organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­quinoline-3-carboxylic acid

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, and cCentre de difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouraiou.abdelmalek@yahoo.fr

(Received 17 February 2010; accepted 19 February 2010; online 27 February 2010)

The crystal structure of the title compound, C10H6ClNO2, can be described by two types of crossed layers which are parallel to (110) and ([\overline{1}]10). The crystal packing is stabilized by inter­molecular C—H⋯O and O—H⋯N hydrogen bonds, resulting in the formation of a two-dimensional network and reinforcing the cohesion of the structure.

Related literature

For our previous work on the preparation of α-amino­nitriles, see: Ladraa et al. (2009[Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475-o478.]); Belfaitah et al. (2006[Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355-o1357.]). For the removal of chiral auxiliaries using ceric ammonium nitrate, see: Bhanu Prasad et al. (2004[Bhanu Prasad, B. A., Bisai, A. & Singh, V. K. (2004). Tetrahedron Lett. 45, 9565-9567.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6ClNO2

  • Mr = 207.61

  • Orthorhombic, P 21 n b

  • a = 5.8193 (2) Å

  • b = 8.0689 (3) Å

  • c = 18.1780 (5) Å

  • V = 853.55 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 120 K

  • 0.19 × 0.12 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.915, Tmax = 0.967

  • 13714 measured reflections

  • 1938 independent reflections

  • 1746 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.14

  • 1938 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 862 Friedel pairs

  • Flack parameter: 0.28 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.84 1.95 2.768 (3) 164
C8—H8⋯O1ii 0.95 2.37 3.290 (4) 163
Symmetry codes: (i) [x-1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In a continuation of our previous work related to the preparation of α-aminonitrile (Ladraa et al., 2009; Belfaitah et al., 2006) and in order to prepare chiral N-deprotected α-aminonitrile, we have explored the oxidative debenzylation of N-protected α-aminonitrile. The removal of the chiral auxiliaries has already been investigated using ceric ammonium nitrate (CAN) (Bhanu Prasad et al., 2004). Surprisingly, our attempts to remove the chiral auxiliary using CAN were failed to undergo the desired adduct and led to the 2-chloroquinoline-3-carboxylic acid (I). This unexpected cleavage of 2-[(S)-2-chloro-3-quinolyl]-2-[(R)-1-(4-methoxyphenyl) ethylamino]acetonitrile may result from the decomposition of the α-aminonitrile into cyanide and imine which in turn undergo hydrolysis/oxidative sequence. In this paper, we report the structure determination of compound (I), resulting from unwanted decomposition of chiral N-protected α-aminonitrile.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.42 (9)°. The crystal packing can be described by two types of crossed layers which quinolyl ring is parallel to (110) and (-110) planes respectively (Fig. 2). The crystal packing is stabilized by inter and intramolecular hydrogen bonds (O—H···N and C—H···O) linked molecules in the same layer, resulting in the formation of a two dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in table 1.

Related literature top

For our previous work on the preparation of α-aminonitrile, see: Ladraa et al. (2009); Belfaitah et al. (2006). For the removal of chiral auxiliaries using ceric ammonium nitrate, see: Bhanu Prasad et al. (2004).

Experimental top

A solution of 327 mg (3 eq., 0.59 mmol.) of ceric ammonium nitrate (CAN) in 1 ml of water was added to precooled stirred solution of 2-[(S)-2-chloro-3-quinolyl]-2-[(R)-1-(4-methoxyphenyl) ethylamino] acetonitrile (70 mg, 0.19 mmol) in 9 ml of CH3CN. After completion of the reaction (checked by TLC), the reaction mixture was poured into cold water and the residue obtained was filtered off. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the filtrate.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C and O atoms. (with C—H = 0.95Å - O—H =0.84Å and Uiso(H) =1.2 or 1.5(carrier atom)).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) the structure of the title compound with the atomic labeling scheme. Displacements are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the c axis.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) Unit cell of (I) showing hydrogen bond [O—H···N and C—H···O] as dashed line.
2-Chloroquinoline-3-carboxylic acid top
Crystal data top
C10H6ClNO2F(000) = 424
Mr = 207.61Dx = 1.616 Mg m3
Orthorhombic, P21nbMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2bc 2aCell parameters from 21289 reflections
a = 5.8193 (2) Åθ = 2.9–27.5°
b = 8.0689 (3) ŵ = 0.41 mm1
c = 18.1780 (5) ÅT = 120 K
V = 853.55 (5) Å3Prism, yellow
Z = 40.19 × 0.12 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1938 independent reflections
Radiation source: Enraf–Nonius FR5901746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.4°
CCD rotation images, thin slices scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1010
Tmin = 0.915, Tmax = 0.967l = 2323
13714 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.7398P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
1938 reflectionsΔρmax = 0.32 e Å3
129 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 862 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.28 (9)
Crystal data top
C10H6ClNO2V = 853.55 (5) Å3
Mr = 207.61Z = 4
Orthorhombic, P21nbMo Kα radiation
a = 5.8193 (2) ŵ = 0.41 mm1
b = 8.0689 (3) ÅT = 120 K
c = 18.1780 (5) Å0.19 × 0.12 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1938 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1746 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.967Rint = 0.046
13714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.32 e Å3
S = 1.14Δρmin = 0.35 e Å3
1938 reflectionsAbsolute structure: Flack (1983), 862 Friedel pairs
129 parametersAbsolute structure parameter: 0.28 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1466 (5)0.1851 (3)0.23620 (14)0.0167 (5)
C20.0521 (4)0.0966 (3)0.21287 (14)0.0161 (5)
C30.0939 (5)0.0943 (3)0.13814 (14)0.0182 (5)
H30.22550.03770.12010.022*
C40.0535 (5)0.1735 (3)0.08831 (15)0.0175 (5)
C50.0162 (5)0.1732 (3)0.01110 (15)0.0204 (6)
H50.1130.11730.0090.024*
C60.1668 (5)0.2538 (3)0.03428 (14)0.0196 (6)
H60.14160.2540.08590.024*
C70.3592 (5)0.3363 (3)0.00485 (15)0.0217 (6)
H70.46220.39180.03710.026*
C80.4009 (5)0.3382 (3)0.06923 (15)0.0200 (6)
H80.53150.39450.08820.024*
C90.2487 (5)0.2563 (3)0.11715 (13)0.0164 (5)
C100.2112 (4)0.0090 (3)0.26469 (13)0.0168 (5)
N10.2901 (4)0.2608 (3)0.19237 (12)0.0173 (5)
O10.1908 (4)0.0077 (3)0.33080 (10)0.0268 (5)
O20.3754 (4)0.0713 (3)0.22913 (11)0.0256 (5)
H20.45710.12330.25940.038*
Cl10.22006 (13)0.19998 (8)0.32850 (3)0.02526 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (13)0.0187 (13)0.0124 (11)0.0014 (10)0.0030 (9)0.0007 (10)
C20.0152 (13)0.0183 (12)0.0148 (13)0.0012 (10)0.0014 (9)0.0008 (10)
C30.0137 (13)0.0211 (13)0.0198 (13)0.0030 (10)0.0003 (11)0.0030 (10)
C40.0168 (13)0.0180 (12)0.0176 (12)0.0023 (10)0.0013 (10)0.0001 (10)
C50.0183 (14)0.0233 (13)0.0195 (13)0.0025 (11)0.0025 (11)0.0032 (11)
C60.0235 (17)0.0227 (13)0.0127 (12)0.0034 (10)0.0010 (10)0.0001 (9)
C70.0221 (15)0.0239 (14)0.0191 (13)0.0008 (11)0.0041 (11)0.0029 (11)
C80.0174 (14)0.0220 (13)0.0208 (13)0.0003 (11)0.0002 (10)0.0002 (11)
C90.0170 (14)0.0169 (11)0.0151 (11)0.0006 (11)0.0019 (11)0.0008 (8)
C100.0142 (13)0.0168 (12)0.0195 (13)0.0022 (10)0.0035 (10)0.0008 (10)
N10.0171 (11)0.0176 (10)0.0173 (10)0.0023 (8)0.0008 (9)0.0002 (9)
O10.0259 (10)0.0380 (12)0.0165 (9)0.0116 (9)0.0015 (8)0.0001 (8)
O20.0242 (11)0.0347 (11)0.0180 (10)0.0156 (9)0.0012 (8)0.0041 (9)
Cl10.0242 (3)0.0352 (3)0.0164 (3)0.0106 (3)0.0016 (3)0.0029 (2)
Geometric parameters (Å, º) top
C1—N11.306 (3)C6—C71.408 (4)
C1—C21.424 (4)C6—H60.95
C1—Cl11.736 (3)C7—C81.368 (4)
C2—C31.380 (4)C7—H70.95
C2—C101.498 (3)C8—C91.407 (4)
C3—C41.402 (4)C8—H80.95
C3—H30.95C9—N11.389 (3)
C4—C91.418 (4)C10—O11.208 (3)
C4—C51.420 (4)C10—O21.323 (3)
C5—C61.368 (4)O2—H20.84
C5—H50.95
N1—C1—C2124.9 (2)C5—C6—H6119.8
N1—C1—Cl1113.6 (2)C7—C6—H6119.8
C2—C1—Cl1121.5 (2)C8—C7—C6121.3 (3)
C3—C2—C1116.3 (2)C8—C7—H7119.3
C3—C2—C10120.2 (2)C6—C7—H7119.3
C1—C2—C10123.5 (2)C7—C8—C9119.5 (3)
C2—C3—C4121.5 (3)C7—C8—H8120.2
C2—C3—H3119.3C9—C8—H8120.2
C4—C3—H3119.3N1—C9—C8119.2 (2)
C3—C4—C9117.8 (2)N1—C9—C4121.0 (2)
C3—C4—C5123.0 (3)C8—C9—C4119.8 (2)
C9—C4—C5119.2 (2)O1—C10—O2123.6 (2)
C6—C5—C4119.8 (3)O1—C10—C2124.7 (2)
C6—C5—H5120.1O2—C10—C2111.7 (2)
C4—C5—H5120.1C1—N1—C9118.5 (2)
C5—C6—C7120.3 (2)C10—O2—H2109.5
N1—C1—C2—C30.8 (4)C7—C8—C9—C40.3 (4)
Cl1—C1—C2—C3179.6 (2)C3—C4—C9—N11.0 (4)
N1—C1—C2—C10179.0 (2)C5—C4—C9—N1179.4 (2)
Cl1—C1—C2—C100.6 (4)C3—C4—C9—C8179.7 (2)
C1—C2—C3—C40.7 (4)C5—C4—C9—C80.7 (4)
C10—C2—C3—C4179.2 (2)C3—C2—C10—O1178.2 (3)
C2—C3—C4—C90.2 (4)C1—C2—C10—O11.9 (4)
C2—C3—C4—C5179.8 (3)C3—C2—C10—O23.3 (4)
C3—C4—C5—C6179.7 (3)C1—C2—C10—O2176.6 (2)
C9—C4—C5—C60.6 (4)C2—C1—N1—C90.1 (4)
C4—C5—C6—C70.3 (4)Cl1—C1—N1—C9179.68 (18)
C5—C6—C7—C80.1 (4)C8—C9—N1—C1179.6 (2)
C6—C7—C8—C90.0 (4)C4—C9—N1—C10.9 (4)
C7—C8—C9—N1179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.841.952.768 (3)164
C3—H3···O20.952.342.685 (4)101
C8—H8···O1ii0.952.373.290 (4)163
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6ClNO2
Mr207.61
Crystal system, space groupOrthorhombic, P21nb
Temperature (K)120
a, b, c (Å)5.8193 (2), 8.0689 (3), 18.1780 (5)
V3)853.55 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.19 × 0.12 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.915, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
13714, 1938, 1746
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.14
No. of reflections1938
No. of parameters129
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.35
Absolute structureFlack (1983), 862 Friedel pairs
Absolute structure parameter0.28 (9)

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.84001.95002.768 (3)164.00
C3—H3···O20.95002.34002.685 (4)101.00
C8—H8···O1ii0.95002.37003.290 (4)163.00
Symmetry codes: (i) x1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to all personnel of the laboratory PHYSYNOR, Université Mentouri-Constantine, Algérie for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique – Algérie) for financial support.

References

First citationBelfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, o1355–o1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhanu Prasad, B. A., Bisai, A. & Singh, V. K. (2004). Tetrahedron Lett. 45, 9565–9567.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLadraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds