotate but not to tip.

Structure description top

The title compound belongs to a novel and rare class of dihydropyrimidine-2-thiones. Their synthesis has been attracting widespread attention due to diverse pharmacological activities such as antibacterial (Alam et al., 2005), antitumour (Swamy et al., 2005), antioxidative (Sriram et al., 2006), analgesic and anti-inflammatory properties (Leite et al., 2006; Kappe, 2000). In addition, these compounds act as antihypertensive agents as well as calcium channel blockers and neuropeptide Y antagonists (Rovnyak et al., 1995). The formation of the closely related 4,4,6-trimethyl-1-phenyl-3,4-dihydropyrimidine-2(1H)-thione as a side product during the reaction of cinnamoyl isothiocyanate and aniline to afford the corresponding thiourea derivative has been reported (Yamin et al., 2005) The title compound was prepared by the reaction of 4-chloroaniline with 4-methylpent-3-en-2-one in presence of potassium thiocyanate in acetone.

The dihydropyrimidine ring of the title compound adopts an envelope conformation with five almost coplanar atoms (r.m.s. deviation 0.054 Å) and the carbon atom bearing the two methyl substituents deviating from this plane by 0.441 (2) Å. The best plane through the six ring atoms forms a dihedral angle of 89.42 (5)° with the phenyl ring. The crystal packing is characterized by centrosymmetric dimers connected by N—H···S hydrogen bonds.

For details of the biological activity of pyrimidine-2-thiones, see: Alam et al. (2005); Sriram et al. (2006); Leite et al. (2006); Kappe (2000); Rovnyak et al. (1995); Swamy et al. (2005). For related structures see: Yamin et al. (2005).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
1-(4-Chlorophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione top
Crystal data top
C13H15ClN2SF(000) = 1120
Mr = 266.78Dx = 1.317 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6686 reflections
a = 20.6710 (18) Åθ = 3.4–26.1°
b = 10.8343 (10) ŵ = 0.42 mm1
c = 14.8619 (13) ÅT = 173 K
β = 126.026 (5)°Block, colourless
V = 2691.9 (4) Å30.37 × 0.29 × 0.26 mm
Z = 8
Data collection top
Stoe IPDS II two-circle
diffractometer
2512 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 25.7°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 2524
Tmin = 0.861, Tmax = 0.899k = 1313
7624 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
2512 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C13H15ClN2SV = 2691.9 (4) Å3
Mr = 266.78Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.6710 (18) ŵ = 0.42 mm1
b = 10.8343 (10) ÅT = 173 K
c = 14.8619 (13) Å0.37 × 0.29 × 0.26 mm
β = 126.026 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2512 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
2134 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.899Rint = 0.049
7624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
2512 reflectionsΔρmin = 0.39 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57142 (2)0.69991 (4)0.42770 (3)0.02504 (14)
Cl10.68751 (3)0.59306 (4)0.93548 (3)0.03636 (15)
N10.47205 (7)0.78438 (12)0.47357 (11)0.0219 (3)
H10.4318 (11)0.7666 (19)0.2421 (18)0.027 (5)*
C20.48383 (9)0.75825 (14)0.39373 (13)0.0202 (3)
N30.42364 (8)0.78513 (13)0.28874 (12)0.0239 (3)
C40.33943 (9)0.80299 (15)0.24811 (13)0.0240 (4)
C50.34219 (9)0.86623 (15)0.34036 (14)0.0251 (3)
H50.29830.91650.32210.030*
C60.40392 (9)0.85420 (15)0.44661 (14)0.0238 (3)
C70.29744 (11)0.67811 (18)0.21978 (17)0.0364 (4)
H7A0.30150.63560.16510.055*
H7B0.24100.69070.18860.055*
H7C0.32290.62800.28740.055*
C80.29878 (10)0.88397 (18)0.14363 (15)0.0348 (4)
H9A0.32730.96270.16210.052*
H9B0.24320.89930.11570.052*
H9C0.29990.84160.08630.052*
C90.40992 (11)0.91451 (18)0.54228 (15)0.0342 (4)
H8A0.36070.96080.51430.051*
H8B0.45570.97100.58040.051*
H8C0.41730.85110.59460.051*
C110.52708 (9)0.73685 (15)0.58519 (12)0.0209 (3)
C120.51342 (9)0.62101 (15)0.60981 (13)0.0236 (3)
H120.46980.57270.55310.028*
C130.56377 (9)0.57500 (15)0.71809 (14)0.0251 (3)
H130.55500.49550.73590.030*
C140.62664 (9)0.64743 (15)0.79878 (13)0.0237 (3)
C150.64175 (9)0.76243 (16)0.77479 (14)0.0271 (4)
H150.68590.80990.83130.033*
C160.59136 (10)0.80791 (15)0.66666 (14)0.0260 (4)
H160.60090.88690.64880.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0186 (2)0.0362 (3)0.0192 (2)0.00399 (14)0.01047 (17)0.00264 (15)
Cl10.0372 (2)0.0389 (3)0.0182 (2)0.00307 (17)0.00804 (19)0.00696 (16)
N10.0217 (6)0.0262 (7)0.0175 (7)0.0037 (5)0.0114 (6)0.0023 (5)
C20.0220 (7)0.0197 (7)0.0190 (7)0.0011 (6)0.0120 (6)0.0013 (6)
N30.0193 (6)0.0360 (8)0.0162 (7)0.0046 (5)0.0104 (6)0.0030 (5)
C40.0182 (7)0.0276 (8)0.0213 (8)0.0039 (6)0.0089 (7)0.0023 (6)
C50.0230 (7)0.0254 (8)0.0273 (8)0.0045 (6)0.0151 (7)0.0027 (6)
C60.0252 (7)0.0233 (8)0.0264 (8)0.0024 (6)0.0172 (7)0.0022 (6)
C70.0299 (9)0.0330 (9)0.0442 (11)0.0031 (7)0.0206 (9)0.0078 (8)
C80.0298 (9)0.0410 (10)0.0232 (9)0.0098 (7)0.0097 (8)0.0067 (8)
C90.0365 (9)0.0395 (10)0.0301 (9)0.0075 (7)0.0216 (8)0.0014 (8)
C110.0222 (7)0.0256 (8)0.0157 (7)0.0024 (6)0.0116 (6)0.0015 (6)
C120.0222 (7)0.0234 (8)0.0223 (8)0.0024 (6)0.0114 (7)0.0016 (6)
C130.0270 (8)0.0230 (8)0.0246 (8)0.0004 (6)0.0148 (7)0.0034 (6)
C140.0244 (7)0.0286 (8)0.0153 (7)0.0039 (6)0.0101 (6)0.0024 (6)
C150.0259 (8)0.0291 (8)0.0198 (8)0.0044 (6)0.0097 (7)0.0026 (7)
C160.0294 (8)0.0248 (8)0.0226 (8)0.0040 (6)0.0146 (7)0.0006 (6)
Geometric parameters (Å, º) top
S1—C21.6904 (15)C8—H9A0.9800
Cl1—C141.7465 (16)C8—H9B0.9800
N1—C21.374 (2)C8—H9C0.9800
N1—C61.4327 (19)C9—H8A0.9800
N1—C111.4462 (19)C9—H8B0.9800
C2—N31.336 (2)C9—H8C0.9800
N3—C41.482 (2)C11—C121.382 (2)
N3—H10.83 (2)C11—C161.390 (2)
C4—C51.504 (2)C12—C131.397 (2)
C4—C71.527 (2)C12—H120.9500
C4—C81.534 (2)C13—C141.382 (2)
C5—C61.330 (2)C13—H130.9500
C5—H50.9500C14—C151.381 (2)
C6—C91.502 (2)C15—C161.393 (2)
C7—H7A0.9800C15—H150.9500
C7—H7B0.9800C16—H160.9500
C7—H7C0.9800
C2—N1—C6120.78 (13)H9A—C8—H9B109.5
C2—N1—C11119.87 (12)C4—C8—H9C109.5
C6—N1—C11119.30 (13)H9A—C8—H9C109.5
N3—C2—N1116.59 (13)H9B—C8—H9C109.5
N3—C2—S1121.92 (13)C6—C9—H8A109.5
N1—C2—S1121.46 (11)C6—C9—H8B109.5
C2—N3—C4124.65 (15)H8A—C9—H8B109.5
C2—N3—H1114.6 (14)C6—C9—H8C109.5
C4—N3—H1117.4 (13)H8A—C9—H8C109.5
N3—C4—C5106.41 (13)H8B—C9—H8C109.5
N3—C4—C7109.73 (13)C12—C11—C16120.79 (14)
C5—C4—C7111.46 (15)C12—C11—N1118.79 (13)
N3—C4—C8107.47 (14)C16—C11—N1120.40 (14)
C5—C4—C8111.52 (14)C11—C12—C13119.95 (14)
C7—C4—C8110.09 (14)C11—C12—H12120.0
C6—C5—C4122.23 (14)C13—C12—H12120.0
C6—C5—H5118.9C14—C13—C12118.71 (15)
C4—C5—H5118.9C14—C13—H13120.6
C5—C6—N1118.87 (15)C12—C13—H13120.6
C5—C6—C9124.65 (15)C15—C14—C13121.88 (14)
N1—C6—C9116.40 (13)C15—C14—Cl1119.14 (12)
C4—C7—H7A109.5C13—C14—Cl1118.97 (13)
C4—C7—H7B109.5C14—C15—C16119.19 (14)
H7A—C7—H7B109.5C14—C15—H15120.4
C4—C7—H7C109.5C16—C15—H15120.4
H7A—C7—H7C109.5C11—C16—C15119.47 (15)
H7B—C7—H7C109.5C11—C16—H16120.3
C4—C8—H9A109.5C15—C16—H16120.3
C4—C8—H9B109.5
C6—N1—C2—N39.4 (2)C2—N1—C6—C9159.70 (15)
C11—N1—C2—N3168.04 (14)C11—N1—C6—C922.8 (2)
C6—N1—C2—S1168.43 (11)C2—N1—C11—C1287.68 (19)
C11—N1—C2—S114.1 (2)C6—N1—C11—C1289.81 (18)
N1—C2—N3—C419.9 (2)C2—N1—C11—C1693.85 (19)
S1—C2—N3—C4162.28 (12)C6—N1—C11—C1688.66 (19)
C2—N3—C4—C536.3 (2)C16—C11—C12—C131.1 (2)
C2—N3—C4—C784.4 (2)N1—C11—C12—C13177.39 (14)
C2—N3—C4—C8155.86 (16)C11—C12—C13—C140.1 (2)
N3—C4—C5—C626.8 (2)C12—C13—C14—C151.2 (3)
C7—C4—C5—C692.80 (19)C12—C13—C14—Cl1177.54 (13)
C8—C4—C5—C6143.71 (17)C13—C14—C15—C161.2 (3)
C4—C5—C6—N13.6 (2)Cl1—C14—C15—C16177.54 (13)
C4—C5—C6—C9179.71 (16)C12—C11—C16—C151.1 (3)
C2—N1—C6—C517.2 (2)N1—C11—C16—C15177.36 (15)
C11—N1—C6—C5160.24 (15)C14—C15—C16—C110.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···S1i0.83 (2)2.59 (2)3.4054 (16)169.1 (17)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15ClN2S
Mr266.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)20.6710 (18), 10.8343 (10), 14.8619 (13)
β (°) 126.026 (5)
V3)2691.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.37 × 0.29 × 0.26
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.861, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
7624, 2512, 2134
Rint0.049
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.02
No. of reflections2512
No. of parameters161
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.39

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···S1i0.83 (2)2.59 (2)3.4054 (16)169.1 (17)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan under project No. 20-Miscel/R&D/00/3834.

References

First citationAlam, O., Imran, M. & Khan, S. A. (2005). Indian J. Heterocycl. Chem. 14, 293–296.  CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Acc. Chem. Res. 33, 879–888.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeite, A. C. L., Lima, R. S., Moreira, D. R. M., Cardoso, M. V. O., Brito, A. C. G., Santos, L. M. F., Hernandes, M. Z., Kiperstok, A. C., Lima, R. S. & Soares, M. B. P. (2006). Bioorg. Med. Chem. 14, 3749–3757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem. 38, 119–129.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Devakaram, R. V. (2006). Bioorg. Med. Chem. 14, 3113–3118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSwamy, S. N., Basappa, Priya, B. S., Prabhuswamy, B., Doreswamy, B. H., Prasad, J. S. & Rangappa K. S. (2005). Eur. J. Med. Chem. 41, 531–538.  Web of Science CSD CrossRef Google Scholar
First citationYamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, o55–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds