metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[4-chloro-2-(di­methyl­amino­meth­yl)phenyl-κ2C1,N]palladium(II)}

aDepartment of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
*Correspondence e-mail: fyang@chem.ecnu.edu.cn

(Received 12 January 2010; accepted 28 January 2010; online 3 February 2010)

The title compound, [Pd2(C9H11ClN)2Cl2], consists of two Pd atoms which are bridged by two Cl atoms, forming a centrosymmetric binuclear complex with a square-planar coordination for each of the Pd atoms. The Pd atom is chelated by one N and one C atom from a 4-chloro-2-(dimethyl­amino­meth­yl)phenyl ligand, forming a five-membered ring (N—Pd—C—C—C). In the crystal structure, weak C—H ⋯Cl hydrogen bonds link the mol­ecules in rows.

Related literature

For cyclo­palladated complexes (CPCs) of tertiary aryl­mines as efficient catalysts in coupling reactions, see: Morales-Morales (2007[Morales-Morales, D. (2007). The Chemistry of Pincer Compounds. Amsterdam: Elsevier.]); Joshaghani et al. (2008[Joshaghani, M., Daryanavard, M., Rafiee, E. & Nadri, S. (2008). J. Organomet. Chem. 693, 3135-3140.]); Xu et al. (2009[Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1916-1919.]); Yang et al. (2002[Yang, F., Zhang, Y. M., Zheng, R., Tang, J. & He, M. Y. (2002). J. Organomet. Chem. 651, 146-148.]); Zheng et al. (2003[Zheng, R., Yang, F., Zou, G., Tang, J. & He, M. Y. (2003). Chin. J. Chem. 21, 1111-1113.]). For the crystal structures of related CPCs, see: Calmuschi-Cula et al. (2005[Calmuschi-Cula, B., Kalf, I., Wang, R. & Englert, U. (2005). Organometallics, 24, 5491-5493.]); Yang et al. (2003[Yang, F., Li, Y. P., Nie, J., Tang, J. & He, M. Y. (2003). Chin. J. Chem. 21, 1039-1042.]); Zhou et al. (2010[Zhou, J., Li, X. Y. & Sun, H. J. (2010). J. Organomet. Chem. 695, 297-303.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2(C9H11ClN)2Cl2]

  • Mr = 620.98

  • Monoclinic, C 2/c

  • a = 28.450 (2) Å

  • b = 5.6325 (5) Å

  • c = 14.2844 (11) Å

  • β = 111.702 (1)°

  • V = 2126.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 296 K

  • 0.48 × 0.41 × 0.35 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.576, Tmax = 1.000

  • 5903 measured reflections

  • 2315 independent reflections

  • 2173 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.10

  • 2315 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl2i 0.93 2.76 3.283 (4) 117
C9—H9B⋯Cl2 0.96 2.77 3.325 (5) 118
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the discovery of cyclopalladated complexes (CPCs) a half a century ago, these organometallic compounds have found a plethora of applications (Morales-Morales, 2007; Joshaghani et al., 2008; Xu et al., 2009). We have reported the crystal structures of chiral acetate-bridged binuclear cyclopalladated complexes and the application of some cyclopalladated complexes of tertiary arylamines in coupling reactions (Yang et al., 2002; Zheng et al., 2003). In order to compare the catalytic activities of different substituted tertiary arylamine palladacycles at the aromatic ring, we synthesized a series of these compounds by the reaction of 3-substituted N,N-dimethylbenzylaime with Li2PdCl4. Herein we report the structure of chloro substituted cyclopalladated complex, Di-µ-chlorobis{4-chloro-2-[(dimethylamino- κN)methyl]phenyl-κC}dipalladium (I).

The two Pd atoms were bridged by two Cl atoms, forming a diamond-planar geometry center (Fig. 1). Each of the two Pd atoms was chelated by one N and one C atoms forming a five-member ring. In the crystal structure, weak C—H···Cl hydrogen bonds link the molecules in rows (Table 1, Fig. 2).

Related literature top

For cyclopalladated complexes (CPCs) of tertiary arylmines as efficient catalysts in coupling reactions, see: Morales-Morales (2007); Joshaghani et al. (2008); Xu et al. (2009); Yang et al. (2002); Zheng et al. (2003). For related literature [on what subject?], see: Calmuschi-Cula et al. (2005); Yang et al. (2003); Zhou et al. (2010).

Experimental top

3-Chloro-N,N-dimethylbenzylamine (3.0 mmol, 0.51 g) and the solution of Li2PdCl4 (0.26 g, 1.0 mmol) in anhydrous methanol (10 ml) were mixed, and the mixture was stirred for 24 h at room temperature. The reaction mixture was filtered. The yellowish solid was recrystallized with CH2Cl2 to afford light yellowish crystal.

Refinement top

H atoms were positioned with idealized geometry using a riding model [C—H = 0.93—0.97 Å]. All H atoms were refined with isotropic displacement parameters [set to 1.2 (1.5 for methyl) times of the Ueq of the parent atom].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), with displacement ellipsoids drawn at 40% probability level. Symmetry code: (i) -x, -y, -z.
[Figure 2] Fig. 2. Molecular packing of (I). Dashed lines show H-bonds.
Di-µ-chlorido-bis{[4-chloro-2-(dimethylaminomethyl)phenyl- κ2C1,N]palladium(II)} top
Crystal data top
[Pd2(C9H11ClN)2Cl2]F(000) = 1216
Mr = 620.98Dx = 1.939 Mg m3
Monoclinic, C2/cMelting point: 473 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 28.450 (2) ÅCell parameters from 4334 reflections
b = 5.6325 (5) Åθ = 5.1–56.7°
c = 14.2844 (11) ŵ = 2.20 mm1
β = 111.702 (1)°T = 296 K
V = 2126.7 (3) Å3Prismatic, colourless
Z = 40.48 × 0.41 × 0.35 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2315 independent reflections
Radiation source: fine-focus sealed tube2173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
phi and ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3632
Tmin = 0.576, Tmax = 1.000k = 75
5903 measured reflectionsl = 1618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0385P)2 + 2.2145P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
2315 reflectionsΔρmax = 0.78 e Å3
119 parametersΔρmin = 0.59 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00136 (18)
Crystal data top
[Pd2(C9H11ClN)2Cl2]V = 2126.7 (3) Å3
Mr = 620.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.450 (2) ŵ = 2.20 mm1
b = 5.6325 (5) ÅT = 296 K
c = 14.2844 (11) Å0.48 × 0.41 × 0.35 mm
β = 111.702 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2173 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 1.000Rint = 0.071
5903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.087H-atom parameters constrained
S = 1.10Δρmax = 0.78 e Å3
2315 reflectionsΔρmin = 0.59 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61584 (12)0.7531 (6)0.6472 (2)0.0377 (6)
C20.63683 (13)0.6229 (7)0.7349 (3)0.0451 (7)
H20.62170.48150.74220.054*
C30.68036 (14)0.7007 (7)0.8124 (3)0.0504 (9)
H30.69430.61310.87150.061*
C40.70230 (13)0.9093 (7)0.8000 (3)0.0475 (8)
C50.68411 (13)1.0366 (6)0.7124 (3)0.0476 (8)
H50.70051.17370.70460.057*
C60.64054 (12)0.9577 (6)0.6348 (2)0.0402 (7)
C70.61785 (14)1.0829 (6)0.5364 (3)0.0482 (8)
H7A0.59631.21140.54180.058*
H7B0.64431.14940.51680.058*
C80.62160 (16)0.7642 (8)0.4257 (3)0.0571 (10)
H8A0.64510.67970.48190.086*
H8B0.63980.86660.39730.086*
H8C0.60190.65300.37560.086*
C90.55179 (15)1.0332 (8)0.3720 (3)0.0621 (10)
H9A0.52941.12840.39280.093*
H9B0.53250.91940.32280.093*
H9C0.57011.13350.34310.093*
N10.58771 (10)0.9079 (5)0.4600 (2)0.0394 (6)
Cl10.75511 (4)1.0154 (2)0.89840 (8)0.0736 (3)
Cl20.47788 (3)0.5844 (2)0.38205 (6)0.0541 (3)
Pd0.554347 (8)0.67878 (4)0.530312 (17)0.03578 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (15)0.0447 (15)0.0372 (16)0.0005 (14)0.0147 (13)0.0023 (14)
C20.0404 (17)0.0540 (18)0.0401 (18)0.0104 (16)0.0141 (15)0.0013 (16)
C30.0437 (19)0.066 (2)0.0407 (19)0.0012 (17)0.0142 (16)0.0021 (16)
C40.0343 (15)0.062 (2)0.0442 (19)0.0047 (16)0.0128 (14)0.0132 (17)
C50.0427 (17)0.0464 (17)0.055 (2)0.0107 (15)0.0196 (15)0.0109 (16)
C60.0388 (15)0.0407 (16)0.0419 (17)0.0043 (14)0.0160 (13)0.0042 (13)
C70.0504 (19)0.0382 (16)0.054 (2)0.0067 (16)0.0172 (16)0.0016 (15)
C80.057 (2)0.067 (2)0.062 (2)0.006 (2)0.040 (2)0.006 (2)
C90.054 (2)0.065 (2)0.055 (2)0.005 (2)0.0054 (18)0.0188 (19)
N10.0345 (13)0.0446 (14)0.0395 (14)0.0032 (12)0.0143 (11)0.0020 (12)
Cl10.0546 (5)0.0955 (8)0.0562 (6)0.0190 (6)0.0036 (5)0.0209 (6)
Cl20.0381 (4)0.0759 (6)0.0446 (4)0.0177 (4)0.0109 (3)0.0122 (4)
Pd0.02757 (16)0.04355 (18)0.03759 (18)0.00378 (9)0.01365 (12)0.00214 (9)
Geometric parameters (Å, º) top
C1—C21.382 (5)C7—H7B0.9700
C1—C61.395 (5)C8—N11.474 (5)
C1—Pd1.966 (3)C8—H8A0.9600
C2—C31.392 (5)C8—H8B0.9600
C2—H20.9300C8—H8C0.9600
C3—C41.373 (5)C9—N11.475 (4)
C3—H30.9300C9—H9A0.9600
C4—C51.367 (5)C9—H9B0.9600
C4—Cl11.740 (3)C9—H9C0.9600
C5—C61.395 (5)N1—Pd2.068 (3)
C5—H50.9300Cl2—Pdi2.3356 (9)
C6—C71.490 (5)Cl2—Pd2.4683 (9)
C7—N11.485 (4)Pd—Cl2i2.3356 (9)
C7—H7A0.9700
C2—C1—C6119.0 (3)N1—C8—H8B109.5
C2—C1—Pd127.4 (3)H8A—C8—H8B109.5
C6—C1—Pd113.6 (2)N1—C8—H8C109.5
C1—C2—C3120.9 (3)H8A—C8—H8C109.5
C1—C2—H2119.6H8B—C8—H8C109.5
C3—C2—H2119.6N1—C9—H9A109.5
C4—C3—C2118.7 (3)N1—C9—H9B109.5
C4—C3—H3120.7H9A—C9—H9B109.5
C2—C3—H3120.7N1—C9—H9C109.5
C5—C4—C3122.1 (3)H9A—C9—H9C109.5
C5—C4—Cl1118.8 (3)H9B—C9—H9C109.5
C3—C4—Cl1119.2 (3)C8—N1—C9108.1 (3)
C4—C5—C6119.0 (3)C8—N1—C7109.7 (3)
C4—C5—H5120.5C9—N1—C7109.8 (3)
C6—C5—H5120.5C8—N1—Pd107.0 (2)
C1—C6—C5120.3 (3)C9—N1—Pd114.5 (2)
C1—C6—C7116.6 (3)C7—N1—Pd107.56 (19)
C5—C6—C7123.1 (3)Pdi—Cl2—Pd94.18 (3)
N1—C7—C6108.1 (3)C1—Pd—N181.70 (12)
N1—C7—H7A110.1C1—Pd—Cl2i94.72 (10)
C6—C7—H7A110.1N1—Pd—Cl2i176.12 (8)
N1—C7—H7B110.1C1—Pd—Cl2179.19 (9)
C6—C7—H7B110.1N1—Pd—Cl297.75 (8)
H7A—C7—H7B108.4Cl2i—Pd—Cl285.82 (3)
N1—C8—H8A109.5
C6—C1—C2—C33.6 (5)C2—C1—Pd—N1159.6 (3)
Pd—C1—C2—C3178.9 (3)C6—C1—Pd—N118.0 (2)
C1—C2—C3—C40.3 (6)C2—C1—Pd—Cl2i18.9 (3)
C2—C3—C4—C53.1 (6)C6—C1—Pd—Cl2i163.5 (2)
C2—C3—C4—Cl1177.2 (3)C2—C1—Pd—Cl2112 (7)
C3—C4—C5—C63.0 (5)C6—C1—Pd—Cl265 (8)
Cl1—C4—C5—C6177.3 (3)C8—N1—Pd—C187.3 (3)
C2—C1—C6—C53.8 (5)C9—N1—Pd—C1152.8 (3)
Pd—C1—C6—C5178.4 (2)C7—N1—Pd—C130.5 (2)
C2—C1—C6—C7176.5 (3)C8—N1—Pd—Cl2i64.6 (13)
Pd—C1—C6—C71.4 (4)C9—N1—Pd—Cl2i175.6 (11)
C4—C5—C6—C10.5 (5)C7—N1—Pd—Cl2i53.2 (13)
C4—C5—C6—C7179.7 (3)C8—N1—Pd—Cl292.1 (2)
C1—C6—C7—N124.2 (4)C9—N1—Pd—Cl227.8 (3)
C5—C6—C7—N1156.0 (3)C7—N1—Pd—Cl2150.1 (2)
C6—C7—N1—C879.8 (3)Pdi—Cl2—Pd—C1131 (8)
C6—C7—N1—C9161.5 (3)Pdi—Cl2—Pd—N1178.46 (8)
C6—C7—N1—Pd36.3 (3)Pdi—Cl2—Pd—Cl2i0.0
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl2i0.932.763.283 (4)117
C9—H9B···Cl20.962.773.325 (5)118
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pd2(C9H11ClN)2Cl2]
Mr620.98
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.450 (2), 5.6325 (5), 14.2844 (11)
β (°) 111.702 (1)
V3)2126.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.48 × 0.41 × 0.35
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.576, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5903, 2315, 2173
Rint0.071
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.10
No. of reflections2315
No. of parameters119
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.59

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl2i0.93002.76003.283 (4)117.00
C9—H9B···Cl20.96002.77003.325 (5)118.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to the Laboratory of Organic Functional Mol­ecules, Sino-French Institute, ECNU for support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalmuschi-Cula, B., Kalf, I., Wang, R. & Englert, U. (2005). Organometallics, 24, 5491–5493.  Web of Science CSD CrossRef CAS Google Scholar
First citationJoshaghani, M., Daryanavard, M., Rafiee, E. & Nadri, S. (2008). J. Organomet. Chem. 693, 3135–3140.  Web of Science CrossRef CAS Google Scholar
First citationMorales-Morales, D. (2007). The Chemistry of Pincer Compounds. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1916–1919.  Google Scholar
First citationYang, F., Li, Y. P., Nie, J., Tang, J. & He, M. Y. (2003). Chin. J. Chem. 21, 1039–1042.  CAS Google Scholar
First citationYang, F., Zhang, Y. M., Zheng, R., Tang, J. & He, M. Y. (2002). J. Organomet. Chem. 651, 146–148.  Web of Science CrossRef CAS Google Scholar
First citationZheng, R., Yang, F., Zou, G., Tang, J. & He, M. Y. (2003). Chin. J. Chem. 21, 1111–1113.  CrossRef CAS Google Scholar
First citationZhou, J., Li, X. Y. & Sun, H. J. (2010). J. Organomet. Chem. 695, 297–303.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds