organic compounds
2-Chloroquinoline-3-carboxylic acid
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouraiou.abdelmalek@yahoo.fr
The 10H6ClNO2, can be described by two types of crossed layers which are parallel to (110) and (10). The crystal packing is stabilized by intermolecular C—H⋯O and O—H⋯N hydrogen bonds, resulting in the formation of a two-dimensional network and reinforcing the cohesion of the structure.
of the title compound, CRelated literature
For our previous work on the preparation of α-aminonitriles, see: Ladraa et al. (2009); Belfaitah et al. (2006). For the removal of chiral auxiliaries using ceric ammonium nitrate, see: Bhanu Prasad et al. (2004).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810006501/bq2197sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810006501/bq2197Isup2.hkl
A solution of 327 mg (3 eq., 0.59 mmol.) of ceric ammonium nitrate (CAN) in 1 ml of water was added to precooled stirred solution of 2-[(S)-2-chloro-3-quinolyl]-2-[(R)-1-(4-methoxyphenyl) ethylamino] acetonitrile (70 mg, 0.19 mmol) in 9 ml of CH3CN. After completion of the reaction (checked by TLC), the reaction mixture was poured into cold water and the residue obtained was filtered off. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the filtrate.
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C and O atoms. (with C—H = 0.95Å - O—H =0.84Å and Uiso(H) =1.2 or 1.5(carrier atom)).
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).C10H6ClNO2 | F(000) = 424 |
Mr = 207.61 | Dx = 1.616 Mg m−3 |
Orthorhombic, P21nb | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2bc 2a | Cell parameters from 21289 reflections |
a = 5.8193 (2) Å | θ = 2.9–27.5° |
b = 8.0689 (3) Å | µ = 0.41 mm−1 |
c = 18.1780 (5) Å | T = 120 K |
V = 853.55 (5) Å3 | Prism, yellow |
Z = 4 | 0.19 × 0.12 × 0.08 mm |
Nonius KappaCCD diffractometer | 1938 independent reflections |
Radiation source: Enraf–Nonius FR590 | 1746 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
CCD rotation images, thin slices scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | k = −10→10 |
Tmin = 0.915, Tmax = 0.967 | l = −23→23 |
13714 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7398P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
1938 reflections | Δρmax = 0.32 e Å−3 |
129 parameters | Δρmin = −0.35 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 862 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.28 (9) |
C10H6ClNO2 | V = 853.55 (5) Å3 |
Mr = 207.61 | Z = 4 |
Orthorhombic, P21nb | Mo Kα radiation |
a = 5.8193 (2) Å | µ = 0.41 mm−1 |
b = 8.0689 (3) Å | T = 120 K |
c = 18.1780 (5) Å | 0.19 × 0.12 × 0.08 mm |
Nonius KappaCCD diffractometer | 1938 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1746 reflections with I > 2σ(I) |
Tmin = 0.915, Tmax = 0.967 | Rint = 0.046 |
13714 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.094 | Δρmax = 0.32 e Å−3 |
S = 1.14 | Δρmin = −0.35 e Å−3 |
1938 reflections | Absolute structure: Flack (1983), 862 Friedel pairs |
129 parameters | Absolute structure parameter: 0.28 (9) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1466 (5) | 0.1851 (3) | 0.23620 (14) | 0.0167 (5) | |
C2 | −0.0521 (4) | 0.0966 (3) | 0.21287 (14) | 0.0161 (5) | |
C3 | −0.0939 (5) | 0.0943 (3) | 0.13814 (14) | 0.0182 (5) | |
H3 | −0.2255 | 0.0377 | 0.1201 | 0.022* | |
C4 | 0.0535 (5) | 0.1735 (3) | 0.08831 (15) | 0.0175 (5) | |
C5 | 0.0162 (5) | 0.1732 (3) | 0.01110 (15) | 0.0204 (6) | |
H5 | −0.113 | 0.1173 | −0.009 | 0.024* | |
C6 | 0.1668 (5) | 0.2538 (3) | −0.03428 (14) | 0.0196 (6) | |
H6 | 0.1416 | 0.254 | −0.0859 | 0.024* | |
C7 | 0.3592 (5) | 0.3363 (3) | −0.00485 (15) | 0.0217 (6) | |
H7 | 0.4622 | 0.3918 | −0.0371 | 0.026* | |
C8 | 0.4009 (5) | 0.3382 (3) | 0.06923 (15) | 0.0200 (6) | |
H8 | 0.5315 | 0.3945 | 0.0882 | 0.024* | |
C9 | 0.2487 (5) | 0.2563 (3) | 0.11715 (13) | 0.0164 (5) | |
C10 | −0.2112 (4) | 0.0090 (3) | 0.26469 (13) | 0.0168 (5) | |
N1 | 0.2901 (4) | 0.2608 (3) | 0.19237 (12) | 0.0173 (5) | |
O1 | −0.1908 (4) | 0.0077 (3) | 0.33080 (10) | 0.0268 (5) | |
O2 | −0.3754 (4) | −0.0713 (3) | 0.22913 (11) | 0.0256 (5) | |
H2 | −0.4571 | −0.1233 | 0.2594 | 0.038* | |
Cl1 | 0.22006 (13) | 0.19998 (8) | 0.32850 (3) | 0.02526 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0190 (13) | 0.0187 (13) | 0.0124 (11) | 0.0014 (10) | −0.0030 (9) | −0.0007 (10) |
C2 | 0.0152 (13) | 0.0183 (12) | 0.0148 (13) | 0.0012 (10) | 0.0014 (9) | 0.0008 (10) |
C3 | 0.0137 (13) | 0.0211 (13) | 0.0198 (13) | −0.0030 (10) | 0.0003 (11) | −0.0030 (10) |
C4 | 0.0168 (13) | 0.0180 (12) | 0.0176 (12) | 0.0023 (10) | 0.0013 (10) | −0.0001 (10) |
C5 | 0.0183 (14) | 0.0233 (13) | 0.0195 (13) | −0.0025 (11) | −0.0025 (11) | −0.0032 (11) |
C6 | 0.0235 (17) | 0.0227 (13) | 0.0127 (12) | 0.0034 (10) | −0.0010 (10) | −0.0001 (9) |
C7 | 0.0221 (15) | 0.0239 (14) | 0.0191 (13) | −0.0008 (11) | 0.0041 (11) | 0.0029 (11) |
C8 | 0.0174 (14) | 0.0220 (13) | 0.0208 (13) | 0.0003 (11) | −0.0002 (10) | −0.0002 (11) |
C9 | 0.0170 (14) | 0.0169 (11) | 0.0151 (11) | 0.0006 (11) | −0.0019 (11) | −0.0008 (8) |
C10 | 0.0142 (13) | 0.0168 (12) | 0.0195 (13) | −0.0022 (10) | 0.0035 (10) | −0.0008 (10) |
N1 | 0.0171 (11) | 0.0176 (10) | 0.0173 (10) | −0.0023 (8) | −0.0008 (9) | −0.0002 (9) |
O1 | 0.0259 (10) | 0.0380 (12) | 0.0165 (9) | −0.0116 (9) | 0.0015 (8) | −0.0001 (8) |
O2 | 0.0242 (11) | 0.0347 (11) | 0.0180 (10) | −0.0156 (9) | 0.0012 (8) | 0.0041 (9) |
Cl1 | 0.0242 (3) | 0.0352 (3) | 0.0164 (3) | −0.0106 (3) | −0.0016 (3) | 0.0029 (2) |
C1—N1 | 1.306 (3) | C6—C7 | 1.408 (4) |
C1—C2 | 1.424 (4) | C6—H6 | 0.95 |
C1—Cl1 | 1.736 (3) | C7—C8 | 1.368 (4) |
C2—C3 | 1.380 (4) | C7—H7 | 0.95 |
C2—C10 | 1.498 (3) | C8—C9 | 1.407 (4) |
C3—C4 | 1.402 (4) | C8—H8 | 0.95 |
C3—H3 | 0.95 | C9—N1 | 1.389 (3) |
C4—C9 | 1.418 (4) | C10—O1 | 1.208 (3) |
C4—C5 | 1.420 (4) | C10—O2 | 1.323 (3) |
C5—C6 | 1.368 (4) | O2—H2 | 0.84 |
C5—H5 | 0.95 | ||
N1—C1—C2 | 124.9 (2) | C5—C6—H6 | 119.8 |
N1—C1—Cl1 | 113.6 (2) | C7—C6—H6 | 119.8 |
C2—C1—Cl1 | 121.5 (2) | C8—C7—C6 | 121.3 (3) |
C3—C2—C1 | 116.3 (2) | C8—C7—H7 | 119.3 |
C3—C2—C10 | 120.2 (2) | C6—C7—H7 | 119.3 |
C1—C2—C10 | 123.5 (2) | C7—C8—C9 | 119.5 (3) |
C2—C3—C4 | 121.5 (3) | C7—C8—H8 | 120.2 |
C2—C3—H3 | 119.3 | C9—C8—H8 | 120.2 |
C4—C3—H3 | 119.3 | N1—C9—C8 | 119.2 (2) |
C3—C4—C9 | 117.8 (2) | N1—C9—C4 | 121.0 (2) |
C3—C4—C5 | 123.0 (3) | C8—C9—C4 | 119.8 (2) |
C9—C4—C5 | 119.2 (2) | O1—C10—O2 | 123.6 (2) |
C6—C5—C4 | 119.8 (3) | O1—C10—C2 | 124.7 (2) |
C6—C5—H5 | 120.1 | O2—C10—C2 | 111.7 (2) |
C4—C5—H5 | 120.1 | C1—N1—C9 | 118.5 (2) |
C5—C6—C7 | 120.3 (2) | C10—O2—H2 | 109.5 |
N1—C1—C2—C3 | −0.8 (4) | C7—C8—C9—C4 | −0.3 (4) |
Cl1—C1—C2—C3 | 179.6 (2) | C3—C4—C9—N1 | −1.0 (4) |
N1—C1—C2—C10 | 179.0 (2) | C5—C4—C9—N1 | 179.4 (2) |
Cl1—C1—C2—C10 | −0.6 (4) | C3—C4—C9—C8 | −179.7 (2) |
C1—C2—C3—C4 | 0.7 (4) | C5—C4—C9—C8 | 0.7 (4) |
C10—C2—C3—C4 | −179.2 (2) | C3—C2—C10—O1 | −178.2 (3) |
C2—C3—C4—C9 | 0.2 (4) | C1—C2—C10—O1 | 1.9 (4) |
C2—C3—C4—C5 | 179.8 (3) | C3—C2—C10—O2 | 3.3 (4) |
C3—C4—C5—C6 | 179.7 (3) | C1—C2—C10—O2 | −176.6 (2) |
C9—C4—C5—C6 | −0.6 (4) | C2—C1—N1—C9 | 0.1 (4) |
C4—C5—C6—C7 | 0.3 (4) | Cl1—C1—N1—C9 | 179.68 (18) |
C5—C6—C7—C8 | 0.1 (4) | C8—C9—N1—C1 | 179.6 (2) |
C6—C7—C8—C9 | 0.0 (4) | C4—C9—N1—C1 | 0.9 (4) |
C7—C8—C9—N1 | −179.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1i | 0.84 | 1.95 | 2.768 (3) | 164 |
C3—H3···O2 | 0.95 | 2.34 | 2.685 (4) | 101 |
C8—H8···O1ii | 0.95 | 2.37 | 3.290 (4) | 163 |
Symmetry codes: (i) x−1, y−1/2, −z+1/2; (ii) x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H6ClNO2 |
Mr | 207.61 |
Crystal system, space group | Orthorhombic, P21nb |
Temperature (K) | 120 |
a, b, c (Å) | 5.8193 (2), 8.0689 (3), 18.1780 (5) |
V (Å3) | 853.55 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.19 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.915, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13714, 1938, 1746 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.094, 1.14 |
No. of reflections | 1938 |
No. of parameters | 129 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.35 |
Absolute structure | Flack (1983), 862 Friedel pairs |
Absolute structure parameter | 0.28 (9) |
Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1i | 0.8400 | 1.9500 | 2.768 (3) | 164.00 |
C3—H3···O2 | 0.9500 | 2.3400 | 2.685 (4) | 101.00 |
C8—H8···O1ii | 0.9500 | 2.3700 | 3.290 (4) | 163.00 |
Symmetry codes: (i) x−1, y−1/2, −z+1/2; (ii) x+1, y+1/2, −z+1/2. |
Acknowledgements
We are grateful to all personnel of the laboratory PHYSYNOR, Université Mentouri-Constantine, Algérie for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique – Algérie) for financial support.
References
Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bhanu Prasad, B. A., Bisai, A. & Singh, V. K. (2004). Tetrahedron Lett. 45, 9565–9567. Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In a continuation of our previous work related to the preparation of α-aminonitrile (Ladraa et al., 2009; Belfaitah et al., 2006) and in order to prepare chiral N-deprotected α-aminonitrile, we have explored the oxidative debenzylation of N-protected α-aminonitrile. The removal of the chiral auxiliaries has already been investigated using ceric ammonium nitrate (CAN) (Bhanu Prasad et al., 2004). Surprisingly, our attempts to remove the chiral auxiliary using CAN were failed to undergo the desired adduct and led to the 2-chloroquinoline-3-carboxylic acid (I). This unexpected cleavage of 2-[(S)-2-chloro-3-quinolyl]-2-[(R)-1-(4-methoxyphenyl) ethylamino]acetonitrile may result from the decomposition of the α-aminonitrile into cyanide and imine which in turn undergo hydrolysis/oxidative sequence. In this paper, we report the structure determination of compound (I), resulting from unwanted decomposition of chiral N-protected α-aminonitrile.
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.42 (9)°. The crystal packing can be described by two types of crossed layers which quinolyl ring is parallel to (110) and (-110) planes respectively (Fig. 2). The crystal packing is stabilized by inter and intramolecular hydrogen bonds (O—H···N and C—H···O) linked molecules in the same layer, resulting in the formation of a two dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.