organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Mesitylmethyl-1Hbenzotriazole 3-oxide

aDepartment of Chemistry, Popes College, Sawyerpuram 628251, Tamilnadu, India, bDepartment of Physics, Sethupathy Government Arts College, Ramanathapuram 623502, Tamilnadu, India, cDepartment of Chemistry, Sarah Tucker College, Tirunelveli 627007, Tamilnadu, India, dDepartment of Chemistry, T.D.M.N.S. College, T. Kallikulam, Tamilnadu, India, and eInstitut für Organische Chemie, Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: b_ravidurai@yahoo.com

(Received 26 January 2010; accepted 7 February 2010; online 13 February 2010)

In the title compound, C16H17N3O, the benzotriazole ring forms a dihedral angle of 77.25 (6)° with the phenyl ring. The benzotriazole ring is essentially planar with a maximum deviation of 0.012 (19) Å. Weak inter­molecular C—H⋯O hydrogen bonds form R22(10) motifs. The crystal packing is consolidated by ππ inter­actions with centroid–centroid distances of 3.5994 (12) Å together with very weak C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem.Soc. Perkin Trans. 2, pp. S1-S19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O

  • Mr = 267.33

  • Monoclinic, P 21 /c

  • a = 8.6269 (19) Å

  • b = 7.3422 (4) Å

  • c = 21.890 (5) Å

  • β = 103.133 (11)°

  • V = 1350.2 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 193 K

  • 0.35 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Draeger & Gattow (1971[Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.799, Tmax = 0.936

  • 2722 measured reflections

  • 2545 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.091

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.09

  • 2546 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O10i 0.95 2.35 3.190 (2) 147
C16—H16⋯O10ii 0.95 2.58 3.506 (2) 165
C18—H18ACg3iii 0.98 2.98 3.810 (18) 144
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CORINC (Draeger & Gattow, 1971[Draeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of (I) comprises of one molecule of the title compound (Fig 1). The bond lengths and angles are found to have normal values (Allen et al., 1987). The benzotriazole ring is essentially planar with the maximum deviation from planarity being 0.012 (19) Å for atom C5. The mean plane of the benzotriazole ring (N1/N9/N8/C2—C7) forming a dihedral angle of 77.25 (6) Å with the mean plane of the phenyl ring (C12—C17). An intermolecular weak C—H···O hydrogen bonding generates a ring of motif R22(10) (Bernstein et al., 1995)

The crystal packing is stabilized by ππ stacking interactions [Cg1—Cg2i= of 3.5994 (12) Å; Cg1: (N1/N9/N8/C7/C2); Cg2:(C2—C): Symmetry code:(i) 1-X, –Y, –Z] together with weak C—H···π interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol) and sodium salt of 1-Hydroxybenzotriazole (0.157,1 mmol) in ethanol (20 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried. The compound was dissolved in ethanol and chloroform (1: 1v/v) and allowed to undergo slow evaporation. Colourless block shaped crystals were obtained after a week.

Refinement top

All the H atoms were positioned geometrically (C—H=0.95 Å (aromatic); C—H=0.98 (methyl) or C—H=0.99 Å (methylene) and refined using a riding model with, Uiso(H)=1.2Uequ(C, methylene) and 1.5Uequ(Cmethyl). A rotating group model was used for the methyl groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: CORINC (Draeger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
1-Mesitylmethyl-1Hbenzotriazole 3-oxide top
Crystal data top
C16H17N3OF(000) = 568
Mr = 267.33Dx = 1.315 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.6269 (19) Åθ = 35–48°
b = 7.3422 (4) ŵ = 0.67 mm1
c = 21.890 (5) ÅT = 193 K
β = 103.133 (11)°Block, colourless
V = 1350.2 (4) Å30.35 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2243 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.091
Graphite monochromatorθmax = 69.9°, θmin = 4.2°
ω/2θ scansh = 010
Absorption correction: ψ scan
(CORINC; Draeger & Gattow (1971)
k = 80
Tmin = 0.799, Tmax = 0.936l = 2625
2722 measured reflections3 standard reflections every 60 min
2545 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.4335P]
where P = (Fo2 + 2Fc2)/3
2546 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H17N3OV = 1350.2 (4) Å3
Mr = 267.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.6269 (19) ŵ = 0.67 mm1
b = 7.3422 (4) ÅT = 193 K
c = 21.890 (5) Å0.35 × 0.20 × 0.10 mm
β = 103.133 (11)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2243 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Draeger & Gattow (1971)
Rint = 0.091
Tmin = 0.799, Tmax = 0.9363 standard reflections every 60 min
2722 measured reflections intensity decay: 2%
2545 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
2546 reflectionsΔρmin = 0.26 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.70466 (16)0.01341 (18)0.11411 (6)0.0277 (3)
C20.71052 (18)0.0150 (2)0.05338 (7)0.0272 (3)
C30.7611 (2)0.0918 (2)0.00798 (8)0.0369 (4)
H30.79990.21230.01670.044*
C40.7513 (2)0.0124 (3)0.04902 (8)0.0411 (4)
H40.78460.08010.08080.049*
C50.6933 (2)0.1673 (3)0.06290 (8)0.0364 (4)
H50.69000.21660.10330.044*
C60.64222 (18)0.2710 (2)0.01957 (7)0.0317 (4)
H60.60230.39090.02860.038*
C70.65231 (17)0.1899 (2)0.03868 (7)0.0262 (3)
N80.61389 (15)0.25395 (18)0.09300 (6)0.0285 (3)
N90.64505 (16)0.13267 (18)0.13845 (6)0.0294 (3)
O100.56088 (16)0.41370 (17)0.10077 (6)0.0416 (3)
C110.7402 (2)0.1818 (2)0.15108 (7)0.0308 (4)
H11A0.82030.25290.13520.037*
H11B0.64210.25620.14500.037*
C120.80200 (18)0.1471 (2)0.22014 (7)0.0258 (3)
C130.96499 (17)0.1154 (2)0.24416 (7)0.0278 (3)
C141.01987 (18)0.0911 (2)0.30840 (8)0.0307 (4)
H141.13050.07280.32490.037*
C150.9183 (2)0.0928 (2)0.34912 (7)0.0311 (4)
C160.75646 (19)0.1203 (2)0.32423 (7)0.0307 (4)
H160.68500.11970.35150.037*
C170.69733 (18)0.1485 (2)0.26051 (7)0.0272 (3)
C181.0814 (2)0.1051 (2)0.20228 (9)0.0396 (4)
H18A1.09220.22560.18440.059*
H18B1.18520.06480.22690.059*
H18C1.04240.01810.16830.059*
C190.9812 (2)0.0637 (3)0.41845 (8)0.0460 (5)
H19A0.99220.18160.44000.069*
H19B0.90700.01320.43480.069*
H19C1.08530.00390.42570.069*
C200.52065 (19)0.1764 (3)0.23637 (8)0.0393 (4)
H20A0.47710.07710.20760.059*
H20B0.46840.17720.27170.059*
H20C0.50170.29290.21410.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0360 (7)0.0243 (7)0.0232 (6)0.0026 (5)0.0075 (5)0.0011 (5)
C20.0279 (7)0.0279 (8)0.0258 (7)0.0008 (6)0.0060 (6)0.0003 (6)
C30.0467 (9)0.0346 (9)0.0297 (8)0.0077 (7)0.0096 (7)0.0025 (7)
C40.0477 (10)0.0471 (11)0.0304 (9)0.0048 (8)0.0131 (7)0.0050 (8)
C50.0394 (9)0.0446 (10)0.0249 (8)0.0020 (8)0.0064 (7)0.0047 (7)
C60.0304 (8)0.0338 (9)0.0290 (8)0.0001 (6)0.0028 (6)0.0053 (7)
C70.0242 (7)0.0283 (8)0.0255 (7)0.0007 (6)0.0042 (6)0.0001 (6)
N80.0315 (7)0.0251 (7)0.0284 (6)0.0036 (5)0.0060 (5)0.0007 (5)
N90.0364 (7)0.0255 (7)0.0270 (6)0.0032 (5)0.0083 (5)0.0002 (5)
O100.0574 (8)0.0284 (6)0.0406 (7)0.0164 (5)0.0141 (6)0.0016 (5)
C110.0442 (9)0.0216 (8)0.0261 (8)0.0000 (6)0.0070 (7)0.0023 (6)
C120.0312 (8)0.0195 (7)0.0263 (7)0.0013 (6)0.0057 (6)0.0023 (6)
C130.0304 (8)0.0200 (7)0.0344 (8)0.0026 (6)0.0099 (6)0.0005 (6)
C140.0262 (7)0.0231 (8)0.0397 (9)0.0012 (6)0.0011 (6)0.0001 (6)
C150.0384 (8)0.0250 (8)0.0274 (8)0.0030 (6)0.0023 (6)0.0019 (6)
C160.0349 (8)0.0296 (8)0.0295 (8)0.0035 (6)0.0112 (6)0.0061 (6)
C170.0285 (7)0.0250 (8)0.0275 (8)0.0003 (6)0.0053 (6)0.0065 (6)
C180.0378 (9)0.0342 (9)0.0523 (11)0.0014 (7)0.0217 (8)0.0040 (8)
C190.0543 (11)0.0473 (11)0.0313 (9)0.0008 (9)0.0006 (8)0.0014 (8)
C200.0290 (8)0.0495 (11)0.0383 (9)0.0042 (7)0.0053 (7)0.0096 (8)
Geometric parameters (Å, º) top
N1—N91.3502 (18)C12—C131.404 (2)
N1—C21.358 (2)C13—C141.390 (2)
N1—C111.4713 (19)C13—C181.508 (2)
C2—C71.390 (2)C14—C151.384 (2)
C2—C31.411 (2)C14—H140.9500
C3—C41.362 (2)C15—C161.393 (2)
C3—H30.9500C15—C191.506 (2)
C4—C51.419 (3)C16—C171.388 (2)
C4—H40.9500C16—H160.9500
C5—C61.365 (2)C17—C201.509 (2)
C5—H50.9500C18—H18A0.9800
C6—C71.392 (2)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—N81.387 (2)C19—H19A0.9800
N8—O101.2842 (17)C19—H19B0.9800
N8—N91.3166 (18)C19—H19C0.9800
C11—C121.506 (2)C20—H20A0.9800
C11—H11A0.9900C20—H20B0.9800
C11—H11B0.9900C20—H20C0.9800
C12—C171.400 (2)
N9—N1—C2111.49 (12)C14—C13—C12118.82 (14)
N9—N1—C11120.06 (12)C14—C13—C18119.21 (14)
C2—N1—C11128.19 (13)C12—C13—C18121.96 (15)
N1—C2—C7106.08 (13)C15—C14—C13122.03 (14)
N1—C2—C3133.66 (15)C15—C14—H14119.0
C7—C2—C3120.26 (14)C13—C14—H14119.0
C4—C3—C2116.27 (16)C14—C15—C16118.30 (14)
C4—C3—H3121.9C14—C15—C19120.77 (15)
C2—C3—H3121.9C16—C15—C19120.92 (15)
C3—C4—C5122.64 (16)C17—C16—C15121.43 (14)
C3—C4—H4118.7C17—C16—H16119.3
C5—C4—H4118.7C15—C16—H16119.3
C6—C5—C4121.56 (15)C16—C17—C12119.41 (14)
C6—C5—H5119.2C16—C17—C20118.91 (14)
C4—C5—H5119.2C12—C17—C20121.67 (14)
C5—C6—C7115.80 (16)C13—C18—H18A109.5
C5—C6—H6122.1C13—C18—H18B109.5
C7—C6—H6122.1H18A—C18—H18B109.5
N8—C7—C2105.00 (13)C13—C18—H18C109.5
N8—C7—C6131.53 (15)H18A—C18—H18C109.5
C2—C7—C6123.47 (15)H18B—C18—H18C109.5
O10—N8—N9122.37 (13)C15—C19—H19A109.5
O10—N8—C7125.79 (13)C15—C19—H19B109.5
N9—N8—C7111.77 (13)H19A—C19—H19B109.5
N8—N9—N1105.66 (12)C15—C19—H19C109.5
N1—C11—C12113.08 (13)H19A—C19—H19C109.5
N1—C11—H11A109.0H19B—C19—H19C109.5
C12—C11—H11A109.0C17—C20—H20A109.5
N1—C11—H11B109.0C17—C20—H20B109.5
C12—C11—H11B109.0H20A—C20—H20B109.5
H11A—C11—H11B107.8C17—C20—H20C109.5
C17—C12—C13119.98 (14)H20A—C20—H20C109.5
C17—C12—C11120.02 (14)H20B—C20—H20C109.5
C13—C12—C11120.00 (14)
N9—N1—C2—C70.47 (17)C11—N1—N9—N8174.86 (13)
C11—N1—C2—C7174.51 (14)N9—N1—C11—C1235.7 (2)
N9—N1—C2—C3179.86 (17)C2—N1—C11—C12150.74 (15)
C11—N1—C2—C35.8 (3)N1—C11—C12—C1795.32 (17)
N1—C2—C3—C4178.70 (17)N1—C11—C12—C1385.41 (18)
C7—C2—C3—C40.9 (2)C17—C12—C13—C141.8 (2)
C2—C3—C4—C50.2 (3)C11—C12—C13—C14177.43 (13)
C3—C4—C5—C60.6 (3)C17—C12—C13—C18177.49 (14)
C4—C5—C6—C70.6 (2)C11—C12—C13—C183.2 (2)
N1—C2—C7—N80.46 (16)C12—C13—C14—C151.6 (2)
C3—C2—C7—N8179.81 (14)C18—C13—C14—C15177.75 (14)
N1—C2—C7—C6178.74 (14)C13—C14—C15—C160.1 (2)
C3—C2—C7—C61.0 (2)C13—C14—C15—C19179.23 (15)
C5—C6—C7—N8179.14 (15)C14—C15—C16—C171.1 (2)
C5—C6—C7—C20.2 (2)C19—C15—C16—C17179.53 (16)
C2—C7—N8—O10177.40 (14)C15—C16—C17—C120.8 (2)
C6—C7—N8—O101.7 (3)C15—C16—C17—C20179.64 (15)
C2—C7—N8—N90.32 (17)C13—C12—C17—C160.7 (2)
C6—C7—N8—N9178.79 (15)C11—C12—C17—C16178.61 (14)
O10—N8—N9—N1177.24 (13)C13—C12—C17—C20178.11 (15)
C7—N8—N9—N10.04 (17)C11—C12—C17—C202.6 (2)
C2—N1—N9—N80.28 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10i0.952.353.190 (2)147
C16—H16···O10ii0.952.583.506 (2)165
C18—H18A···Cg3iii0.982.983.810 (18)144
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17N3O
Mr267.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.6269 (19), 7.3422 (4), 21.890 (5)
β (°) 103.133 (11)
V3)1350.2 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Draeger & Gattow (1971)
Tmin, Tmax0.799, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
2722, 2545, 2243
Rint0.091
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.09
No. of reflections2546
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CORINC (Draeger & Gattow, 1971), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O10i0.952.353.190 (2)147.1
C16—H16···O10ii0.952.583.506 (2)164.8
C18—H18A···Cg3iii0.982.983.810 (18)144
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem.Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDraeger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds