organic compounds
(E)-2-Acetyl-4-[(3-methylphenyl)diazenyl]phenol: an X-ray and DFT study
aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, bSinop University, Sinop Faculty of Education, TR-57000 Sinop, Turkey, and cDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey
*Correspondence e-mail: yserap@omu.edu.tr
The title compound, C15H14N2O2, an azo dye, displays a trans configuration with respect to the N=N bridge. The dihedral angle between the aromatic rings is 0.18 (14)°. There is a strong intramolecular O—H⋯O hydrogen bond. Geometrical parameters, determined using X-ray diffraction techniques, are compared with those calculated by density functional theory (DFT), using hybrid exchange–correlation functional, B3LYP and semi-empirical (PM3) methods.
Related literature
For general background to ); Catino & Farris (1985); Zollinger (2003); Bahatti & Seshadri (2004); Taniike et al. (1996); Fadda et al. (1994). For a related structure, see: El-Ghamry et al. (2008). For background to DFT calculations, see: Becke (1988, 1993); Lee et al. (1988); Schmidt & Polik (2007)
see: Klaus (2003Experimental
Crystal data
|
Refinement
|
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).
Supporting information
10.1107/S1600536810003491/bt5181sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810003491/bt5181Isup2.hkl
A mixture of 3-methylaniline (0.83 g, 7.8 mmol), water (20 ml) and concentrated hydrochloric acid (1.97 ml, 23.4 mmol) was stirred until a clear solution was obtained. This solution was cooled down to 0–5 °C and a solution of sodium nitrite (0.75 g 7.8 mmol) in water was added dropwise while the temperature was maintained below 5 °C. The resulting mixture was stirred for 30 min in an ice bath. 2-hydroxyacetophenone (1.067 g, 7.8 mmol solution (pH 9) was gradually added to a cooled solution of 3-methylbenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 0–5 °C for 2 h in ice bath. The product was recrystallized from ethyl alcohol to obtain solid (E)-2-Acetyl-4- (3-methylphenyldiazenyl)phenol. Crystals of (E)-2-Acetyl-4-(3-methylphenyldiazenyl)phenol were obtained after one day by slow evaporation from acetic acid (yield %45, m.p.= 377–379 K)
All H atoms (except for H1) were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.97 Å, O—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The hydroxyl H atom was isotropically refined.
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond. |
C15H14N2O2 | F(000) = 536 |
Mr = 254.28 | Dx = 1.315 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 20945 reflections |
a = 8.6917 (3) Å | θ = 1.9–28.0° |
b = 10.9728 (3) Å | µ = 0.09 mm−1 |
c = 14.6150 (5) Å | T = 150 K |
β = 112.881 (3)° | Prism, brown |
V = 1284.19 (7) Å3 | 0.67 × 0.37 × 0.21 mm |
Z = 4 |
Stoe IPDS II diffractometer | 2519 independent reflections |
Radiation source: fine-focus sealed tube | 2034 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.4° |
ω scan | h = −10→10 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −13→13 |
Tmin = 0.957, Tmax = 0.986 | l = −18→18 |
16525 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.175 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0859P)2 + 0.7485P] where P = (Fo2 + 2Fc2)/3 |
2519 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C15H14N2O2 | V = 1284.19 (7) Å3 |
Mr = 254.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.6917 (3) Å | µ = 0.09 mm−1 |
b = 10.9728 (3) Å | T = 150 K |
c = 14.6150 (5) Å | 0.67 × 0.37 × 0.21 mm |
β = 112.881 (3)° |
Stoe IPDS II diffractometer | 2519 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 2034 reflections with I > 2σ(I) |
Tmin = 0.957, Tmax = 0.986 | Rint = 0.040 |
16525 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.175 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.48 e Å−3 |
2519 reflections | Δρmin = −0.26 e Å−3 |
176 parameters |
Experimental. 330 frames, detector distance = 80 mm |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7697 (3) | 0.49666 (19) | 0.56898 (15) | 0.0354 (5) | |
C2 | 0.7798 (2) | 0.48461 (19) | 0.66522 (14) | 0.0337 (5) | |
H2 | 0.7188 | 0.5371 | 0.6882 | 0.040* | |
C3 | 0.8796 (3) | 0.39527 (19) | 0.72861 (15) | 0.0340 (5) | |
C4 | 0.9690 (3) | 0.3160 (2) | 0.69197 (16) | 0.0385 (5) | |
C5 | 0.9567 (3) | 0.3271 (2) | 0.59383 (17) | 0.0433 (5) | |
H5 | 1.0150 | 0.2737 | 0.5695 | 0.052* | |
C6 | 0.8588 (3) | 0.4165 (2) | 0.53369 (15) | 0.0410 (5) | |
H6 | 0.8517 | 0.4240 | 0.4688 | 0.049* | |
C7 | 0.8963 (3) | 0.3858 (2) | 0.83278 (16) | 0.0396 (5) | |
C8 | 0.8087 (3) | 0.4746 (3) | 0.87272 (17) | 0.0506 (6) | |
H8A | 0.8323 | 0.4560 | 0.9410 | 0.076* | |
H8B | 0.6905 | 0.4695 | 0.8350 | 0.076* | |
H8C | 0.8467 | 0.5556 | 0.8679 | 0.076* | |
C9 | 0.5627 (3) | 0.7083 (2) | 0.37340 (17) | 0.0392 (5) | |
C10 | 0.5540 (3) | 0.7208 (2) | 0.27821 (17) | 0.0460 (6) | |
H10 | 0.6146 | 0.6692 | 0.2543 | 0.055* | |
C11 | 0.4544 (3) | 0.8107 (2) | 0.21837 (18) | 0.0482 (6) | |
H11 | 0.4465 | 0.8197 | 0.1534 | 0.058* | |
C12 | 0.3654 (3) | 0.8882 (2) | 0.25587 (17) | 0.0447 (6) | |
H12 | 0.2970 | 0.9479 | 0.2148 | 0.054* | |
C13 | 0.3764 (3) | 0.8785 (2) | 0.35255 (17) | 0.0426 (5) | |
C14 | 0.4774 (3) | 0.7866 (2) | 0.41242 (16) | 0.0426 (5) | |
H14 | 0.4875 | 0.7778 | 0.4778 | 0.051* | |
C15 | 0.2821 (3) | 0.9642 (3) | 0.39089 (19) | 0.0546 (7) | |
H15A | 0.3037 | 0.9448 | 0.4588 | 0.082* | |
H15B | 0.1647 | 0.9566 | 0.3517 | 0.082* | |
H15C | 0.3171 | 1.0463 | 0.3868 | 0.082* | |
N1 | 0.6655 (2) | 0.60844 (18) | 0.42943 (14) | 0.0435 (5) | |
N2 | 0.6666 (2) | 0.59649 (18) | 0.51418 (13) | 0.0431 (5) | |
O1 | 1.0685 (2) | 0.22765 (17) | 0.74768 (14) | 0.0523 (5) | |
O2 | 0.9858 (2) | 0.30620 (17) | 0.88764 (12) | 0.0522 (5) | |
H1 | 1.055 (4) | 0.235 (3) | 0.801 (3) | 0.076 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0362 (10) | 0.0347 (11) | 0.0302 (10) | −0.0037 (8) | 0.0074 (8) | 0.0012 (8) |
C2 | 0.0342 (10) | 0.0327 (10) | 0.0320 (10) | −0.0026 (8) | 0.0106 (8) | −0.0006 (8) |
C3 | 0.0347 (10) | 0.0348 (11) | 0.0299 (10) | −0.0039 (8) | 0.0098 (8) | 0.0018 (8) |
C4 | 0.0386 (11) | 0.0354 (11) | 0.0376 (11) | 0.0018 (9) | 0.0104 (9) | 0.0055 (9) |
C5 | 0.0475 (13) | 0.0427 (13) | 0.0401 (12) | 0.0041 (10) | 0.0174 (10) | −0.0026 (10) |
C6 | 0.0460 (12) | 0.0458 (13) | 0.0286 (10) | −0.0039 (10) | 0.0118 (9) | 0.0002 (9) |
C7 | 0.0359 (11) | 0.0473 (13) | 0.0320 (10) | −0.0061 (10) | 0.0091 (9) | 0.0061 (9) |
C8 | 0.0533 (14) | 0.0671 (16) | 0.0326 (11) | 0.0004 (12) | 0.0181 (10) | 0.0003 (11) |
C9 | 0.0378 (11) | 0.0343 (11) | 0.0432 (11) | −0.0041 (9) | 0.0133 (9) | 0.0002 (9) |
C10 | 0.0511 (13) | 0.0437 (13) | 0.0426 (12) | −0.0030 (11) | 0.0177 (11) | −0.0016 (10) |
C11 | 0.0524 (14) | 0.0438 (13) | 0.0435 (12) | −0.0035 (11) | 0.0133 (11) | 0.0023 (10) |
C12 | 0.0467 (12) | 0.0375 (12) | 0.0401 (12) | −0.0023 (10) | 0.0062 (10) | 0.0058 (9) |
C13 | 0.0404 (12) | 0.0379 (12) | 0.0430 (12) | −0.0038 (10) | 0.0093 (10) | 0.0027 (10) |
C14 | 0.0436 (12) | 0.0471 (13) | 0.0341 (11) | −0.0097 (10) | 0.0119 (9) | 0.0002 (9) |
C15 | 0.0554 (15) | 0.0574 (16) | 0.0500 (14) | 0.0057 (12) | 0.0196 (12) | 0.0049 (12) |
N1 | 0.0464 (11) | 0.0442 (11) | 0.0375 (10) | −0.0024 (9) | 0.0137 (8) | 0.0008 (8) |
N2 | 0.0430 (10) | 0.0478 (11) | 0.0309 (9) | −0.0097 (9) | 0.0060 (8) | 0.0069 (8) |
O1 | 0.0587 (11) | 0.0491 (10) | 0.0484 (10) | 0.0193 (8) | 0.0201 (9) | 0.0144 (8) |
O2 | 0.0554 (10) | 0.0611 (11) | 0.0381 (8) | 0.0056 (8) | 0.0161 (8) | 0.0179 (8) |
C1—C2 | 1.381 (3) | C9—C10 | 1.371 (3) |
C1—C6 | 1.396 (3) | C9—C14 | 1.393 (3) |
C1—N2 | 1.444 (3) | C9—N1 | 1.450 (3) |
C2—C3 | 1.395 (3) | C10—C11 | 1.378 (3) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.404 (3) | C11—C12 | 1.397 (4) |
C3—C7 | 1.476 (3) | C11—H11 | 0.9300 |
C4—O1 | 1.343 (3) | C12—C13 | 1.383 (3) |
C4—C5 | 1.402 (3) | C12—H12 | 0.9300 |
C5—C6 | 1.371 (3) | C13—C14 | 1.398 (3) |
C5—H5 | 0.9300 | C13—C15 | 1.493 (4) |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—O2 | 1.235 (3) | C15—H15A | 0.9600 |
C7—C8 | 1.488 (3) | C15—H15B | 0.9600 |
C8—H8A | 0.9600 | C15—H15C | 0.9600 |
C8—H8B | 0.9600 | N1—N2 | 1.242 (3) |
C8—H8C | 0.9600 | O1—H1 | 0.83 (4) |
C2—C1—C6 | 119.43 (19) | C10—C9—C14 | 121.7 (2) |
C2—C1—N2 | 114.66 (19) | C10—C9—N1 | 115.3 (2) |
C6—C1—N2 | 125.89 (19) | C14—C9—N1 | 123.0 (2) |
C1—C2—C3 | 121.3 (2) | C9—C10—C11 | 119.3 (2) |
C1—C2—H2 | 119.3 | C9—C10—H10 | 120.4 |
C3—C2—H2 | 119.3 | C11—C10—H10 | 120.4 |
C2—C3—C4 | 118.39 (19) | C10—C11—C12 | 119.6 (2) |
C2—C3—C7 | 121.4 (2) | C10—C11—H11 | 120.2 |
C4—C3—C7 | 120.20 (19) | C12—C11—H11 | 120.2 |
O1—C4—C5 | 117.2 (2) | C13—C12—C11 | 121.7 (2) |
O1—C4—C3 | 122.5 (2) | C13—C12—H12 | 119.2 |
C5—C4—C3 | 120.23 (19) | C11—C12—H12 | 119.2 |
C6—C5—C4 | 120.0 (2) | C12—C13—C14 | 118.2 (2) |
C6—C5—H5 | 120.0 | C12—C13—C15 | 120.3 (2) |
C4—C5—H5 | 120.0 | C14—C13—C15 | 121.5 (2) |
C5—C6—C1 | 120.6 (2) | C9—C14—C13 | 119.5 (2) |
C5—C6—H6 | 119.7 | C9—C14—H14 | 120.2 |
C1—C6—H6 | 119.7 | C13—C14—H14 | 120.2 |
O2—C7—C3 | 120.3 (2) | C13—C15—H15A | 109.5 |
O2—C7—C8 | 119.8 (2) | C13—C15—H15B | 109.5 |
C3—C7—C8 | 119.90 (19) | H15A—C15—H15B | 109.5 |
C7—C8—H8A | 109.5 | C13—C15—H15C | 109.5 |
C7—C8—H8B | 109.5 | H15A—C15—H15C | 109.5 |
H8A—C8—H8B | 109.5 | H15B—C15—H15C | 109.5 |
C7—C8—H8C | 109.5 | N2—N1—C9 | 114.0 (2) |
H8A—C8—H8C | 109.5 | N1—N2—C1 | 113.3 (2) |
H8B—C8—H8C | 109.5 | C4—O1—H1 | 102 (2) |
C6—C1—C2—C3 | 1.1 (3) | C4—C3—C7—C8 | 176.5 (2) |
N2—C1—C2—C3 | −177.57 (18) | C14—C9—C10—C11 | −2.0 (3) |
C1—C2—C3—C4 | −0.8 (3) | N1—C9—C10—C11 | 177.8 (2) |
C1—C2—C3—C7 | 177.24 (19) | C9—C10—C11—C12 | 0.6 (3) |
C2—C3—C4—O1 | 179.8 (2) | C10—C11—C12—C13 | 1.0 (4) |
C7—C3—C4—O1 | 1.7 (3) | C11—C12—C13—C14 | −1.3 (3) |
C2—C3—C4—C5 | −0.2 (3) | C11—C12—C13—C15 | 178.9 (2) |
C7—C3—C4—C5 | −178.3 (2) | C10—C9—C14—C13 | 1.8 (3) |
O1—C4—C5—C6 | −179.1 (2) | N1—C9—C14—C13 | −178.01 (19) |
C3—C4—C5—C6 | 0.9 (3) | C12—C13—C14—C9 | −0.1 (3) |
C4—C5—C6—C1 | −0.5 (3) | C15—C13—C14—C9 | 179.7 (2) |
C2—C1—C6—C5 | −0.5 (3) | C10—C9—N1—N2 | −177.6 (2) |
N2—C1—C6—C5 | 178.1 (2) | C14—C9—N1—N2 | 2.2 (3) |
C2—C3—C7—O2 | −179.8 (2) | C9—N1—N2—C1 | −179.99 (17) |
C4—C3—C7—O2 | −1.8 (3) | C2—C1—N2—N1 | 177.09 (19) |
C2—C3—C7—C8 | −1.4 (3) | C6—C1—N2—N1 | −1.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.84 (4) | 1.78 (4) | 2.567 (3) | 156 (4) |
Experimental details
Crystal data | |
Chemical formula | C15H14N2O2 |
Mr | 254.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 8.6917 (3), 10.9728 (3), 14.6150 (5) |
β (°) | 112.881 (3) |
V (Å3) | 1284.19 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.67 × 0.37 × 0.21 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.957, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16525, 2519, 2034 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.175, 1.06 |
No. of reflections | 2519 |
No. of parameters | 176 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.26 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.84 (4) | 1.78 (4) | 2.567 (3) | 156 (4) |
Parameters | X-ray | PM3 | DFT/B3LYP* |
C4—O1 | 1.343 (3) | 1.351 | 1.331 |
C7—O2 | 1.235 (3) | 1.228 | 1.242 |
C7—C8 | 1.488 (3) | 1.502 | 1.513 |
C13—C15 | 1.493 (4) | 1.486 | 1.511 |
C1—N2 | 1.444 (3) | 1.445 | 1.411 |
N1—N2 | 1.242 (3) | 1.232 | 1.263 |
C9—N1 | 1.450 (3) | 1.447 | 1.417 |
O2—C7—C8 | 119.8 (2) | 120.465 | 118.986 |
O1—C4—C5 | 117.2 (2) | 115.387 | 118.123 |
C7—C3—C4—O1 | 1.7 (3) | -0.016 | 0.002 |
C9—N1—N2—C1 | -179.99 (17) | -179.965 | -179.975 |
C2—C1—N2—N1 | 177.09 (19) | -178.543 | 179.996 |
C10—C9—N1—N2 | -177.6 (2) | -172.651 | 179.997 |
*6-31G(d,p). |
Acknowledgements
The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).
References
Bahatti, H. S. & Seshadri, S. (2004). Coloration Technol. 120, 151–155. Google Scholar
Becke, A. D. (1988). Phys. Rev. A38, 3098–100. CrossRef Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Catino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, pp. 142–144. New York: John Wiley and Sons Google Scholar
El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673–o1674. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. (1994). J. Chem. Technol. Biotechnol. 61, 343–349. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Klaus, H. (2003). Industrial dyes, chemistry, properties, applications, pp. 20–35. New York: Wiley-VCH. Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B37, 785–789. CrossRef Web of Science Google Scholar
Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516. CrossRef CAS Web of Science Google Scholar
Zollinger, H. (2003). Color Chemistry, 3rd revised ed. New York: Wiley-VCH. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Azo compounds are very important in the field of dyes, pigments and advanced materials (Klaus, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic synthesis (Bahatti & Seshadri, 2004; Catino & Farris, 1985; Fadda et al., 1994; Taniike et al., 1996; Zollinger, 2003).
In the title compound, C15H14N2O2, the two aromatic groups atteched to the azo bridge are adopted (E) configuration. The molecule is planar and the dihedral angle between the two aromatic rings is 0.18(0.14)°. All the bond lengths are in agreement with reported for other azo compounds (El-Ghamry et al., 2008). The title molecule (Fig. 1) has a strong intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom.
Density-functional theory (DFT) (Schmidt & Polik, 2007) and semi-empirical (PM3) calculations and full-geometry optimizations were performed by means of GAUSSIAN 03 W package (Frisch et al., 2004). The selected bond lengths and angles (Table 2.) obtained from semi-empirical and DFT/B3LYP (Becke, 1988; Becke 1993; Lee et al. 1988) are given in Table 2. As can be seen Table 2. the bond lenghts and angles achieved by DFT method are better than those values obtained from PM3 method.