organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Bromo­butyl ent-16-oxobeyeran-19-oate

aSchool of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bJiangsu Center for Drug Screening, China Pharmaceutical University, 24, Tongjiaxiang, Nanjing 210009, People's Republic of China
*Correspondence e-mail: junq.chen@yahoo.com.cn

(Received 6 February 2010; accepted 9 February 2010; online 13 February 2010)

The title compound, C24H37BrO3, is a tetra­cyclic diterpenoid with a beyerane skeleton, synthesized by esterification of isosteviol. It comprises a fused four-ring system A/B/C/D. Rings A and B have a chair conformation, whereas ring C is an unsymmetrical distorted chair; the remaining five-membered ring D adopts an envelope conformation. The stereochemistry of the A/B and B/C ring junctions are trans, while the C/D junction is cis.

Related literature

For the pharmacological activity of isosteviol, see: Liu et al. (2001[Liu, J. C., Kao, P. F., Hsieh, M. H., Chen, Y. J. & Chan, P. (2001). Acta Cardiol. Sin. 17, 133-140.]); Mizushina et al. (2005[Mizushina, Y., Akihis, T., Ukiya, M., Hamasaki, Y., Murakami-Nakai, C., Kuriyama, I., Takeuchi, T., Sugawara, F. & Yoshid, H. (2005). Life Sci. 77, 2127-2140.]); Wong et al. (2004[Wong, K. L., Chan, P., Yang, H. Y., Hsu, F. L., Liu, I. M., Cheng, Y. W. & Cheng, J. T. (2004). Life Sci. 74, 2379-2387.]); Xu et al. (2007[Xu, D. Y., Li, Y. F., Wang, J. P., Davey, A. K., Zhang, S. J. & Evans, A. M. (2007). Life Sci. 80, 269-274.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of isosteviol derivates via esterification and bromination, see: Cai et al. (2009[Cai, J., Zhou, W., Chen, J. Q., Sun, M. & Ji, M. (2009). J. Chem. Crystallogr. 39, 108-111.]); Chen (2010[Chen, J. (2010). Acta Cryst. E66, o431.]).

[Scheme 1]

Experimental

Crystal data
  • C24H37BrO3

  • Mr = 453.45

  • Orthorhombic, P 21 21 21

  • a = 7.4335 (10) Å

  • b = 9.7732 (14) Å

  • c = 30.920 (4) Å

  • V = 2246.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 298 K

  • 0.45 × 0.43 × 0.37 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.490, Tmax = 0.548

  • 11802 measured reflections

  • 3955 independent reflections

  • 3041 reflections with I > 2/s(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.00

  • 3955 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1657 Friedel pairs

  • Flack parameter: 0.065 (11)

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isosteviol is a tetracyclic diterpenoid with a beyerane skeleton, which has good pharmacological activity against broad spectrum significant diseases including ischemia-reperfusion injury, hypertension, and cancer (Wong et al., 2004; Liu, et al., 2001; Xu, et al., 2007; Mizushina et al., 2005). The title compound was obtained by esterification of isosteviol. The molecule structure of (I) contains a fused four-ring system A/B/C/D (Fig. 1). The A/B ring and B/C junction are trans-fused, while C/D is cis-fused. Rings A and B adopt chair conformations (Puckering parameters as defined by Cremer & Pople, 1975: Q = 0.554 (4)/0.559 (4) Å, θ= 176.8 (4)/170.4 (4)° and ϕ= 68 (7)/83 (2)° , respectively), while ring C is in a distorted chair conformation with puckering amplitude Q = 0.647 (4) Å, θ= 18.1 (4)° ϕ=253.0 (13)°. The distortion may be attributed to the narrowing of the C9—C16—C12 bond angle to 104.2 (3)°. The five-membered ring D adopts an envelope conformation (puckering parameters Q = 0.456 (5)Å, ϕ = 140.7 (6) °) with atom C16 displaced from the C9/C10/C11/C12 plane by 0.297 (4) Å . The C17—C1—C2—C3 torsion angle of -74.8 (5)° describes the β-orientation of the 4'-bromobutyl ester group with respect to the ent-kaurane nucleus.

Related literature top

For the pharmacological activity of isosteviol, see: Liu et al. (2001); Mizushina et al. (2005); Wong et al. (2004); Xu et al. (2007). For ring conformations, see: Cremer & Pople (1975). For the synthesis of isosteviol derivates via esterification and bromination, see: Cai et al. (2009); Chen (2010).

Experimental top

Isosteviol was obtained by hydrolysis of stevioside with 10% sulfuric acid at 95 °C for 7 h and recrystallization from ethanol gave colorless crystals of isosteviol in 80% yield. A mixture of 1,4-dibromobutane (2.4 ml, 20 mmol), K2CO3 (2.8 g, 20 mmol) and acetonitrile (20 ml) was heated to reflux. Isosteviol (3.2 g, 10 mmol) in 30 ml acetonitrile was added dropwise over 10 min, and the resulting mixture was stirred for 2 h further. The mixture was cooled to room temperature, and then distilled to one third volume under reduced pressure. The residue was poured into ice water, and the aqueous layer was extracted with CH2Cl2 (3 × 50 ml). The combined CH2Cl2 extracts were washed with water (1 × 50 ml) and brine (1 × 50 ml) respectively, and then dried with anhydrous Na2SO4. After the solvent was evaporated, the residue was purified by column chromatography on silica (petroleum ether/ethyl acetate = 18:1, v/v) to give the title compound (2.7 g, 60%). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of ethanol solution at room temperature. m.p. 372-373 K; 1H NMR(300 MHz, CDCl3), δH ppm: 0.74(s, 3H), 0.90(s, 3H), 1.18(s, 3H), 0.96-2.01(m, 22H), 2.17-2.22(d, 1H, J=15.00 Hz), 2.49-2.56(dd, 1H, J=18.37, 3.57 Hz), 3.53-3.57(t, 2H, J=6.60 Hz), 4.00-4.14(m, 2H).

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C–H distances in the range 0.96–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4'-Bromobutyl ent-16-oxobeyeran-19-oate top
Crystal data top
C24H37BrO3Dx = 1.341 Mg m3
Mr = 453.45Melting point = 372–373 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3390 reflections
a = 7.4335 (10) Åθ = 2.2–20.1°
b = 9.7732 (14) ŵ = 1.85 mm1
c = 30.920 (4) ÅT = 298 K
V = 2246.3 (5) Å3Block, colourless
Z = 40.45 × 0.43 × 0.37 mm
F(000) = 960
Data collection top
Bruker SMART CCD area-detector
diffractometer
3955 independent reflections
Radiation source: fine-focus sealed tube3041 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 88
Tmin = 0.490, Tmax = 0.548k = 1111
11802 measured reflectionsl = 2536
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0392P)2 + 0.9109P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3955 reflectionsΔρmax = 0.64 e Å3
256 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1657 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.065 (11)
Crystal data top
C24H37BrO3V = 2246.3 (5) Å3
Mr = 453.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4335 (10) ŵ = 1.85 mm1
b = 9.7732 (14) ÅT = 298 K
c = 30.920 (4) Å0.45 × 0.43 × 0.37 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3955 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3041 reflections with I > 2/s(I)
Tmin = 0.490, Tmax = 0.548Rint = 0.052
11802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.64 e Å3
S = 1.00Δρmin = 0.25 e Å3
3955 reflectionsAbsolute structure: Flack (1983), 1657 Friedel pairs
256 parametersAbsolute structure parameter: 0.065 (11)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.06095 (7)0.65680 (5)0.843138 (17)0.06872 (19)
O10.6425 (6)1.2658 (4)0.55233 (12)0.0896 (14)
O20.4910 (4)0.6155 (3)0.72346 (9)0.0539 (8)
O30.2689 (5)0.7630 (3)0.71082 (10)0.0596 (8)
C10.3384 (5)0.5981 (4)0.65535 (13)0.0409 (9)
C20.4651 (7)0.4761 (4)0.64746 (13)0.0509 (11)
H2A0.46480.41870.67310.061*
H2B0.41740.42220.62380.061*
C30.6590 (7)0.5144 (4)0.63695 (14)0.0500 (11)
H3A0.71500.55390.66240.060*
H3B0.72540.43240.62930.060*
C40.6691 (6)0.6156 (4)0.59994 (14)0.0465 (10)
H4A0.62810.57100.57370.056*
H4B0.79370.64180.59570.056*
C50.5556 (5)0.7466 (4)0.60725 (11)0.0336 (8)
C60.5564 (5)0.8292 (4)0.56375 (11)0.0348 (8)
H60.52870.76220.54110.042*
C70.7413 (6)0.8882 (4)0.55177 (13)0.0463 (11)
H7A0.78220.94680.57510.056*
H7B0.82650.81360.54900.056*
C80.7401 (6)0.9696 (5)0.51008 (14)0.0522 (11)
H8A0.73560.90630.48590.063*
H8B0.85191.02030.50800.063*
C90.5820 (7)1.0706 (4)0.50609 (13)0.0511 (11)
C100.5754 (7)1.1544 (5)0.54781 (14)0.0539 (11)
C110.4664 (6)1.0794 (4)0.58069 (12)0.0403 (10)
H11A0.36061.13200.58860.048*
H11B0.53691.06270.60650.048*
C120.4113 (5)0.9427 (4)0.55920 (11)0.0355 (9)
C130.2273 (5)0.8911 (4)0.57262 (13)0.0431 (10)
H13A0.18460.82600.55130.052*
H13B0.14370.96730.57320.052*
C140.2291 (5)0.8229 (4)0.61678 (13)0.0401 (9)
H14A0.10900.79170.62400.048*
H14B0.26670.88840.63850.048*
C150.3585 (5)0.7013 (4)0.61649 (12)0.0356 (9)
H150.32370.64820.59090.043*
C160.4094 (6)0.9881 (4)0.51133 (12)0.0454 (10)
H16A0.40900.90940.49220.055*
H16B0.30461.04400.50520.055*
C170.3620 (6)0.6695 (5)0.69846 (13)0.0428 (10)
C180.1425 (6)0.5419 (5)0.65644 (17)0.0630 (13)
H18A0.13400.47030.67760.095*
H18B0.11150.50620.62850.095*
H18C0.06110.61450.66390.095*
C190.6359 (5)0.8274 (4)0.64501 (12)0.0404 (9)
H19A0.64880.76840.66960.061*
H19B0.55750.90210.65220.061*
H19C0.75160.86250.63680.061*
C200.5970 (8)1.1571 (5)0.46522 (16)0.0774 (16)
H20A0.59841.09840.44030.116*
H20B0.70611.20960.46610.116*
H20C0.49581.21790.46350.116*
C210.5242 (7)0.6883 (5)0.76431 (14)0.0647 (14)
H21A0.41630.68790.78200.078*
H21B0.55700.78260.75850.078*
C220.6719 (6)0.6183 (5)0.78729 (15)0.0587 (12)
H22A0.63830.52340.79170.070*
H22B0.68570.65990.81560.070*
C230.8505 (7)0.6223 (7)0.76451 (16)0.0757 (16)
H23A0.83860.57750.73670.091*
H23B0.88290.71700.75920.091*
C240.9989 (7)0.5548 (6)0.78940 (17)0.0716 (15)
H24A1.10490.54840.77120.086*
H24B0.96260.46250.79700.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0692 (3)0.0608 (3)0.0761 (3)0.0049 (3)0.0274 (3)0.0054 (3)
O10.135 (4)0.054 (2)0.080 (3)0.039 (2)0.034 (2)0.0121 (19)
O20.060 (2)0.0612 (19)0.0409 (16)0.0070 (15)0.0069 (14)0.0048 (14)
O30.070 (2)0.062 (2)0.0470 (18)0.0160 (19)0.0007 (16)0.0034 (16)
C10.046 (2)0.040 (2)0.037 (2)0.0072 (18)0.004 (2)0.0044 (19)
C20.076 (3)0.034 (2)0.043 (3)0.002 (2)0.008 (2)0.0040 (18)
C30.062 (3)0.041 (2)0.047 (3)0.016 (2)0.003 (2)0.003 (2)
C40.043 (2)0.050 (3)0.047 (2)0.011 (2)0.0043 (19)0.005 (2)
C50.032 (2)0.0344 (19)0.035 (2)0.0022 (19)0.0021 (18)0.0015 (16)
C60.037 (2)0.0328 (18)0.0346 (19)0.004 (2)0.0010 (17)0.0038 (16)
C70.040 (2)0.046 (2)0.053 (3)0.0039 (19)0.009 (2)0.006 (2)
C80.053 (3)0.057 (3)0.047 (3)0.006 (2)0.015 (2)0.004 (2)
C90.073 (3)0.043 (2)0.037 (2)0.007 (2)0.009 (2)0.0028 (18)
C100.068 (3)0.039 (2)0.054 (3)0.006 (3)0.010 (2)0.002 (2)
C110.048 (3)0.034 (2)0.039 (2)0.0043 (19)0.0012 (19)0.0017 (17)
C120.041 (2)0.038 (2)0.0273 (19)0.0003 (18)0.0034 (17)0.0009 (16)
C130.037 (2)0.045 (2)0.047 (2)0.0042 (18)0.0059 (18)0.007 (2)
C140.029 (2)0.046 (2)0.046 (2)0.0009 (19)0.0018 (17)0.004 (2)
C150.037 (2)0.039 (2)0.031 (2)0.0041 (17)0.0016 (17)0.0046 (16)
C160.057 (3)0.045 (2)0.035 (2)0.001 (2)0.006 (2)0.0011 (18)
C170.044 (2)0.044 (2)0.041 (2)0.005 (2)0.0008 (18)0.009 (2)
C180.061 (3)0.069 (3)0.059 (3)0.029 (2)0.005 (3)0.009 (3)
C190.037 (2)0.047 (2)0.037 (2)0.0021 (18)0.0049 (16)0.003 (2)
C200.108 (5)0.065 (3)0.060 (3)0.013 (4)0.020 (3)0.018 (3)
C210.075 (3)0.082 (4)0.037 (2)0.001 (3)0.012 (2)0.006 (2)
C220.059 (3)0.069 (3)0.048 (3)0.004 (2)0.004 (2)0.000 (2)
C230.064 (3)0.111 (5)0.052 (3)0.003 (3)0.001 (2)0.009 (3)
C240.056 (3)0.091 (4)0.068 (3)0.004 (3)0.004 (3)0.016 (3)
Geometric parameters (Å, º) top
Br1—C241.992 (5)C11—C121.547 (5)
O1—C101.206 (5)C11—H11A0.9700
O2—C171.340 (5)C11—H11B0.9700
O2—C211.470 (5)C12—C131.516 (6)
O3—C171.208 (5)C12—C161.545 (5)
C1—C171.515 (6)C13—C141.519 (5)
C1—C21.539 (6)C13—H13A0.9700
C1—C181.557 (6)C13—H13B0.9700
C1—C151.576 (5)C14—C151.529 (5)
C2—C31.524 (6)C14—H14A0.9700
C2—H2A0.9700C14—H14B0.9700
C2—H2B0.9700C15—H150.9800
C3—C41.515 (6)C16—H16A0.9700
C3—H3A0.9700C16—H16B0.9700
C3—H3B0.9700C18—H18A0.9600
C4—C51.549 (5)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
C4—H4B0.9700C19—H19A0.9600
C5—C191.531 (5)C19—H19B0.9600
C5—C151.557 (5)C19—H19C0.9600
C5—C61.569 (5)C20—H20A0.9600
C6—C71.535 (6)C20—H20B0.9600
C6—C121.554 (5)C20—H20C0.9600
C6—H60.9800C21—C221.476 (7)
C7—C81.515 (6)C21—H21A0.9700
C7—H7A0.9700C21—H21B0.9700
C7—H7B0.9700C22—C231.503 (7)
C8—C91.540 (7)C22—H22A0.9700
C8—H8A0.9700C22—H22B0.9700
C8—H8B0.9700C23—C241.499 (7)
C9—C161.524 (6)C23—H23A0.9700
C9—C201.525 (6)C23—H23B0.9700
C9—C101.529 (6)C24—H24A0.9700
C10—C111.492 (6)C24—H24B0.9700
C17—O2—C21115.1 (3)C12—C13—C14112.6 (3)
C17—C1—C2115.2 (3)C12—C13—H13A109.1
C17—C1—C18104.6 (4)C14—C13—H13A109.1
C2—C1—C18107.6 (3)C12—C13—H13B109.1
C17—C1—C15111.4 (3)C14—C13—H13B109.1
C2—C1—C15108.5 (3)H13A—C13—H13B107.8
C18—C1—C15109.3 (3)C13—C14—C15110.0 (3)
C3—C2—C1115.0 (3)C13—C14—H14A109.7
C3—C2—H2A108.5C15—C14—H14A109.7
C1—C2—H2A108.5C13—C14—H14B109.7
C3—C2—H2B108.5C15—C14—H14B109.7
C1—C2—H2B108.5H14A—C14—H14B108.2
H2A—C2—H2B107.5C14—C15—C5111.8 (3)
C4—C3—C2111.6 (4)C14—C15—C1115.7 (3)
C4—C3—H3A109.3C5—C15—C1114.3 (3)
C2—C3—H3A109.3C14—C15—H15104.5
C4—C3—H3B109.3C5—C15—H15104.5
C2—C3—H3B109.3C1—C15—H15104.5
H3A—C3—H3B108.0C9—C16—C12104.2 (3)
C3—C4—C5113.8 (3)C9—C16—H16A110.9
C3—C4—H4A108.8C12—C16—H16A110.9
C5—C4—H4A108.8C9—C16—H16B110.9
C3—C4—H4B108.8C12—C16—H16B110.9
C5—C4—H4B108.8H16A—C16—H16B108.9
H4A—C4—H4B107.7O3—C17—O2121.7 (4)
C19—C5—C4109.0 (3)O3—C17—C1124.1 (4)
C19—C5—C15111.9 (3)O2—C17—C1114.1 (4)
C4—C5—C15107.7 (3)C1—C18—H18A109.5
C19—C5—C6112.8 (3)C1—C18—H18B109.5
C4—C5—C6107.3 (3)H18A—C18—H18B109.5
C15—C5—C6107.9 (3)C1—C18—H18C109.5
C7—C6—C12109.4 (3)H18A—C18—H18C109.5
C7—C6—C5113.8 (3)H18B—C18—H18C109.5
C12—C6—C5116.3 (3)C5—C19—H19A109.5
C7—C6—H6105.5C5—C19—H19B109.5
C12—C6—H6105.5H19A—C19—H19B109.5
C5—C6—H6105.5C5—C19—H19C109.5
C8—C7—C6113.4 (4)H19A—C19—H19C109.5
C8—C7—H7A108.9H19B—C19—H19C109.5
C6—C7—H7A108.9C9—C20—H20A109.5
C8—C7—H7B108.9C9—C20—H20B109.5
C6—C7—H7B108.9H20A—C20—H20B109.5
H7A—C7—H7B107.7C9—C20—H20C109.5
C7—C8—C9114.1 (3)H20A—C20—H20C109.5
C7—C8—H8A108.7H20B—C20—H20C109.5
C9—C8—H8A108.7O2—C21—C22108.3 (4)
C7—C8—H8B108.7O2—C21—H21A110.0
C9—C8—H8B108.7C22—C21—H21A110.0
H8A—C8—H8B107.6O2—C21—H21B110.0
C16—C9—C20116.3 (4)C22—C21—H21B110.0
C16—C9—C1099.6 (3)H21A—C21—H21B108.4
C20—C9—C10113.8 (3)C21—C22—C23114.8 (4)
C16—C9—C8107.2 (3)C21—C22—H22A108.6
C20—C9—C8111.5 (4)C23—C22—H22A108.6
C10—C9—C8107.5 (4)C21—C22—H22B108.6
O1—C10—C11126.1 (4)C23—C22—H22B108.6
O1—C10—C9124.6 (4)H22A—C22—H22B107.5
C11—C10—C9109.2 (4)C24—C23—C22113.5 (4)
C10—C11—C12106.0 (3)C24—C23—H23A108.9
C10—C11—H11A110.5C22—C23—H23A108.9
C12—C11—H11A110.5C24—C23—H23B108.9
C10—C11—H11B110.5C22—C23—H23B108.9
C12—C11—H11B110.5H23A—C23—H23B107.7
H11A—C11—H11B108.7C23—C24—Br1112.2 (4)
C13—C12—C16110.4 (3)C23—C24—H24A109.2
C13—C12—C11114.1 (3)Br1—C24—H24A109.2
C16—C12—C1199.6 (3)C23—C24—H24B109.2
C13—C12—C6111.3 (3)Br1—C24—H24B109.2
C16—C12—C6107.3 (3)H24A—C24—H24B107.9
C11—C12—C6113.2 (3)

Experimental details

Crystal data
Chemical formulaC24H37BrO3
Mr453.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4335 (10), 9.7732 (14), 30.920 (4)
V3)2246.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.45 × 0.43 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.490, 0.548
No. of measured, independent and
observed [I > 2/s(I)] reflections
11802, 3955, 3041
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.00
No. of reflections3955
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.25
Absolute structureFlack (1983), 1657 Friedel pairs
Absolute structure parameter0.065 (11)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We are grateful to the China Ministry of Health Foundation for Scientific Research (project no. WKJ2005-2-022) for financial support.

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J., Zhou, W., Chen, J. Q., Sun, M. & Ji, M. (2009). J. Chem. Crystallogr. 39, 108–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, J. (2010). Acta Cryst. E66, o431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, J. C., Kao, P. F., Hsieh, M. H., Chen, Y. J. & Chan, P. (2001). Acta Cardiol. Sin. 17, 133–140.  Google Scholar
First citationMizushina, Y., Akihis, T., Ukiya, M., Hamasaki, Y., Murakami-Nakai, C., Kuriyama, I., Takeuchi, T., Sugawara, F. & Yoshid, H. (2005). Life Sci. 77, 2127–2140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K. L., Chan, P., Yang, H. Y., Hsu, F. L., Liu, I. M., Cheng, Y. W. & Cheng, J. T. (2004). Life Sci. 74, 2379–2387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, D. Y., Li, Y. F., Wang, J. P., Davey, A. K., Zhang, S. J. & Evans, A. M. (2007). Life Sci. 80, 269-274.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds