metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-{Ethane-1,2-diylbis[carbonylbis(azanediyl)]}dipyridinium tetra­chloridoplatinate(II)

aDepartment of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata 700 032, India, and bPresent address: Department of Chemistry, Imperial College, London SW7 2AZ, England
*Correspondence e-mail: parthod123@rediffmail.com

(Received 16 January 2010; accepted 3 February 2010; online 6 February 2010)

In the crystal structure of the title compound, (C14H18N6O2)·[PtCl4], the cation and square-planar anion are located on special positions (on a twofold axis and an inversion centre, respectively). In the crystal structure, N—H⋯Cl hydrogen bonds lead to a staircase-like motif. The central ethane backbone of the cation is disordered over two positions of equal occupancy.

Related literature

For organic–inorganic hybrid compounds displaying N—H⋯Cl—metal hydrogen bonds, see: Adams et al. (2007[Adams, C. J., Colquhoun, H. M., Crawford, P. C., Lusi, M. & Orpen, A. G. (2007). Angew. Chem. Int. Ed. 46, 1124-1128.]); Deifela & Cahill (2009[Deifela, N. P. & Cahill, C. L. (2009). CrystEngComm, 11, 2739-2744.]). Orpen et al. (2004[Orpen, A. G., Podesta, T. J. & Shore, B. J. (2004). Chem. Eur. J. 10, 3783-3791.]); Krishna Kumar et al. (2005[Krishna Kumar, D., Ballabh, A., Jose, D. A., Dastidar, P. & Das, A. (2005). Cryst. Growth Des. 5, 651-660.], 2006[Krishna Kumar, D., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 216-223.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H18N6O2)[PtCl4]

  • Mr = 639.23

  • Monoclinic, C 2/c

  • a = 17.8126 (13) Å

  • b = 7.0799 (5) Å

  • c = 15.5765 (12) Å

  • β = 103.332 (1)°

  • V = 1911.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.92 mm−1

  • T = 100 K

  • 0.22 × 0.14 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.275, Tmax = 0.693

  • 7045 measured reflections

  • 1877 independent reflections

  • 1693 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 0.97

  • 1877 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.76 (5) 2.55 (5) 3.259 (4) 156 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Suitable single crystals of the title compound were obtained by the resultant reaction of BPEBU and [K2(PtCl4)] in acidic medium (see experimental). The asymmetric unit consists of half of (PtCl4) and one half molecule of bis-protonated BPEBU. The ORTEP diagram with 50% probability is given in Fig. 1. The metal center Pt(II) displayed a slight distorted square plannar geometry [Cl—Pt—Cl = 89.91 (4)–90.09 (4)°]. In the crystal structure, the bis-protonated ligand BPEBU displays syn–anti-syn conformation (scheme 1). N—H···Cl hydrogen bonds lead to a staircase like structure (Fig. 2).

Related literature top

For organic–inorganic hybrid compounds displaying N—H···Cl—metal hydrogen bonds, see: Adams et al. (2007); Deifela & Cahill (2009). Orpen et al. (2004); Krishna Kumar et al. (2005, 2006).

Experimental top

Synthesis: The title compound was synthesized by layering a methanolic solution of BPEBU (30 mg, 0.1 mmol) containing HCl (MeOH : HCl = 8 ml : 2 ml) over an aqueous solution of [K2(PtCl4)] (41.5 mg, 0.1 mmol) containings HCl (H2O : HCl = 8 ml : 2 ml). After a period of two weeks, X-ray quality single crystals were obtained (yield = 30 mg, 47%). FT–IR (KBr, cm-1): 3325 (b, O—H, N—H stretch), 3082 (b, aromatic C—H stretch), 2965 (b, aliphatic C—H), 1686 (s, urea CO stretch), 1612 (s, urea N—H bend), 1580, 1520, 1480, 1422, 1331, 1264,1238, 1191, 1111, 1024, 989, 864, 800, 694.

Refinement top

H-atoms bonded to C were refined using a riding model with C—H ranging from 0.95 Å to 0.99 Å and U(H) = 1.2Ueq(C). The coordinates of the H atoms bonded to N were refined with U(H) = 1.2Ueq(N). The central C—C bond in the cation (located on the 2 fold axis) is disordered over two equally occupied positions.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Ortep diagram of title compound with anisotropic displacement ellipsoids drawn at the 50% probability level. H atoms omitted for clarity.
[Figure 2] Fig. 2. Staircaise like hydrogen bonded network via N—H···Cl interactions
3,3'-{Ethane-1,2-diylbis[carbonylbis(azanediyl)]}dipyridinium tetrachloridoplatinate(II) top
Crystal data top
(C14H18N6O2)[PtCl4]F(000) = 1224
Mr = 639.23Dx = 2.221 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.8126 (13) ÅCell parameters from 566 reflections
b = 7.0799 (5) Åθ = 2.4–27.8°
c = 15.5765 (12) ŵ = 7.92 mm1
β = 103.332 (1)°T = 100 K
V = 1911.4 (2) Å3Plate, yellow
Z = 40.22 × 0.14 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1877 independent reflections
Radiation source: fine-focus sealed tube1693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕω scanθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2121
Tmin = 0.275, Tmax = 0.693k = 88
7045 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0343P)2 + 6.3133P]
where P = (Fo2 + 2Fc2)/3
1877 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
(C14H18N6O2)[PtCl4]V = 1911.4 (2) Å3
Mr = 639.23Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.8126 (13) ŵ = 7.92 mm1
b = 7.0799 (5) ÅT = 100 K
c = 15.5765 (12) Å0.22 × 0.14 × 0.05 mm
β = 103.332 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1877 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1693 reflections with I > 2σ(I)
Tmin = 0.275, Tmax = 0.693Rint = 0.044
7045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 1.51 e Å3
1877 reflectionsΔρmin = 0.89 e Å3
132 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.50000.50000.00000.01584 (10)
Cl10.39171 (5)0.65021 (15)0.07921 (6)0.0228 (2)
Cl20.50224 (6)0.69911 (14)0.11747 (7)0.0226 (2)
N10.1742 (2)0.0639 (6)0.1087 (3)0.0250 (8)
H10.139 (3)0.108 (7)0.096 (3)0.030*
C20.2331 (3)0.0133 (5)0.0434 (3)0.0193 (9)
H20.22970.02540.01630.023*
C30.3001 (2)0.0577 (6)0.0639 (2)0.0160 (8)
C40.3007 (2)0.0717 (7)0.1528 (3)0.0223 (8)
H40.34550.11830.16900.027*
C50.2379 (3)0.0195 (6)0.2176 (3)0.0305 (12)
H50.23910.03100.27810.037*
C60.1730 (3)0.0497 (7)0.1941 (3)0.0304 (10)
H60.12880.08610.23780.036*
N70.36384 (19)0.1145 (5)0.0011 (2)0.0176 (7)
C80.3757 (2)0.0918 (6)0.0896 (3)0.0214 (9)
O90.3290 (2)0.0132 (4)0.1240 (3)0.0367 (10)
N100.4417 (2)0.1661 (6)0.1358 (2)0.0275 (9)
C11A0.4643 (5)0.2153 (13)0.2283 (5)0.0202 (16)*0.50
H11A0.42270.18190.25820.024*0.50
H11B0.47400.35280.23510.024*0.50
C11B0.4631 (5)0.1063 (12)0.2315 (5)0.0185 (16)*0.50
H11C0.47280.03140.23650.022*0.50
H11D0.42130.13810.26140.022*0.50
H70.400 (3)0.164 (6)0.020 (3)0.022*
H100.467 (3)0.219 (7)0.116 (3)0.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01344 (14)0.01733 (15)0.01748 (14)0.00161 (7)0.00507 (9)0.00225 (7)
Cl10.0172 (5)0.0302 (5)0.0211 (5)0.0044 (4)0.0046 (4)0.0037 (4)
Cl20.0192 (5)0.0254 (5)0.0239 (5)0.0025 (4)0.0062 (4)0.0096 (4)
N10.0220 (19)0.0246 (19)0.030 (2)0.0071 (16)0.0105 (16)0.0072 (17)
C20.019 (2)0.019 (2)0.021 (2)0.0005 (14)0.0066 (19)0.0024 (15)
C30.020 (2)0.0134 (17)0.0147 (19)0.0009 (16)0.0045 (16)0.0006 (16)
C40.020 (2)0.030 (2)0.018 (2)0.0010 (18)0.0067 (17)0.0012 (18)
C50.023 (3)0.050 (3)0.018 (2)0.0020 (19)0.004 (2)0.0089 (18)
C60.023 (2)0.040 (2)0.026 (3)0.002 (2)0.003 (2)0.017 (2)
N70.0184 (17)0.0221 (18)0.0135 (16)0.0055 (13)0.0064 (14)0.0016 (13)
C80.019 (2)0.033 (2)0.0128 (19)0.0068 (17)0.0043 (16)0.0044 (17)
O90.028 (2)0.063 (3)0.0219 (18)0.0011 (14)0.0108 (16)0.0151 (14)
N100.022 (2)0.046 (2)0.0143 (18)0.0013 (16)0.0037 (15)0.0045 (16)
Geometric parameters (Å, º) top
Pt1—Cl1i2.2971 (9)C6—H60.9500
Pt1—Cl12.2971 (9)N7—C81.389 (5)
Pt1—Cl2i2.3028 (9)N7—H70.83 (5)
Pt1—Cl22.3028 (9)C8—O91.223 (5)
N1—C61.330 (6)C8—N101.337 (6)
N1—C21.331 (6)N10—C11A1.447 (8)
N1—H10.76 (5)N10—C11B1.511 (9)
C2—C31.397 (6)N10—H100.71 (5)
C2—H20.9500C11A—C11Bii1.513 (10)
C3—N71.377 (5)C11A—H11A0.9900
C3—C41.392 (5)C11A—H11B0.9900
C4—C51.374 (7)C11B—C11Aii1.513 (10)
C4—H40.9500C11B—H11C0.9900
C5—C61.380 (7)C11B—H11D0.9900
C5—H50.9500
Cl1i—Pt1—Cl1180.0C3—N7—C8126.6 (3)
Cl1i—Pt1—Cl2i90.11 (4)C3—N7—H7116 (3)
Cl1—Pt1—Cl2i89.89 (4)C8—N7—H7117 (3)
Cl1i—Pt1—Cl289.89 (4)O9—C8—N10123.1 (4)
Cl1—Pt1—Cl290.11 (4)O9—C8—N7122.6 (4)
Cl2i—Pt1—Cl2180.0N10—C8—N7114.3 (4)
C6—N1—C2124.9 (4)C8—N10—C11A129.8 (5)
C6—N1—H1118 (4)C8—N10—C11B114.3 (4)
C2—N1—H1117 (4)C11A—N10—C11B30.3 (4)
N1—C2—C3119.0 (4)C8—N10—H10122 (4)
N1—C2—H2120.5C11A—N10—H10105 (4)
C3—C2—H2120.5C11B—N10—H10123 (4)
N7—C3—C4119.4 (4)N10—C11A—C11Bii107.6 (6)
N7—C3—C2123.4 (4)N10—C11A—H11A110.2
C4—C3—C2117.2 (4)C11Bii—C11A—H11A110.2
C5—C4—C3121.3 (4)N10—C11A—H11B110.2
C5—C4—H4119.3C11Bii—C11A—H11B110.2
C3—C4—H4119.3H11A—C11A—H11B108.5
C4—C5—C6119.4 (5)N10—C11B—C11Aii105.2 (5)
C4—C5—H5120.3N10—C11B—H11C110.7
C6—C5—H5120.3C11Aii—C11B—H11C110.7
N1—C6—C5118.1 (4)N10—C11B—H11D110.7
N1—C6—H6121.0C11Aii—C11B—H11D110.7
C5—C6—H6121.0H11C—C11B—H11D108.8
C6—N1—C2—C31.1 (7)C3—N7—C8—O91.0 (7)
N1—C2—C3—N7179.7 (4)C3—N7—C8—N10177.7 (4)
N1—C2—C3—C40.2 (6)O9—C8—N10—C11A17.3 (8)
N7—C3—C4—C5178.9 (4)N7—C8—N10—C11A161.5 (6)
C2—C3—C4—C50.6 (6)O9—C8—N10—C11B13.7 (7)
C3—C4—C5—C60.5 (7)N7—C8—N10—C11B167.5 (5)
C2—N1—C6—C51.2 (7)C8—N10—C11A—C11Bii122.2 (6)
C4—C5—C6—N10.3 (7)C11B—N10—C11A—C11Bii53.4 (10)
C4—C3—N7—C8172.8 (4)C8—N10—C11B—C11Aii176.5 (5)
C2—C3—N7—C87.7 (6)C11A—N10—C11B—C11Aii48.3 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2iii0.76 (5)2.55 (5)3.259 (4)156 (5)
Symmetry code: (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C14H18N6O2)[PtCl4]
Mr639.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)17.8126 (13), 7.0799 (5), 15.5765 (12)
β (°) 103.332 (1)
V3)1911.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.92
Crystal size (mm)0.22 × 0.14 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.275, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
7045, 1877, 1693
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 0.97
No. of reflections1877
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.51, 0.89

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.76 (5)2.55 (5)3.259 (4)156 (5)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We thank the Department of Science and Technology (DST), New Delhi, India, for financial support. NNA thanks IACS for research fellowships.

References

First citationAdams, C. J., Colquhoun, H. M., Crawford, P. C., Lusi, M. & Orpen, A. G. (2007). Angew. Chem. Int. Ed. 46, 1124–1128.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeifela, N. P. & Cahill, C. L. (2009). CrystEngComm, 11, 2739–2744.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrishna Kumar, D., Ballabh, A., Jose, D. A., Dastidar, P. & Das, A. (2005). Cryst. Growth Des. 5, 651–660.  Web of Science CSD CrossRef Google Scholar
First citationKrishna Kumar, D., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 216–223.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrpen, A. G., Podesta, T. J. & Shore, B. J. (2004). Chem. Eur. J. 10, 3783–3791.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds