metal-organic compounds
trans-Dichlorido(1,4,8,11-tetraazacyclotetradecane)manganese(III) tetrafluoridoborate
aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar, 2092 Tunis, Tunisia
*Correspondence e-mail: donia_zgolli@hotmail.com
In the title manganese(III) complex, [MnCl2(C10H24N4)]BF4 or trans-[MnCl2(cyclam)]BF4 (cyclam is the tetradentate amine ligand 1,4,8,11-tetraazacyclotetradecane), the MnIII ions occupy the center of a distorted octahedron coordinated by all four ligand nitrogen donors in the macrobicyclic cavity and two chloride ions occupy the axial positions. Intramolecular hydrogen bonding involving the coordinated chloride ions and the hydrogen atoms of the cyclam ligand is observed. Intermolecular hydrogen bonding involving the tetrafluoridoborate anion and hydrogen atoms of the cyclam ligand leads to an infinite one-dimensional chain along the a axis. The tetrafluoridoborate and inorganic units are linked by N—H⋯F hydrogen bonds. The structure may be compared with those of analogous compounds [MnCl2(cyclam)]ClO4 and [Mn(CN)2(cyclam)]ClO4.
Related literature
For applications of cyclams, see: Lindoy (1992); Izatt et al. (1991, 1995); Enoki et al. (2003); Steward & McLaughlin (2004); Sibert (2002); Volkert & Hoffman (1999); Anderson & Welch (1999); Caravan et al. (1999). For isostructural compounds, see: Shaikh et al. (2004); Mossin et al. (2002). For other cyclam-containing structures, see: Brewer et al. (1989); Letumier et al. (1998); Bakac & Espenson (1987); Mossin et al. (2005); Blessing (1987); Sosa-Torres & Toscano (1997).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810004058/br2133sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004058/br2133Isup2.hkl
The title compound [Mn(cyclam)Cl2].BF4 was prepared from methanol solution containing 1,4,8,11-Tetraazacyclotetradecane (cyclam) and stoichiometric amount of manganese chloride (MnCl2.4H2O) under hydrofluoric acid (HF) conditions. The resulting mixture was heated to boiling point and stirred for two hours. After several weeks single green crystals were obtained by slow evaporation from aqueous solution at room temperature. Boron was diffused from the Pyrex crystallizing (13% borosilicate).
All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.97Å and N—H = 0.91 Å.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[MnCl2(C10H24N4)]BF4 | F(000) = 848 |
Mr = 412.98 | Dx = 1.59 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 6.5660 (3) Å | θ = 10–15° |
b = 13.3760 (2) Å | µ = 1.12 mm−1 |
c = 19.5846 (3) Å | T = 298 K |
V = 1720.05 (9) Å3 | Prism, green |
Z = 4 | 0.40 × 0.40 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 2442 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 27.0°, θmin = 2.1° |
non–profiled ω/2θ scans | h = −8→2 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→17 |
Tmin = 0.674, Tmax = 0.814 | l = −1→24 |
3013 measured reflections | 2 standard reflections every 120 min |
2735 independent reflections | intensity decay: 3% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0545P)2 + 1.0781P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2735 reflections | Δρmax = 0.70 e Å−3 |
199 parameters | Δρmin = −0.50 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 569 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (3) |
[MnCl2(C10H24N4)]BF4 | V = 1720.05 (9) Å3 |
Mr = 412.98 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.5660 (3) Å | µ = 1.12 mm−1 |
b = 13.3760 (2) Å | T = 298 K |
c = 19.5846 (3) Å | 0.40 × 0.40 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 2442 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.020 |
Tmin = 0.674, Tmax = 0.814 | 2 standard reflections every 120 min |
3013 measured reflections | intensity decay: 3% |
2735 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.097 | Δρmax = 0.70 e Å−3 |
S = 1.05 | Δρmin = −0.50 e Å−3 |
2735 reflections | Absolute structure: Flack (1983), 569 Friedel pairs |
199 parameters | Absolute structure parameter: 0.00 (3) |
0 restraints |
Experimental. Absorption correction: Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn | 0.77998 (8) | 0.47206 (4) | 0.37355 (2) | 0.02124 (13) | |
Cl1 | 1.08555 (14) | 0.57065 (7) | 0.33104 (5) | 0.0340 (2) | |
Cl2 | 0.47956 (13) | 0.37068 (8) | 0.41610 (5) | 0.0350 (2) | |
C1 | 0.6089 (7) | 0.4243 (3) | 0.24327 (19) | 0.0355 (9) | |
H1A | 0.4871 | 0.3929 | 0.2613 | 0.043* | |
H1B | 0.6247 | 0.4045 | 0.1959 | 0.043* | |
C2 | 0.5915 (7) | 0.5364 (3) | 0.24847 (18) | 0.0347 (9) | |
H2A | 0.4700 | 0.5592 | 0.2251 | 0.042* | |
H2B | 0.7089 | 0.5679 | 0.2275 | 0.042* | |
C3 | 0.6006 (7) | 0.6724 (3) | 0.3358 (2) | 0.0337 (9) | |
H3A | 0.4972 | 0.7077 | 0.3099 | 0.040* | |
H3B | 0.7328 | 0.6948 | 0.3198 | 0.040* | |
C4 | 0.5780 (7) | 0.6979 (3) | 0.4115 (2) | 0.0401 (10) | |
H4A | 0.4539 | 0.6674 | 0.4284 | 0.048* | |
H4B | 0.5633 | 0.7698 | 0.4160 | 0.048* | |
C5 | 0.7560 (7) | 0.6637 (3) | 0.4564 (2) | 0.0393 (9) | |
H5A | 0.8826 | 0.6880 | 0.4371 | 0.047* | |
H5B | 0.7413 | 0.6927 | 0.5016 | 0.047* | |
C6 | 0.9408 (7) | 0.5187 (4) | 0.50530 (19) | 0.0403 (10) | |
H6A | 0.9178 | 0.5363 | 0.5527 | 0.048* | |
H6B | 1.0654 | 0.5508 | 0.4903 | 0.048* | |
C7 | 0.9609 (7) | 0.4063 (4) | 0.4985 (2) | 0.0409 (11) | |
H7A | 1.0804 | 0.3831 | 0.5230 | 0.049* | |
H7B | 0.8420 | 0.3736 | 0.5176 | 0.049* | |
C8 | 0.9738 (7) | 0.2730 (3) | 0.4095 (2) | 0.0405 (10) | |
H8A | 0.8453 | 0.2457 | 0.4252 | 0.049* | |
H8B | 1.0824 | 0.2398 | 0.4343 | 0.049* | |
C9 | 0.9975 (8) | 0.2522 (3) | 0.3335 (3) | 0.0445 (11) | |
H9A | 1.0221 | 0.1813 | 0.3273 | 0.053* | |
H9B | 1.1168 | 0.2876 | 0.3171 | 0.053* | |
C10 | 0.8144 (7) | 0.2825 (3) | 0.2895 (2) | 0.0388 (10) | |
H10A | 0.8304 | 0.2544 | 0.2442 | 0.047* | |
H10B | 0.6914 | 0.2546 | 0.3093 | 0.047* | |
N1 | 0.7920 (5) | 0.3928 (2) | 0.28397 (15) | 0.0283 (6) | |
H1 | 0.9032 | 0.4152 | 0.2609 | 0.034* | |
N2 | 0.5806 (5) | 0.5632 (2) | 0.32309 (14) | 0.0245 (6) | |
H2 | 0.4538 | 0.5456 | 0.3375 | 0.029* | |
N3 | 0.7654 (5) | 0.5538 (2) | 0.46247 (14) | 0.0294 (7) | |
H3 | 0.6498 | 0.5344 | 0.4844 | 0.035* | |
N4 | 0.9798 (5) | 0.3817 (2) | 0.42444 (16) | 0.0271 (7) | |
H4 | 1.1063 | 0.4026 | 0.4118 | 0.032* | |
F1 | 1.2555 (6) | 0.4764 (4) | 0.62517 (17) | 0.0960 (13) | |
F2 | 1.5921 (6) | 0.4961 (3) | 0.62145 (19) | 0.0869 (12) | |
F3 | 1.3893 (6) | 0.5936 (3) | 0.55560 (14) | 0.0730 (10) | |
F4 | 1.3937 (9) | 0.6116 (3) | 0.67105 (19) | 0.1155 (18) | |
B1 | 1.4102 (9) | 0.5490 (5) | 0.6183 (3) | 0.0480 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.0161 (2) | 0.0242 (2) | 0.0234 (2) | 0.0004 (2) | −0.0017 (2) | 0.0004 (2) |
Cl1 | 0.0189 (4) | 0.0365 (5) | 0.0467 (5) | −0.0043 (4) | 0.0023 (4) | 0.0101 (4) |
Cl2 | 0.0190 (4) | 0.0414 (5) | 0.0445 (5) | −0.0054 (4) | 0.0022 (4) | 0.0095 (4) |
C1 | 0.033 (2) | 0.046 (2) | 0.0278 (17) | −0.005 (2) | −0.0042 (17) | −0.0046 (18) |
C2 | 0.032 (2) | 0.044 (2) | 0.0276 (17) | 0.000 (2) | −0.0093 (17) | 0.0073 (17) |
C3 | 0.030 (2) | 0.0259 (18) | 0.045 (2) | 0.0040 (18) | −0.002 (2) | 0.0064 (16) |
C4 | 0.034 (2) | 0.0282 (19) | 0.058 (2) | 0.0078 (19) | 0.001 (2) | −0.0099 (18) |
C5 | 0.037 (2) | 0.0372 (19) | 0.044 (2) | −0.002 (2) | −0.002 (2) | −0.0129 (17) |
C6 | 0.034 (2) | 0.060 (3) | 0.0263 (18) | −0.005 (2) | −0.0107 (17) | −0.004 (2) |
C7 | 0.031 (2) | 0.056 (3) | 0.035 (2) | −0.004 (2) | −0.0072 (18) | 0.015 (2) |
C8 | 0.032 (2) | 0.030 (2) | 0.059 (3) | 0.0023 (19) | −0.001 (2) | 0.015 (2) |
C9 | 0.040 (2) | 0.028 (2) | 0.066 (3) | 0.004 (2) | 0.004 (2) | −0.006 (2) |
C10 | 0.035 (2) | 0.0306 (19) | 0.051 (2) | −0.0004 (19) | 0.003 (2) | −0.0123 (17) |
N1 | 0.0253 (15) | 0.0300 (14) | 0.0295 (13) | −0.0021 (15) | 0.0012 (15) | −0.0027 (11) |
N2 | 0.0179 (13) | 0.0265 (14) | 0.0291 (14) | −0.0010 (13) | 0.0000 (13) | 0.0033 (12) |
N3 | 0.0212 (15) | 0.0399 (16) | 0.0271 (12) | −0.0027 (15) | 0.0024 (13) | −0.0055 (12) |
N4 | 0.0179 (13) | 0.0304 (16) | 0.0330 (15) | −0.0017 (14) | −0.0018 (13) | 0.0075 (13) |
F1 | 0.069 (2) | 0.143 (4) | 0.076 (2) | −0.037 (3) | −0.004 (2) | 0.026 (2) |
F2 | 0.0534 (19) | 0.094 (3) | 0.113 (3) | 0.0194 (19) | −0.014 (2) | 0.024 (2) |
F3 | 0.065 (2) | 0.102 (3) | 0.0516 (15) | 0.001 (2) | −0.0040 (16) | 0.0232 (17) |
F4 | 0.166 (5) | 0.104 (3) | 0.076 (2) | 0.041 (4) | −0.031 (3) | −0.028 (2) |
B1 | 0.043 (3) | 0.065 (3) | 0.036 (2) | 0.011 (3) | −0.009 (2) | 0.004 (2) |
Mn—N2 | 2.043 (3) | C6—C7 | 1.516 (6) |
Mn—N4 | 2.043 (3) | C6—H6A | 0.9700 |
Mn—N1 | 2.052 (3) | C6—H6B | 0.9700 |
Mn—N3 | 2.059 (3) | C7—N4 | 1.492 (5) |
Mn—Cl2 | 2.5346 (10) | C7—H7A | 0.9700 |
Mn—Cl1 | 2.5412 (10) | C7—H7B | 0.9700 |
C1—N1 | 1.503 (5) | C8—N4 | 1.484 (5) |
C1—C2 | 1.506 (6) | C8—C9 | 1.521 (7) |
C1—H1A | 0.9700 | C8—H8A | 0.9700 |
C1—H1B | 0.9700 | C8—H8B | 0.9700 |
C2—N2 | 1.506 (4) | C9—C10 | 1.533 (6) |
C2—H2A | 0.9700 | C9—H9A | 0.9700 |
C2—H2B | 0.9700 | C9—H9B | 0.9700 |
C3—N2 | 1.488 (5) | C10—N1 | 1.486 (5) |
C3—C4 | 1.529 (6) | C10—H10A | 0.9700 |
C3—H3A | 0.9700 | C10—H10B | 0.9700 |
C3—H3B | 0.9700 | N1—H1 | 0.9100 |
C4—C5 | 1.532 (6) | N2—H2 | 0.9100 |
C4—H4A | 0.9700 | N3—H3 | 0.9100 |
C4—H4B | 0.9700 | N4—H4 | 0.9100 |
C5—N3 | 1.476 (5) | F1—B1 | 1.412 (7) |
C5—H5A | 0.9700 | F2—B1 | 1.389 (7) |
C5—H5B | 0.9700 | F3—B1 | 1.373 (6) |
C6—N3 | 1.500 (5) | F4—B1 | 1.333 (7) |
N2—Mn—N4 | 179.62 (14) | C6—C7—H7A | 110.1 |
N2—Mn—N1 | 85.38 (12) | N4—C7—H7B | 110.1 |
N4—Mn—N1 | 94.96 (13) | C6—C7—H7B | 110.1 |
N2—Mn—N3 | 93.58 (12) | H7A—C7—H7B | 108.4 |
N4—Mn—N3 | 86.07 (13) | N4—C8—C9 | 111.7 (4) |
N1—Mn—N3 | 178.93 (13) | N4—C8—H8A | 109.3 |
N2—Mn—Cl2 | 88.83 (9) | C9—C8—H8A | 109.3 |
N4—Mn—Cl2 | 91.32 (9) | N4—C8—H8B | 109.3 |
N1—Mn—Cl2 | 91.98 (10) | C9—C8—H8B | 109.3 |
N3—Mn—Cl2 | 88.27 (9) | H8A—C8—H8B | 107.9 |
N2—Mn—Cl1 | 92.17 (9) | C8—C9—C10 | 114.9 (4) |
N4—Mn—Cl1 | 87.68 (9) | C8—C9—H9A | 108.5 |
N1—Mn—Cl1 | 87.58 (10) | C10—C9—H9A | 108.5 |
N3—Mn—Cl1 | 92.20 (9) | C8—C9—H9B | 108.5 |
Cl2—Mn—Cl1 | 178.87 (4) | C10—C9—H9B | 108.5 |
N1—C1—C2 | 107.7 (3) | H9A—C9—H9B | 107.5 |
N1—C1—H1A | 110.2 | N1—C10—C9 | 112.4 (3) |
C2—C1—H1A | 110.2 | N1—C10—H10A | 109.1 |
N1—C1—H1B | 110.2 | C9—C10—H10A | 109.1 |
C2—C1—H1B | 110.2 | N1—C10—H10B | 109.1 |
H1A—C1—H1B | 108.5 | C9—C10—H10B | 109.1 |
C1—C2—N2 | 107.8 (3) | H10A—C10—H10B | 107.9 |
C1—C2—H2A | 110.1 | C10—N1—C1 | 113.4 (3) |
N2—C2—H2A | 110.1 | C10—N1—Mn | 117.0 (2) |
C1—C2—H2B | 110.1 | C1—N1—Mn | 106.1 (2) |
N2—C2—H2B | 110.1 | C10—N1—H1 | 106.6 |
H2A—C2—H2B | 108.5 | C1—N1—H1 | 106.6 |
N2—C3—C4 | 111.9 (3) | Mn—N1—H1 | 106.6 |
N2—C3—H3A | 109.2 | C3—N2—C2 | 113.0 (3) |
C4—C3—H3A | 109.2 | C3—N2—Mn | 116.6 (2) |
N2—C3—H3B | 109.2 | C2—N2—Mn | 107.3 (2) |
C4—C3—H3B | 109.2 | C3—N2—H2 | 106.4 |
H3A—C3—H3B | 107.9 | C2—N2—H2 | 106.4 |
C3—C4—C5 | 114.6 (4) | Mn—N2—H2 | 106.4 |
C3—C4—H4A | 108.6 | C5—N3—C6 | 112.9 (3) |
C5—C4—H4A | 108.6 | C5—N3—Mn | 117.6 (2) |
C3—C4—H4B | 108.6 | C6—N3—Mn | 105.7 (2) |
C5—C4—H4B | 108.6 | C5—N3—H3 | 106.7 |
H4A—C4—H4B | 107.6 | C6—N3—H3 | 106.7 |
N3—C5—C4 | 112.0 (3) | Mn—N3—H3 | 106.7 |
N3—C5—H5A | 109.2 | C8—N4—C7 | 113.9 (3) |
C4—C5—H5A | 109.2 | C8—N4—Mn | 117.8 (3) |
N3—C5—H5B | 109.2 | C7—N4—Mn | 106.9 (3) |
C4—C5—H5B | 109.2 | C8—N4—H4 | 105.8 |
H5A—C5—H5B | 107.9 | C7—N4—H4 | 105.8 |
N3—C6—C7 | 109.2 (4) | Mn—N4—H4 | 105.8 |
N3—C6—H6A | 109.8 | F4—B1—F3 | 114.3 (5) |
C7—C6—H6A | 109.8 | F4—B1—F2 | 110.8 (5) |
N3—C6—H6B | 109.8 | F3—B1—F2 | 110.3 (5) |
C7—C6—H6B | 109.8 | F4—B1—F1 | 107.5 (5) |
H6A—C6—H6B | 108.3 | F3—B1—F1 | 108.2 (4) |
N4—C7—C6 | 108.1 (3) | F2—B1—F1 | 105.3 (4) |
N4—C7—H7A | 110.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···F4i | 0.91 | 2.24 | 3.025 (6) | 145 |
N2—H2···Cl1ii | 0.91 | 2.44 | 3.256 (3) | 149 |
N3—H3···F3ii | 0.91 | 2.34 | 3.116 (5) | 143 |
N4—H4···Cl2iii | 0.91 | 2.49 | 3.289 (3) | 147 |
Symmetry codes: (i) −x+5/2, −y+1, z−1/2; (ii) x−1, y, z; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [MnCl2(C10H24N4)]BF4 |
Mr | 412.98 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 298 |
a, b, c (Å) | 6.5660 (3), 13.3760 (2), 19.5846 (3) |
V (Å3) | 1720.05 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.12 |
Crystal size (mm) | 0.40 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.674, 0.814 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3013, 2735, 2442 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.097, 1.05 |
No. of reflections | 2735 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.50 |
Absolute structure | Flack (1983), 569 Friedel pairs |
Absolute structure parameter | 0.00 (3) |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···F4i | 0.9100 | 2.237 | 3.025 (6) | 144.73 |
N2—H2···Cl1ii | 0.910 | 2.444 | 3.256 (3) | 148.64 |
N3—H3···F3ii | 0.9100 | 2.344 | 3.116 (5) | 142.47 |
N4—H4···Cl2iii | 0.910 | 2.489 | 3.289 (3) | 146.75 |
Symmetry codes: (i) −x+5/2, −y+1, z−1/2; (ii) x−1, y, z; (iii) x+1, y, z. |
Acknowledgements
The authors thank Dr Jean-Claude Daran, Laboratory of Coordination Chemistry, UPR-CNRS 8241, Toulouse, France, for his support and cooperation.
References
Anderson, C. J. & Welch, M. J. (1999). Chem. Rev. 99, 2219–2234. Web of Science CrossRef PubMed CAS Google Scholar
Bakac, A. & Espenson, J. H. (1987). Inorg. Chem. 26, 4353–4355. CSD CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3–58. CrossRef Google Scholar
Brewer, K. J., Calvin, M., Lumpkin, R. S., Otvos, J. W. & Spreer, L. O. (1989). Inorg. Chem. 28, 4446–4551. CSD CrossRef CAS Web of Science Google Scholar
Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, W. H. (1999). Chem. Rev. 99, 2293–2352. Web of Science CrossRef PubMed CAS Google Scholar
Enoki, O., Imaoka, T. & Yamamoto, K. (2003). Org. Lett. 5, 2547–2549. Web of Science CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Izatt, R. M., Pawlak, K. & Bradshaw, J. S. (1995). Chem. Rev. 95, 2529–2586. CrossRef CAS Web of Science Google Scholar
Izatt, R. M., Pawlak, K., Bradshaw, J. S & Bruening, L. (1991). Chem. Rev. 91, 1721–2085. CrossRef CAS Web of Science Google Scholar
Letumier, F., Brocker, G., Barbe, J. M., Guilard, R., Lucas, D., Dahaoui-Gindrey, V., Lecomte, C., Thouin, L. & Amatore, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2233–2239. Web of Science CSD CrossRef Google Scholar
Lindoy, L. F. (1992). The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press. Google Scholar
Mossin, S., Sørensen, H. O. & Weihe, H. (2002). Acta Cryst. C58, m204–m206. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mossin, S., Sørensen, H. O., Weihe, H., Glerup, J. & Søtofte, I. (2005). Inorg. Chim. Acta, 358, 1096–1106. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Shaikh, N., Panja, A., Banerjee, P., Kubiak, M., Ciunik, Z., Puchalska, M., Legendziewicz, J. & Vojtíšek, P. (2004). Inorg. Chim. Acta, 357, 25–32 Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sibert, J. W., Cory, A. H. & Cory, J. G. (2002). Chem. Commun. pp. 154–155. Web of Science CrossRef Google Scholar
Sosa-Torres, M. E. & Toscano, R. A. (1997). Acta Cryst. C53, 1585–1588. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Steward, K. M. & McLaughlin, L. W. (2004). J. Am. Chem. Soc. 126, 2050–2057. Web of Science PubMed Google Scholar
Volkert, W.A. & T. J. Hoffman. T. J. (1999). Chem. Rev. 99, 2269–2292. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclam-based metal complexes are attractive for many applications (Lindoy (1992), Izatt et al. (1991 and 1995)). Phenylazomethine dendrimers with a cyclam core have been found being able to form multinuclear hetero-metal complexes (Enoki et al. (2003)). Four arm oligonucleotide Ni–cyclam complexes can form highly ordered lattices with exceptional structural, electric and photoelectric properties (Steward et al. (2004)). Recently, it was found that lipophilic cyclams possess anti-tumour activity (Sibert et al., 2002). Furthermore, cyclam derivatives have been studied extensively as possible agents for magnetic resonance imaging (Caravan et al. (1999)), radiodiagnostic imaging (Anderson et al. (1999)) and therapeutic radiopharmaceuticals (Volkert et al. (1999)). In this paper, we report the synthesis and single-crystal X-ray diffraction studies of the organic-inorganic hybrid compound: [MnCl2(cyclam)].BF4 (a).
The title compound (a) is isostructural to the structure of the [MnCl2(cyclam)].ClO4 (b) and [Mn(CN)2(cyclam)]ClO4 (c) reported by Shaikh et al. (2004) and Mossin et al. (2002) respectively. In three molecules, the asymmetric unit contains an inorganic cation Zcyclam manganese (III) (Z: Cl (a and b), CN (c)) and AX4 anion (AX4: tetrafluoridoborate (BF4) (a), perchlorate (ClO4) (b and c). They have the same space group (P212121) and they are characterized by one-dimensional hydrogen-bonded networks.
The substitution of two chlorine atoms in (b) by two cyano atoms in (c) appears to have the same unit cell. This is probably indicative of the same size and same charge of the two ligands.
The title compound, [Mn(cyclam)Cl2].BF4 is constructed from isolated Mn(cyclam)Cl2 octahedra and the tetrafluoridoborate molecules (BF4)(Fig 1). The manganese atom is octahedrally coordinated to four N atoms of the macrocycle in the basal position and two chlorine atoms in axial positions. The bond lengths in the title compound are shorter than those found for the corresponding bonds in the salts of [Mn(cyclam)O]22 which is probably indicative of the trans-influence of oxygen in the later ion (Brewer et al. (1989)). The average Mn–N distance here (2.051 (3) Å) is slightly higher than that (2.033 Å) (Table 2) observed in trans-[Mn(cyclam) Cl2]Cl.5H2O (Letumier et al. (1998)). This bond distance (Mn–Cl) is much longer than that found in the similar cation [CoCl2(cyclam)]+ where the Co–Cl distance is 2.252 Å (Bakac et al.(1987)). The N–Mn–N bond angles, like the bond distances and angles in the cyclam ligand, are thoroughly consistent with those in the literature (Sosa-Torres et al. (1997), Blessing (1987) and Mossin et al. (2005)).
The protonated cation and the deprotonated anion are linked through a number of intramolecular N—H···Cl and intermolecular N—H···F hydrogen bonds (Fig 2)
These ligands (cyclam) provide interesting new possibilities in the field of the treatment of waste water contaminated by toxic or radioactive metals and gas purification since they can be attached to an organic or inorganic solid support via relatively simple reactions. In this respect, thermodynamic and magnetic data are complementary and most useful information which will allow rational design by the molecular engineering of more efficient chelating agents.