metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chlorido(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)manganese(III) tetra­fluorido­borate

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences, El Manar, 2092 Tunis, Tunisia
*Correspondence e-mail: donia_zgolli@hotmail.com

(Received 7 January 2010; accepted 1 February 2010; online 6 February 2010)

In the title manganese(III) complex, [MnCl2(C10H24N4)]BF4 or trans-[MnCl2(cyclam)]BF4 (cyclam is the tetra­dentate amine ligand 1,4,8,11-tetra­azacyclo­tetra­deca­ne), the MnIII ions occupy the center of a distorted octa­hedron coordinated by all four ligand nitro­gen donors in the macrobicyclic cavity and two chloride ions occupy the axial positions. Intra­molecular hydrogen bonding involving the coordinated chloride ions and the hydrogen atoms of the cyclam ligand is observed. Inter­molecular hydrogen bonding involving the tetrafluoridoborate anion and hydrogen atoms of the cyclam ligand leads to an infinite one-dimensional chain along the a axis. The tetra­fluoridoborate and inorganic units are linked by N—H⋯F hydrogen bonds. The structure may be compared with those of analogous compounds [MnCl2(cyclam)]ClO4 and [Mn(CN)2(cyclam)]ClO4.

Related literature

For applications of cyclams, see: Lindoy (1992[Lindoy, L. F. (1992). The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press.]); Izatt et al. (1991[Izatt, R. M., Pawlak, K., Bradshaw, J. S & Bruening, L. (1991). Chem. Rev. 91, 1721-2085.], 1995[Izatt, R. M., Pawlak, K. & Bradshaw, J. S. (1995). Chem. Rev. 95, 2529-2586.]); Enoki et al. (2003[Enoki, O., Imaoka, T. & Yamamoto, K. (2003). Org. Lett. 5, 2547-2549.]); Steward & McLaughlin (2004[Steward, K. M. & McLaughlin, L. W. (2004). J. Am. Chem. Soc. 126, 2050-2057.]); Sibert (2002[Sibert, J. W., Cory, A. H. & Cory, J. G. (2002). Chem. Commun. pp. 154-155.]); Volkert & Hoffman (1999[Volkert, W.A. & T. J. Hoffman. T. J. (1999). Chem. Rev. 99, 2269-2292.]); Anderson & Welch (1999[Anderson, C. J. & Welch, M. J. (1999). Chem. Rev. 99, 2219-2234.]); Caravan et al. (1999[Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, W. H. (1999). Chem. Rev. 99, 2293-2352.]). For isostructural compounds, see: Shaikh et al. (2004[Shaikh, N., Panja, A., Banerjee, P., Kubiak, M., Ciunik, Z., Puchalska, M., Legendziewicz, J. & Vojtíšek, P. (2004). Inorg. Chim. Acta, 357, 25-32]); Mossin et al. (2002[Mossin, S., Sørensen, H. O. & Weihe, H. (2002). Acta Cryst. C58, m204-m206.]). For other cyclam-containing structures, see: Brewer et al. (1989[Brewer, K. J., Calvin, M., Lumpkin, R. S., Otvos, J. W. & Spreer, L. O. (1989). Inorg. Chem. 28, 4446-4551.]); Letumier et al. (1998[Letumier, F., Brocker, G., Barbe, J. M., Guilard, R., Lucas, D., Dahaoui-Gindrey, V., Lecomte, C., Thouin, L. & Amatore, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2233-2239.]); Bakac & Espenson (1987[Bakac, A. & Espenson, J. H. (1987). Inorg. Chem. 26, 4353-4355.]); Mossin et al. (2005[Mossin, S., Sørensen, H. O., Weihe, H., Glerup, J. & Søtofte, I. (2005). Inorg. Chim. Acta, 358, 1096-1106.]); Blessing (1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.]); Sosa-Torres & Toscano (1997[Sosa-Torres, M. E. & Toscano, R. A. (1997). Acta Cryst. C53, 1585-1588.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C10H24N4)]BF4

  • Mr = 412.98

  • Orthorhombic, P 21 21 21

  • a = 6.5660 (3) Å

  • b = 13.3760 (2) Å

  • c = 19.5846 (3) Å

  • V = 1720.05 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.674, Tmax = 0.814

  • 3013 measured reflections

  • 2735 independent reflections

  • 2442 reflections with I > 2σ(I)

  • Rint = 0.020

  • 2 standard reflections every 120 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.05

  • 2735 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 569 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F4i 0.91 2.24 3.025 (6) 145
N2—H2⋯Cl1ii 0.91 2.44 3.256 (3) 149
N3—H3⋯F3ii 0.91 2.34 3.116 (5) 143
N4—H4⋯Cl2iii 0.91 2.49 3.289 (3) 147
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Cyclam-based metal complexes are attractive for many applications (Lindoy (1992), Izatt et al. (1991 and 1995)). Phenylazomethine dendrimers with a cyclam core have been found being able to form multinuclear hetero-metal complexes (Enoki et al. (2003)). Four arm oligonucleotide Ni–cyclam complexes can form highly ordered lattices with exceptional structural, electric and photoelectric properties (Steward et al. (2004)). Recently, it was found that lipophilic cyclams possess anti-tumour activity (Sibert et al., 2002). Furthermore, cyclam derivatives have been studied extensively as possible agents for magnetic resonance imaging (Caravan et al. (1999)), radiodiagnostic imaging (Anderson et al. (1999)) and therapeutic radiopharmaceuticals (Volkert et al. (1999)). In this paper, we report the synthesis and single-crystal X-ray diffraction studies of the organic-inorganic hybrid compound: [MnCl2(cyclam)].BF4 (a).

The title compound (a) is isostructural to the structure of the [MnCl2(cyclam)].ClO4 (b) and [Mn(CN)2(cyclam)]ClO4 (c) reported by Shaikh et al. (2004) and Mossin et al. (2002) respectively. In three molecules, the asymmetric unit contains an inorganic cation Zcyclam manganese (III) (Z: Cl (a and b), CN (c)) and AX4 anion (AX4: tetrafluoridoborate (BF4) (a), perchlorate (ClO4) (b and c). They have the same space group (P212121) and they are characterized by one-dimensional hydrogen-bonded networks.

The substitution of two chlorine atoms in (b) by two cyano atoms in (c) appears to have the same unit cell. This is probably indicative of the same size and same charge of the two ligands.

The title compound, [Mn(cyclam)Cl2].BF4 is constructed from isolated Mn(cyclam)Cl2 octahedra and the tetrafluoridoborate molecules (BF4)(Fig 1). The manganese atom is octahedrally coordinated to four N atoms of the macrocycle in the basal position and two chlorine atoms in axial positions. The bond lengths in the title compound are shorter than those found for the corresponding bonds in the salts of [Mn(cyclam)O]22 which is probably indicative of the trans-influence of oxygen in the later ion (Brewer et al. (1989)). The average Mn–N distance here (2.051 (3) Å) is slightly higher than that (2.033 Å) (Table 2) observed in trans-[Mn(cyclam) Cl2]Cl.5H2O (Letumier et al. (1998)). This bond distance (Mn–Cl) is much longer than that found in the similar cation [CoCl2(cyclam)]+ where the Co–Cl distance is 2.252 Å (Bakac et al.(1987)). The N–Mn–N bond angles, like the bond distances and angles in the cyclam ligand, are thoroughly consistent with those in the literature (Sosa-Torres et al. (1997), Blessing (1987) and Mossin et al. (2005)).

The protonated cation and the deprotonated anion are linked through a number of intramolecular N—H···Cl and intermolecular N—H···F hydrogen bonds (Fig 2)

These ligands (cyclam) provide interesting new possibilities in the field of the treatment of waste water contaminated by toxic or radioactive metals and gas purification since they can be attached to an organic or inorganic solid support via relatively simple reactions. In this respect, thermodynamic and magnetic data are complementary and most useful information which will allow rational design by the molecular engineering of more efficient chelating agents.

Related literature top

For applications of cyclams, see: Lindoy (1992); Izatt et al. (1991, 1995); Enoki et al. (2003); Steward et al. (2004); Sibert (2002); Volkert et al. (1999); Anderson et al. (1999); Caravan et al. (1999). For isostructural compounds, see: Shaikh et al. (2004); Mossin et al. (2002). For other cyclam-containing structures, see: Brewer et al. (1989); Letumier et al. (1998); Bakac et al. (1987); Mossin et al. (2005); Blessing (1987); Sosa-Torres et al. (1997).

Experimental top

The title compound [Mn(cyclam)Cl2].BF4 was prepared from methanol solution containing 1,4,8,11-Tetraazacyclotetradecane (cyclam) and stoichiometric amount of manganese chloride (MnCl2.4H2O) under hydrofluoric acid (HF) conditions. The resulting mixture was heated to boiling point and stirred for two hours. After several weeks single green crystals were obtained by slow evaporation from aqueous solution at room temperature. Boron was diffused from the Pyrex crystallizing (13% borosilicate).

Refinement top

All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.97Å and N—H = 0.91 Å.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Projection in bc plane of [MnCl2(cyclam)]BF4 crystal structure. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing diagram of [MnCl2(cyclam)]BF4 showing intra- and intermolecular hydrogen bonding interaction giving rise to infinite one-dimensional chain. Ellipsoids are drawn at the 50% probability level.
trans-Dichlorido(1,4,8,11-tetraazacyclotetradecane)manganese(III) tetrafluoridoborate top
Crystal data top
[MnCl2(C10H24N4)]BF4F(000) = 848
Mr = 412.98Dx = 1.59 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.5660 (3) Åθ = 10–15°
b = 13.3760 (2) ŵ = 1.12 mm1
c = 19.5846 (3) ÅT = 298 K
V = 1720.05 (9) Å3Prism, green
Z = 40.40 × 0.40 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2442 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.0°, θmin = 2.1°
non–profiled ω/2θ scansh = 82
Absorption correction: ψ scan
(North et al., 1968)
k = 117
Tmin = 0.674, Tmax = 0.814l = 124
3013 measured reflections2 standard reflections every 120 min
2735 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0545P)2 + 1.0781P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2735 reflectionsΔρmax = 0.70 e Å3
199 parametersΔρmin = 0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), 569 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[MnCl2(C10H24N4)]BF4V = 1720.05 (9) Å3
Mr = 412.98Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5660 (3) ŵ = 1.12 mm1
b = 13.3760 (2) ÅT = 298 K
c = 19.5846 (3) Å0.40 × 0.40 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2442 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.674, Tmax = 0.8142 standard reflections every 120 min
3013 measured reflections intensity decay: 3%
2735 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.70 e Å3
S = 1.05Δρmin = 0.50 e Å3
2735 reflectionsAbsolute structure: Flack (1983), 569 Friedel pairs
199 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Experimental. Absorption correction: Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.77998 (8)0.47206 (4)0.37355 (2)0.02124 (13)
Cl11.08555 (14)0.57065 (7)0.33104 (5)0.0340 (2)
Cl20.47956 (13)0.37068 (8)0.41610 (5)0.0350 (2)
C10.6089 (7)0.4243 (3)0.24327 (19)0.0355 (9)
H1A0.48710.39290.26130.043*
H1B0.62470.40450.19590.043*
C20.5915 (7)0.5364 (3)0.24847 (18)0.0347 (9)
H2A0.47000.55920.22510.042*
H2B0.70890.56790.22750.042*
C30.6006 (7)0.6724 (3)0.3358 (2)0.0337 (9)
H3A0.49720.70770.30990.040*
H3B0.73280.69480.31980.040*
C40.5780 (7)0.6979 (3)0.4115 (2)0.0401 (10)
H4A0.45390.66740.42840.048*
H4B0.56330.76980.41600.048*
C50.7560 (7)0.6637 (3)0.4564 (2)0.0393 (9)
H5A0.88260.68800.43710.047*
H5B0.74130.69270.50160.047*
C60.9408 (7)0.5187 (4)0.50530 (19)0.0403 (10)
H6A0.91780.53630.55270.048*
H6B1.06540.55080.49030.048*
C70.9609 (7)0.4063 (4)0.4985 (2)0.0409 (11)
H7A1.08040.38310.52300.049*
H7B0.84200.37360.51760.049*
C80.9738 (7)0.2730 (3)0.4095 (2)0.0405 (10)
H8A0.84530.24570.42520.049*
H8B1.08240.23980.43430.049*
C90.9975 (8)0.2522 (3)0.3335 (3)0.0445 (11)
H9A1.02210.18130.32730.053*
H9B1.11680.28760.31710.053*
C100.8144 (7)0.2825 (3)0.2895 (2)0.0388 (10)
H10A0.83040.25440.24420.047*
H10B0.69140.25460.30930.047*
N10.7920 (5)0.3928 (2)0.28397 (15)0.0283 (6)
H10.90320.41520.26090.034*
N20.5806 (5)0.5632 (2)0.32309 (14)0.0245 (6)
H20.45380.54560.33750.029*
N30.7654 (5)0.5538 (2)0.46247 (14)0.0294 (7)
H30.64980.53440.48440.035*
N40.9798 (5)0.3817 (2)0.42444 (16)0.0271 (7)
H41.10630.40260.41180.032*
F11.2555 (6)0.4764 (4)0.62517 (17)0.0960 (13)
F21.5921 (6)0.4961 (3)0.62145 (19)0.0869 (12)
F31.3893 (6)0.5936 (3)0.55560 (14)0.0730 (10)
F41.3937 (9)0.6116 (3)0.67105 (19)0.1155 (18)
B11.4102 (9)0.5490 (5)0.6183 (3)0.0480 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0161 (2)0.0242 (2)0.0234 (2)0.0004 (2)0.0017 (2)0.0004 (2)
Cl10.0189 (4)0.0365 (5)0.0467 (5)0.0043 (4)0.0023 (4)0.0101 (4)
Cl20.0190 (4)0.0414 (5)0.0445 (5)0.0054 (4)0.0022 (4)0.0095 (4)
C10.033 (2)0.046 (2)0.0278 (17)0.005 (2)0.0042 (17)0.0046 (18)
C20.032 (2)0.044 (2)0.0276 (17)0.000 (2)0.0093 (17)0.0073 (17)
C30.030 (2)0.0259 (18)0.045 (2)0.0040 (18)0.002 (2)0.0064 (16)
C40.034 (2)0.0282 (19)0.058 (2)0.0078 (19)0.001 (2)0.0099 (18)
C50.037 (2)0.0372 (19)0.044 (2)0.002 (2)0.002 (2)0.0129 (17)
C60.034 (2)0.060 (3)0.0263 (18)0.005 (2)0.0107 (17)0.004 (2)
C70.031 (2)0.056 (3)0.035 (2)0.004 (2)0.0072 (18)0.015 (2)
C80.032 (2)0.030 (2)0.059 (3)0.0023 (19)0.001 (2)0.015 (2)
C90.040 (2)0.028 (2)0.066 (3)0.004 (2)0.004 (2)0.006 (2)
C100.035 (2)0.0306 (19)0.051 (2)0.0004 (19)0.003 (2)0.0123 (17)
N10.0253 (15)0.0300 (14)0.0295 (13)0.0021 (15)0.0012 (15)0.0027 (11)
N20.0179 (13)0.0265 (14)0.0291 (14)0.0010 (13)0.0000 (13)0.0033 (12)
N30.0212 (15)0.0399 (16)0.0271 (12)0.0027 (15)0.0024 (13)0.0055 (12)
N40.0179 (13)0.0304 (16)0.0330 (15)0.0017 (14)0.0018 (13)0.0075 (13)
F10.069 (2)0.143 (4)0.076 (2)0.037 (3)0.004 (2)0.026 (2)
F20.0534 (19)0.094 (3)0.113 (3)0.0194 (19)0.014 (2)0.024 (2)
F30.065 (2)0.102 (3)0.0516 (15)0.001 (2)0.0040 (16)0.0232 (17)
F40.166 (5)0.104 (3)0.076 (2)0.041 (4)0.031 (3)0.028 (2)
B10.043 (3)0.065 (3)0.036 (2)0.011 (3)0.009 (2)0.004 (2)
Geometric parameters (Å, º) top
Mn—N22.043 (3)C6—C71.516 (6)
Mn—N42.043 (3)C6—H6A0.9700
Mn—N12.052 (3)C6—H6B0.9700
Mn—N32.059 (3)C7—N41.492 (5)
Mn—Cl22.5346 (10)C7—H7A0.9700
Mn—Cl12.5412 (10)C7—H7B0.9700
C1—N11.503 (5)C8—N41.484 (5)
C1—C21.506 (6)C8—C91.521 (7)
C1—H1A0.9700C8—H8A0.9700
C1—H1B0.9700C8—H8B0.9700
C2—N21.506 (4)C9—C101.533 (6)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—N21.488 (5)C10—N11.486 (5)
C3—C41.529 (6)C10—H10A0.9700
C3—H3A0.9700C10—H10B0.9700
C3—H3B0.9700N1—H10.9100
C4—C51.532 (6)N2—H20.9100
C4—H4A0.9700N3—H30.9100
C4—H4B0.9700N4—H40.9100
C5—N31.476 (5)F1—B11.412 (7)
C5—H5A0.9700F2—B11.389 (7)
C5—H5B0.9700F3—B11.373 (6)
C6—N31.500 (5)F4—B11.333 (7)
N2—Mn—N4179.62 (14)C6—C7—H7A110.1
N2—Mn—N185.38 (12)N4—C7—H7B110.1
N4—Mn—N194.96 (13)C6—C7—H7B110.1
N2—Mn—N393.58 (12)H7A—C7—H7B108.4
N4—Mn—N386.07 (13)N4—C8—C9111.7 (4)
N1—Mn—N3178.93 (13)N4—C8—H8A109.3
N2—Mn—Cl288.83 (9)C9—C8—H8A109.3
N4—Mn—Cl291.32 (9)N4—C8—H8B109.3
N1—Mn—Cl291.98 (10)C9—C8—H8B109.3
N3—Mn—Cl288.27 (9)H8A—C8—H8B107.9
N2—Mn—Cl192.17 (9)C8—C9—C10114.9 (4)
N4—Mn—Cl187.68 (9)C8—C9—H9A108.5
N1—Mn—Cl187.58 (10)C10—C9—H9A108.5
N3—Mn—Cl192.20 (9)C8—C9—H9B108.5
Cl2—Mn—Cl1178.87 (4)C10—C9—H9B108.5
N1—C1—C2107.7 (3)H9A—C9—H9B107.5
N1—C1—H1A110.2N1—C10—C9112.4 (3)
C2—C1—H1A110.2N1—C10—H10A109.1
N1—C1—H1B110.2C9—C10—H10A109.1
C2—C1—H1B110.2N1—C10—H10B109.1
H1A—C1—H1B108.5C9—C10—H10B109.1
C1—C2—N2107.8 (3)H10A—C10—H10B107.9
C1—C2—H2A110.1C10—N1—C1113.4 (3)
N2—C2—H2A110.1C10—N1—Mn117.0 (2)
C1—C2—H2B110.1C1—N1—Mn106.1 (2)
N2—C2—H2B110.1C10—N1—H1106.6
H2A—C2—H2B108.5C1—N1—H1106.6
N2—C3—C4111.9 (3)Mn—N1—H1106.6
N2—C3—H3A109.2C3—N2—C2113.0 (3)
C4—C3—H3A109.2C3—N2—Mn116.6 (2)
N2—C3—H3B109.2C2—N2—Mn107.3 (2)
C4—C3—H3B109.2C3—N2—H2106.4
H3A—C3—H3B107.9C2—N2—H2106.4
C3—C4—C5114.6 (4)Mn—N2—H2106.4
C3—C4—H4A108.6C5—N3—C6112.9 (3)
C5—C4—H4A108.6C5—N3—Mn117.6 (2)
C3—C4—H4B108.6C6—N3—Mn105.7 (2)
C5—C4—H4B108.6C5—N3—H3106.7
H4A—C4—H4B107.6C6—N3—H3106.7
N3—C5—C4112.0 (3)Mn—N3—H3106.7
N3—C5—H5A109.2C8—N4—C7113.9 (3)
C4—C5—H5A109.2C8—N4—Mn117.8 (3)
N3—C5—H5B109.2C7—N4—Mn106.9 (3)
C4—C5—H5B109.2C8—N4—H4105.8
H5A—C5—H5B107.9C7—N4—H4105.8
N3—C6—C7109.2 (4)Mn—N4—H4105.8
N3—C6—H6A109.8F4—B1—F3114.3 (5)
C7—C6—H6A109.8F4—B1—F2110.8 (5)
N3—C6—H6B109.8F3—B1—F2110.3 (5)
C7—C6—H6B109.8F4—B1—F1107.5 (5)
H6A—C6—H6B108.3F3—B1—F1108.2 (4)
N4—C7—C6108.1 (3)F2—B1—F1105.3 (4)
N4—C7—H7A110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F4i0.912.243.025 (6)145
N2—H2···Cl1ii0.912.443.256 (3)149
N3—H3···F3ii0.912.343.116 (5)143
N4—H4···Cl2iii0.912.493.289 (3)147
Symmetry codes: (i) x+5/2, y+1, z1/2; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[MnCl2(C10H24N4)]BF4
Mr412.98
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.5660 (3), 13.3760 (2), 19.5846 (3)
V3)1720.05 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.674, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
3013, 2735, 2442
Rint0.020
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.05
No. of reflections2735
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.50
Absolute structureFlack (1983), 569 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F4i0.91002.2373.025 (6)144.73
N2—H2···Cl1ii0.9102.4443.256 (3)148.64
N3—H3···F3ii0.91002.3443.116 (5)142.47
N4—H4···Cl2iii0.9102.4893.289 (3)146.75
Symmetry codes: (i) x+5/2, y+1, z1/2; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Jean-Claude Daran, Laboratory of Coordination Chemistry, UPR-CNRS 8241, Toulouse, France, for his support and cooperation.

References

First citationAnderson, C. J. & Welch, M. J. (1999). Chem. Rev. 99, 2219–2234.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBakac, A. & Espenson, J. H. (1987). Inorg. Chem. 26, 4353–4355.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBrewer, K. J., Calvin, M., Lumpkin, R. S., Otvos, J. W. & Spreer, L. O. (1989). Inorg. Chem. 28, 4446–4551.  CSD CrossRef CAS Web of Science Google Scholar
First citationCaravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, W. H. (1999). Chem. Rev. 99, 2293–2352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnoki, O., Imaoka, T. & Yamamoto, K. (2003). Org. Lett. 5, 2547–2549.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIzatt, R. M., Pawlak, K. & Bradshaw, J. S. (1995). Chem. Rev. 95, 2529–2586.  CrossRef CAS Web of Science Google Scholar
First citationIzatt, R. M., Pawlak, K., Bradshaw, J. S & Bruening, L. (1991). Chem. Rev. 91, 1721–2085.  CrossRef CAS Web of Science Google Scholar
First citationLetumier, F., Brocker, G., Barbe, J. M., Guilard, R., Lucas, D., Dahaoui-Gindrey, V., Lecomte, C., Thouin, L. & Amatore, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2233–2239.  Web of Science CSD CrossRef Google Scholar
First citationLindoy, L. F. (1992). The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press.  Google Scholar
First citationMossin, S., Sørensen, H. O. & Weihe, H. (2002). Acta Cryst. C58, m204–m206.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMossin, S., Sørensen, H. O., Weihe, H., Glerup, J. & Søtofte, I. (2005). Inorg. Chim. Acta, 358, 1096–1106.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationShaikh, N., Panja, A., Banerjee, P., Kubiak, M., Ciunik, Z., Puchalska, M., Legendziewicz, J. & Vojtíšek, P. (2004). Inorg. Chim. Acta, 357, 25–32  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSibert, J. W., Cory, A. H. & Cory, J. G. (2002). Chem. Commun. pp. 154–155.  Web of Science CrossRef Google Scholar
First citationSosa-Torres, M. E. & Toscano, R. A. (1997). Acta Cryst. C53, 1585–1588.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSteward, K. M. & McLaughlin, L. W. (2004). J. Am. Chem. Soc. 126, 2050–2057.  Web of Science PubMed Google Scholar
First citationVolkert, W.A. & T. J. Hoffman. T. J. (1999). Chem. Rev. 99, 2269–2292.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds