metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m271-m272

Deca­aqua-1κ5O,4κ5O-bis­­(μ-nitrilo­tri­acetato)-1:2κ5O:N,O′,O′′,O′′′;3:4κ5N,O,O′,O′′:O′′′-μ-oxido-2:3κ2O:O-diperoxido-2κ2O,O′;3κ2O,O′-1,4-dicopper(II)-2,3-dititanium(IV) hepta­hydrate

aCollege of Chinese Language and Culture, Jinan University, Guangzhou 510610, People's Republic of China, bOffice of Rongcheng Vocational College, Rongcheng Vocational College, Rongcheng 476600, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 January 2010; accepted 2 February 2010; online 6 February 2010)

The tetra­nuclear title compound, [Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2O, lies about a twofold rotation axis that passes through the bridging oxide atom. The titanium atom is N,O,O′,O′′-chelated by the nitrilo­triacetate and O,O′-chelated by the peroidxo group and is coordinated to the bridging O atom in an overall penta­gonal-bipyramidal geometry. The O atom of one of the carboxyl­ate –CO2 groups binds to the water-coordinated Cu atom, whose coordination polyhedron is an elongated octa­hedron. Adjacent tetra­nuclear mol­ecules are linked through the coordinated and uncoordinated water mol­ecules by O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the hydrated sodium and ammonium salts of oxobis(nitrilo­triacetatoperoxotitanates), see: Schwarzenbach & Girgis (1975[Schwarzenbach, D. & Girgis, K. (1975). Helv. Chim. Acta, 58, 2391-2398.]); Zhou et al. (2004[Zhou, Z.-H., Hong, Q.-M. & Deng, Y.-F. (2004). Huaxue Xuebao, 62, 2379-2385.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2O

  • Mr = 985.39

  • Monoclinic, C 2/c

  • a = 14.9312 (10) Å

  • b = 13.2892 (9) Å

  • c = 17.4449 (10) Å

  • β = 100.825 (2)°

  • V = 3399.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS Spider IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.694, Tmax = 1.000

  • 16221 measured reflections

  • 3894 independent reflections

  • 3408 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.075

  • S = 1.08

  • 3894 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O6wi 0.84 1.80 2.627 (2) 169
O1w—H12⋯O9wii 0.84 1.99 2.789 (1) 159
O2w—H21⋯O1wi 0.84 1.91 2.746 (2) 173
O2w—H22⋯O1iii 0.84 1.90 2.737 (2) 174
O3w—H31⋯O4iv 0.84 1.93 2.746 (2) 165
O3w—H32⋯O4wiii 0.84 1.86 2.658 (2) 158
O4w—H4w1⋯O8iii 0.84 1.85 2.693 (2) 176
O4w—H4w2⋯O8w 0.84 1.85 2.675 (2) 169
O5w—H51⋯O2v 0.84 2.02 2.850 (2) 168
O5w—H52⋯O7w 0.84 2.01 2.813 (3) 161
O6w—H61⋯O5w 0.84 2.02 2.797 (2) 153
O6w—H62⋯O7wvi 0.84 2.15 2.965 (3) 164
O7w—H71⋯O3 0.84 2.38 3.195 (2) 163
O7w—H72⋯O9vii 0.84 2.07 2.900 (2) 168
O8w—H81⋯O3viii 0.84 2.06 2.890 (2) 172
O8w—H82⋯O4ix 0.84 2.33 3.148 (3) 164
O9w—H9⋯O2 0.84 1.89 2.716 (2) 170
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vii) -x+1, -y+1, -z+1; (viii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ix) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the hydrated sodium and ammonium salts of oxobis(nitrilotriacetatoperoxotitanates), see: Schwarzenbach & Girgis (1975); Zhou et al. (2004).

Experimental top

To a suspension of nitrilotriacetic acid (1.91 g, 10 mol) in water (30 ml) was added titanium tetrabutoxide (3.40 ml). After 12 hours, the mixture was allowed to cool to 273 K; 30% hydrogen peroxide (5 ml) was added. The mixture was filtered. The pH of the filtrate was raised to 4.0. Copper chloride dihydrate (1.70 g, 10 mol) was added. The solution was kept at 279 K for a week. Green crystals were collected and washed with water; the yield was 90%. CH&N elemental analysis. Found (Calc. for C12H46O34N2Cu2Ti2): C 14.59 (14.63), H 4.75 (4.71), N 2.82% (2.84%). The crystals do not dissolve in organic solvents.

Refinement top

Carbon-bound H-atoms were allowed to ride on their parent atoms (C–H 0.97 Å) with U(H) set to 1.2Ueq(C). The water H-atoms were located in a difference Fourier map, and were initially refined with distance restraints of O–H 0.84 and H···H 1.37 Å; with U(H) set to 1.5Ueq(O). Once found, their positions were fixed.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Cu2Ti2(O)(O2)2(H2O)10(C6H6NO6)2.7H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Decaaqua-1κ5O,4κ5O-bis(µ-nitrilotriacetato)- 1:2κ5O:N,O',O'',O'''; 3:4κ5N,O,O',O'':O'''-µ-oxido- 2:3κ2O:O-diperoxido- 2κ2O,O';3κ2O,O'-1,4-dicopper(II)- 2,3-dititanium(IV) heptahydrate top
Crystal data top
[Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2OF(000) = 2024
Mr = 985.39Dx = 1.925 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13230 reflections
a = 14.9312 (10) Åθ = 3.1–27.5°
b = 13.2892 (9) ŵ = 1.81 mm1
c = 17.4449 (10) ÅT = 293 K
β = 100.825 (2)°Block, green
V = 3399.9 (4) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS Spider IP
diffractometer
3894 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.694, Tmax = 1.000k = 1717
16221 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0339P)2 + 4.0704P]
where P = (Fo2 + 2Fc2)/3
3894 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2OV = 3399.9 (4) Å3
Mr = 985.39Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.9312 (10) ŵ = 1.81 mm1
b = 13.2892 (9) ÅT = 293 K
c = 17.4449 (10) Å0.30 × 0.20 × 0.20 mm
β = 100.825 (2)°
Data collection top
Rigaku R-AXIS Spider IP
diffractometer
3894 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3408 reflections with I > 2σ(I)
Tmin = 0.694, Tmax = 1.000Rint = 0.033
16221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
3894 reflectionsΔρmin = 0.31 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.133265 (16)0.615605 (19)0.469933 (13)0.02095 (8)
Ti10.42419 (2)0.63347 (3)0.319688 (18)0.01718 (9)
O10.39888 (10)0.78937 (11)0.30661 (8)0.0241 (3)
O20.36186 (12)0.91179 (12)0.21923 (9)0.0331 (4)
O30.38194 (10)0.48763 (11)0.28694 (8)0.0254 (3)
O40.31766 (13)0.38625 (12)0.19110 (10)0.0355 (4)
O50.31248 (10)0.63343 (12)0.37559 (8)0.0263 (3)
O60.16254 (10)0.64622 (12)0.36729 (8)0.0254 (3)
O70.50000.63818 (16)0.25000.0239 (4)
O80.50228 (10)0.67667 (12)0.41151 (8)0.0280 (3)
O90.49544 (10)0.56625 (12)0.40498 (8)0.0296 (3)
O1w0.00795 (10)0.58467 (12)0.40849 (8)0.0254 (3)
H110.03070.62610.41880.038*
H120.00960.58900.36070.038*
O2w0.08783 (12)0.58514 (13)0.56735 (9)0.0358 (4)
H210.05570.53630.57650.054*
H220.09080.62690.60390.054*
O3w0.25339 (11)0.62901 (14)0.53336 (9)0.0360 (4)
H310.26390.62890.58240.054*
H320.29650.65870.51810.054*
O4w0.09054 (10)0.77903 (12)0.47459 (8)0.0274 (3)
H4w10.06380.79310.51150.041*
H4w20.05660.79590.43250.041*
O5w0.17335 (12)0.44158 (13)0.44550 (9)0.0355 (4)
H510.15950.42440.39840.053*
H520.23040.44180.45850.053*
O6w0.12472 (12)0.30720 (14)0.55409 (10)0.0394 (4)
H610.13110.33290.51140.059*
H620.11680.24500.54760.059*
O7w0.36239 (13)0.41472 (15)0.45757 (11)0.0466 (5)
H710.37800.44050.41810.070*
H720.40180.42950.49700.070*
O8w0.01007 (15)0.80955 (16)0.33263 (11)0.0542 (5)
H810.04230.86160.32370.081*
H820.04040.82070.31960.081*
O9w0.50001.04750 (17)0.25000.0319 (5)
H90.45361.01050.24320.048*
N10.30344 (11)0.65163 (12)0.21958 (9)0.0170 (3)
C10.36250 (14)0.82322 (15)0.23904 (11)0.0221 (4)
C20.32017 (14)0.74543 (15)0.17992 (11)0.0224 (4)
H2A0.26310.77090.15040.027*
H2B0.36070.73220.14370.027*
C30.30488 (14)0.56253 (15)0.16936 (11)0.0227 (4)
H3A0.34650.57420.13370.027*
H3B0.24450.55130.13870.027*
C40.33482 (14)0.47085 (16)0.21844 (11)0.0227 (4)
C50.21789 (13)0.65676 (17)0.25076 (11)0.0224 (4)
H5A0.17680.60450.22640.027*
H5B0.18880.72110.23680.027*
C60.23267 (13)0.64436 (15)0.33827 (11)0.0191 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01981 (13)0.02595 (14)0.01754 (13)0.00436 (9)0.00469 (9)0.00037 (9)
Ti10.01574 (17)0.02177 (18)0.01442 (16)0.00001 (13)0.00386 (12)0.00014 (12)
O10.0284 (8)0.0214 (7)0.0208 (7)0.0008 (6)0.0002 (6)0.0029 (5)
O20.0396 (9)0.0210 (8)0.0352 (8)0.0057 (7)0.0017 (7)0.0041 (6)
O30.0290 (8)0.0202 (7)0.0249 (7)0.0009 (6)0.0005 (6)0.0013 (6)
O40.0464 (10)0.0203 (8)0.0360 (9)0.0004 (7)0.0019 (7)0.0053 (6)
O50.0173 (7)0.0438 (9)0.0180 (6)0.0002 (6)0.0042 (5)0.0011 (6)
O60.0192 (7)0.0363 (8)0.0220 (7)0.0003 (6)0.0070 (5)0.0019 (6)
O70.0205 (10)0.0325 (11)0.0195 (9)0.0000.0062 (8)0.000
O80.0249 (8)0.0365 (9)0.0213 (7)0.0015 (7)0.0006 (6)0.0035 (6)
O90.0281 (8)0.0350 (9)0.0243 (7)0.0051 (7)0.0013 (6)0.0063 (6)
O1w0.0247 (8)0.0285 (8)0.0241 (7)0.0044 (6)0.0076 (6)0.0029 (6)
O2w0.0535 (11)0.0327 (9)0.0258 (7)0.0203 (8)0.0190 (7)0.0081 (7)
O3w0.0266 (8)0.0562 (11)0.0233 (7)0.0132 (8)0.0001 (6)0.0062 (7)
O4w0.0268 (8)0.0330 (8)0.0224 (7)0.0010 (6)0.0049 (6)0.0035 (6)
O5w0.0370 (9)0.0380 (9)0.0310 (8)0.0004 (7)0.0052 (7)0.0032 (7)
O6w0.0345 (9)0.0426 (10)0.0420 (9)0.0011 (8)0.0098 (7)0.0002 (8)
O7w0.0379 (10)0.0545 (12)0.0443 (10)0.0041 (9)0.0006 (8)0.0179 (9)
O8w0.0553 (13)0.0572 (13)0.0454 (11)0.0194 (10)0.0024 (9)0.0064 (9)
O9w0.0229 (11)0.0308 (12)0.0402 (12)0.0000.0008 (9)0.000
N10.0187 (8)0.0169 (8)0.0159 (7)0.0022 (6)0.0044 (6)0.0008 (6)
C10.0199 (10)0.0219 (10)0.0247 (9)0.0014 (8)0.0047 (7)0.0007 (8)
C20.0262 (10)0.0216 (10)0.0186 (9)0.0034 (8)0.0020 (7)0.0043 (8)
C30.0285 (11)0.0207 (10)0.0183 (9)0.0008 (8)0.0028 (7)0.0030 (7)
C40.0211 (9)0.0244 (10)0.0233 (9)0.0014 (8)0.0060 (7)0.0022 (8)
C50.0161 (9)0.0312 (11)0.0198 (9)0.0008 (8)0.0033 (7)0.0006 (8)
C60.0199 (9)0.0183 (9)0.0200 (9)0.0017 (7)0.0060 (7)0.0010 (7)
Geometric parameters (Å, º) top
Cu1—O3w1.9308 (16)O3w—H310.8399
Cu1—O61.9639 (14)O3w—H320.8400
Cu1—O2w1.9862 (15)O4w—H4w10.8400
Cu1—O1w2.0163 (15)O4w—H4w20.8399
Cu1—O4w2.2693 (16)O5w—H510.8401
Cu1—O5w2.4462 (17)O5w—H520.8400
Ti1—O71.8110 (3)O6w—H610.8400
Ti1—O91.8838 (14)O6w—H620.8400
Ti1—O81.8850 (14)O7w—H710.8400
Ti1—O52.0843 (14)O7w—H720.8401
Ti1—O32.0845 (15)O8w—H810.8400
Ti1—O12.1106 (15)O8w—H820.8400
Ti1—N12.2751 (16)O9w—H90.8401
O1—C11.283 (2)N1—C21.470 (2)
O2—C11.226 (3)N1—C31.475 (2)
O3—C41.287 (2)N1—C51.481 (2)
O4—C41.229 (3)C1—C21.512 (3)
O5—C61.254 (2)C2—H2A0.9700
O6—C61.246 (2)C2—H2B0.9700
O7—Ti1i1.8110 (3)C3—C41.508 (3)
O8—O91.474 (2)C3—H3A0.9700
O1w—H110.8400C3—H3B0.9700
O1w—H120.8401C5—C61.510 (3)
O2w—H210.8400C5—H5A0.9700
O2w—H220.8400C5—H5B0.9700
O3w—Cu1—O699.30 (6)Cu1—O2w—H22122.5
O3w—Cu1—O2w87.61 (7)H21—O2w—H22108.5
O6—Cu1—O2w173.02 (7)Cu1—O3w—H31124.0
O3w—Cu1—O1w173.18 (7)Cu1—O3w—H32123.1
O6—Cu1—O1w84.30 (6)H31—O3w—H32108.4
O2w—Cu1—O1w88.93 (6)Cu1—O4w—H4w1114.7
O3w—Cu1—O4w97.37 (7)Cu1—O4w—H4w2110.6
O6—Cu1—O4w86.94 (6)H4w1—O4w—H4w2108.4
O2w—Cu1—O4w91.20 (6)Cu1—O5w—H51113.8
O1w—Cu1—O4w88.57 (6)Cu1—O5w—H52102.6
O3w—Cu1—O5w87.46 (7)H51—O5w—H52108.4
O6—Cu1—O5w86.18 (6)H61—O6w—H62108.4
O2w—Cu1—O5w95.19 (6)H71—O7w—H72108.4
O1w—Cu1—O5w87.00 (6)H81—O8w—H82108.5
O4w—Cu1—O5w172.15 (5)C2—N1—C3112.23 (14)
O7—Ti1—O9102.42 (6)C2—N1—C5111.62 (16)
O7—Ti1—O8101.25 (5)C3—N1—C5111.40 (15)
O9—Ti1—O846.04 (7)C2—N1—Ti1105.73 (11)
O7—Ti1—O5165.95 (4)C3—N1—Ti1105.83 (11)
O9—Ti1—O590.75 (6)C5—N1—Ti1109.69 (11)
O8—Ti1—O591.38 (6)O2—C1—O1125.10 (19)
O7—Ti1—O392.48 (8)O2—C1—C2118.93 (18)
O9—Ti1—O382.68 (6)O1—C1—C2115.94 (17)
O8—Ti1—O3128.55 (6)N1—C2—C1110.17 (15)
O5—Ti1—O384.28 (6)N1—C2—H2A109.6
O7—Ti1—O190.88 (8)C1—C2—H2A109.6
O9—Ti1—O1127.87 (6)N1—C2—H2B109.6
O8—Ti1—O182.10 (6)C1—C2—H2B109.6
O5—Ti1—O184.72 (6)H2A—C2—H2B108.1
O3—Ti1—O1147.58 (6)N1—C3—C4110.31 (15)
O7—Ti1—N189.21 (4)N1—C3—H3A109.6
O9—Ti1—N1154.83 (7)C4—C3—H3A109.6
O8—Ti1—N1153.44 (7)N1—C3—H3B109.6
O5—Ti1—N176.74 (6)C4—C3—H3B109.6
O3—Ti1—N174.50 (6)H3A—C3—H3B108.1
O1—Ti1—N173.32 (6)O4—C4—O3123.8 (2)
C1—O1—Ti1118.67 (13)O4—C4—C3120.05 (18)
C4—O3—Ti1120.00 (13)O3—C4—C3116.06 (18)
C6—O5—Ti1121.52 (12)N1—C5—C6113.20 (16)
C6—O6—Cu1135.58 (13)N1—C5—H5A108.9
Ti1—O7—Ti1i176.04 (14)C6—C5—H5A108.9
O9—O8—Ti166.94 (8)N1—C5—H5B108.9
O8—O9—Ti167.02 (8)C6—C5—H5B108.9
Cu1—O1w—H11111.0H5A—C5—H5B107.8
Cu1—O1w—H12108.4O6—C6—O5125.48 (17)
H11—O1w—H12108.4O6—C6—C5115.73 (17)
Cu1—O2w—H21128.2O5—C6—C5118.79 (17)
O7—Ti1—O1—C160.95 (14)O1—Ti1—N1—C234.18 (11)
O9—Ti1—O1—C1167.48 (14)O7—Ti1—N1—C362.26 (13)
O8—Ti1—O1—C1162.18 (15)O9—Ti1—N1—C356.2 (2)
O5—Ti1—O1—C1105.68 (15)O8—Ti1—N1—C3176.38 (14)
O3—Ti1—O1—C135.1 (2)O5—Ti1—N1—C3118.19 (12)
N1—Ti1—O1—C127.96 (14)O3—Ti1—N1—C330.53 (11)
O7—Ti1—O3—C467.06 (15)O1—Ti1—N1—C3153.42 (13)
O9—Ti1—O3—C4169.27 (15)O7—Ti1—N1—C5177.46 (14)
O8—Ti1—O3—C4173.57 (14)O9—Ti1—N1—C564.1 (2)
O5—Ti1—O3—C499.23 (15)O8—Ti1—N1—C563.3 (2)
O1—Ti1—O3—C428.5 (2)O5—Ti1—N1—C52.08 (12)
N1—Ti1—O3—C421.43 (14)O3—Ti1—N1—C589.74 (13)
O7—Ti1—O5—C60.3 (4)O1—Ti1—N1—C586.31 (13)
O9—Ti1—O5—C6159.50 (16)Ti1—O1—C1—O2163.57 (17)
O8—Ti1—O5—C6154.45 (16)Ti1—O1—C1—C214.5 (2)
O3—Ti1—O5—C676.94 (16)C3—N1—C2—C1152.71 (16)
O1—Ti1—O5—C672.52 (16)C5—N1—C2—C181.41 (19)
N1—Ti1—O5—C61.55 (15)Ti1—N1—C2—C137.80 (18)
O3w—Cu1—O6—C621.7 (2)O2—C1—C2—N1163.33 (19)
O1w—Cu1—O6—C6152.5 (2)O1—C1—C2—N118.4 (2)
O4w—Cu1—O6—C6118.6 (2)C2—N1—C3—C4151.50 (17)
O5w—Cu1—O6—C665.1 (2)C5—N1—C3—C482.5 (2)
O7—Ti1—O8—O996.49 (10)Ti1—N1—C3—C436.65 (18)
O5—Ti1—O8—O989.71 (9)Ti1—O3—C4—O4170.04 (17)
O3—Ti1—O8—O95.92 (11)Ti1—O3—C4—C36.4 (2)
O1—Ti1—O8—O9174.19 (9)N1—C3—C4—O4160.50 (19)
N1—Ti1—O8—O9152.02 (13)N1—C3—C4—O322.9 (2)
O7—Ti1—O9—O893.73 (10)C2—N1—C5—C6119.28 (18)
O5—Ti1—O9—O891.20 (9)C3—N1—C5—C6114.39 (18)
O3—Ti1—O9—O8175.33 (9)Ti1—N1—C5—C62.4 (2)
O1—Ti1—O9—O87.30 (11)Cu1—O6—C6—O511.1 (3)
N1—Ti1—O9—O8150.44 (14)Cu1—O6—C6—C5169.07 (15)
O7—Ti1—N1—C256.98 (13)Ti1—O5—C6—O6179.24 (16)
O9—Ti1—N1—C2175.44 (15)Ti1—O5—C6—C50.6 (3)
O8—Ti1—N1—C257.15 (19)N1—C5—C6—O6178.72 (17)
O5—Ti1—N1—C2122.57 (13)N1—C5—C6—O51.4 (3)
O3—Ti1—N1—C2149.77 (13)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O6wii0.841.802.627 (2)169
O1w—H12···O9wiii0.841.992.789 (1)159
O2w—H21···O1wii0.841.912.746 (2)173
O2w—H22···O1iv0.841.902.737 (2)174
O3w—H31···O4v0.841.932.746 (2)165
O3w—H32···O4wiv0.841.862.658 (2)158
O4w—H4w1···O8iv0.841.852.693 (2)176
O4w—H4w2···O8w0.841.852.675 (2)169
O5w—H51···O2vi0.842.022.850 (2)168
O5w—H52···O7w0.842.012.813 (3)161
O6w—H61···O5w0.842.022.797 (2)153
O6w—H62···O7wvii0.842.152.965 (3)164
O7w—H71···O30.842.383.195 (2)163
O7w—H72···O9viii0.842.072.900 (2)168
O8w—H81···O3ix0.842.062.890 (2)172
O8w—H82···O4x0.842.333.148 (3)164
O9w—H9···O20.841.892.716 (2)170
Symmetry codes: (ii) x, y+1, z+1; (iii) x1/2, y1/2, z; (iv) x+1/2, y+3/2, z+1; (v) x, y+1, z+1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+1, y+1, z+1; (ix) x1/2, y+1/2, z; (x) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2Ti2(C6H6NO6)2O(O2)2(H2O)10]·7H2O
Mr985.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.9312 (10), 13.2892 (9), 17.4449 (10)
β (°) 100.825 (2)
V3)3399.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS Spider IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.694, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16221, 3894, 3408
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.075, 1.08
No. of reflections3894
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: RAPID-AUTO (Rigaku, 2002), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O6wi0.841.802.627 (2)169
O1w—H12···O9wii0.841.992.789 (1)159
O2w—H21···O1wi0.841.912.746 (2)173
O2w—H22···O1iii0.841.902.737 (2)174
O3w—H31···O4iv0.841.932.746 (2)165
O3w—H32···O4wiii0.841.862.658 (2)158
O4w—H4w1···O8iii0.841.852.693 (2)176
O4w—H4w2···O8w0.841.852.675 (2)169
O5w—H51···O2v0.842.022.850 (2)168
O5w—H52···O7w0.842.012.813 (3)161
O6w—H61···O5w0.842.022.797 (2)153
O6w—H62···O7wvi0.842.152.965 (3)164
O7w—H71···O30.842.383.195 (2)163
O7w—H72···O9vii0.842.072.900 (2)168
O8w—H81···O3viii0.842.062.890 (2)172
O8w—H82···O4ix0.842.333.148 (3)164
O9w—H9···O20.841.892.716 (2)170
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y1/2, z; (iii) x+1/2, y+3/2, z+1; (iv) x, y+1, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1; (vii) x+1, y+1, z+1; (viii) x1/2, y+1/2, z; (ix) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the the National Science Foundation of China (No. 20971045-B0103303) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSchwarzenbach, D. & Girgis, K. (1975). Helv. Chim. Acta, 58, 2391–2398.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZhou, Z.-H., Hong, Q.-M. & Deng, Y.-F. (2004). Huaxue Xuebao, 62, 2379–2385.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m271-m272
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds