organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-Perillaldehyde azine

aHunan Yongzhou Vocational College, Yongzhou, Hunan 425100, People's Republic of China, bDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 January 2010; accepted 2 February 2010; online 6 February 2010)

The C=N–N=C linkage [torsion angle −172.5 (2)°] in the title azine, C20H28N2, adopts a trans conformation. The six-membered rings adopt sofa conformations.

Related literature

A previous study reported the oxime derivative of S-perillaldehyde; see Yuan et al. (2009[Yuan, X.-Y., Zhang, M. & Ng, S. W. (2009). Acta Cryst. E65, o2149.]). Only few crystal structures of azines have been reported, see: Berthou et al. (1970[Berthou, J., Marzin, C., Rérat, B., Rérat, C. & Uesu, Y. (1970). C. R. Acad. Sci. Ser. C, pp. 918-921.]); Kim & Lee (2008[Kim, S. H. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 137-144.]); Marek et al. (1997[Marek, R., St'astná-Sedláčková, I., Toušek, J., Marek, J. & Potacek, M. (1997). Bull. Soc. Chim. Belg. 106, 645-649.]); Rizal et al. (2008[Rizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.]); Sanz et al. (1999[Sanz, D., Ponce, M. J., Claramunt, R. M., Fernández-Castaño, C., Foces-Foces, C. & Elguero, J. (1999). J. Phys. Org. Chem. 12, 455-469.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28N2

  • Mr = 296.44

  • Monoclinic, P 21

  • a = 8.8200 (5) Å

  • b = 9.7603 (6) Å

  • c = 10.1710 (6) Å

  • β = 94.970 (1)°

  • V = 872.29 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.48 × 0.46 × 0.21 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 7179 measured reflections

  • 2013 independent reflections

  • 1802 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.12

  • 2013 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

A previous study reported the oxime derivative of S-perillaldehyde; see Yuan et al. (2009). Only few crystal structures of azines have been reported, see: Berthou et al. (1970); Kim & Lee (2008); Marek et al. (1997); Rizal et al. (2008); Sanz et al. (1999).

Experimental top

An ethanol solution (10 ml) of hydrazinium hydroxide (0.5 g, 0.01 mol) was added to a 50% ethanol solution (50 ml) of perillaldehyde (3 g, 0.02 mol); acetic acid (2 ml) was then added. The mixture was heated for two hours. The product was recrystallized from ethyl acetate to afford light-yellow crystals (yield 70%).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). In the absence of anomalous scatterers Friedel pairs were merged. The chiral carbon atoms were assumed to have an S-configuration, i.e., the configuration of perillaldehyde itself.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C20H28N2 at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.
(S)-Perillaldehyde azine top
Crystal data top
C20H28N2F(000) = 324
Mr = 296.44Dx = 1.129 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4048 reflections
a = 8.8200 (5) Åθ = 2.3–27.2°
b = 9.7603 (6) ŵ = 0.07 mm1
c = 10.1710 (6) ÅT = 173 K
β = 94.970 (1)°Block, yellow
V = 872.29 (9) Å30.48 × 0.46 × 0.21 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1802 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.2°, θmin = 2.0°
ω scansh = 1111
7179 measured reflectionsk = 1212
2013 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.074P)2 + 0.242P]
where P = (Fo2 + 2Fc2)/3
2013 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C20H28N2V = 872.29 (9) Å3
Mr = 296.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.8200 (5) ŵ = 0.07 mm1
b = 9.7603 (6) ÅT = 173 K
c = 10.1710 (6) Å0.48 × 0.46 × 0.21 mm
β = 94.970 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1802 reflections with I > 2σ(I)
7179 measured reflectionsRint = 0.035
2013 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.141H-atom parameters constrained
S = 1.12Δρmax = 0.22 e Å3
2013 reflectionsΔρmin = 0.23 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.1573 (3)0.4999 (3)0.9681 (2)0.0344 (5)
N21.2864 (3)0.5570 (3)1.0416 (2)0.0340 (5)
C10.3418 (3)0.5570 (4)0.6676 (3)0.0432 (7)
H1A0.25560.53110.60530.065*
H1B0.35810.65610.66310.065*
H1C0.32000.53170.75730.065*
C20.4821 (3)0.4836 (3)0.6326 (3)0.0335 (6)
C30.4827 (4)0.4131 (4)0.5213 (3)0.0451 (8)
H3A0.39330.40850.46230.054*
H3B0.57250.36720.50060.054*
C40.6201 (3)0.4954 (3)0.7323 (3)0.0303 (6)
H40.58810.46060.81820.036*
C50.6657 (4)0.6461 (3)0.7542 (3)0.0403 (7)
H5A0.67170.69070.66740.048*
H5B0.58560.69330.79950.048*
C60.8147 (3)0.6631 (3)0.8341 (3)0.0369 (6)
H60.84070.75180.86730.044*
C70.9134 (3)0.5613 (3)0.8618 (3)0.0302 (6)
C80.8822 (3)0.4179 (3)0.8139 (3)0.0373 (7)
H8A0.85240.36120.88820.045*
H8B0.97670.37850.78370.045*
C90.7568 (3)0.4114 (3)0.7014 (3)0.0356 (6)
H9A0.79620.44650.61960.043*
H9B0.72550.31490.68600.043*
C101.0558 (3)0.5917 (3)0.9402 (3)0.0325 (6)
H101.07390.68240.97160.039*
C111.3954 (3)0.4699 (3)1.0567 (3)0.0321 (6)
H111.38160.38101.01950.038*
C121.5398 (3)0.5041 (3)1.1296 (3)0.0302 (6)
C131.6523 (3)0.4117 (3)1.1373 (3)0.0340 (6)
H131.63350.32591.09480.041*
C141.8062 (3)0.4349 (3)1.2089 (3)0.0349 (6)
H14A1.88140.45001.14360.042*
H14B1.83700.35171.26030.042*
C151.8082 (3)0.5578 (3)1.3023 (3)0.0318 (6)
H151.74720.53191.37690.038*
C161.7255 (3)0.6772 (3)1.2292 (3)0.0370 (7)
H16A1.73320.76001.28550.044*
H16B1.77480.69741.14750.044*
C171.5580 (3)0.6425 (3)1.1939 (3)0.0384 (7)
H17A1.50350.64371.27500.046*
H17B1.51160.71311.13310.046*
C181.9656 (3)0.5985 (3)1.3620 (3)0.0342 (6)
C191.9691 (4)0.7035 (4)1.4708 (3)0.0460 (8)
H19A2.07500.72401.50180.069*
H19B1.91600.66741.54420.069*
H19C1.91860.78751.43730.069*
C202.0927 (3)0.5473 (4)1.3233 (3)0.0407 (7)
H20A2.18810.57661.36410.049*
H20B2.08880.48121.25460.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0284 (11)0.0386 (13)0.0355 (12)0.0022 (11)0.0012 (9)0.0030 (11)
N20.0286 (12)0.0386 (13)0.0342 (11)0.0017 (11)0.0011 (9)0.0028 (11)
C10.0339 (15)0.0515 (18)0.0434 (15)0.0057 (15)0.0007 (12)0.0029 (15)
C20.0291 (13)0.0356 (15)0.0352 (13)0.0007 (13)0.0007 (11)0.0034 (12)
C30.0401 (16)0.052 (2)0.0420 (17)0.0017 (16)0.0050 (13)0.0098 (16)
C40.0303 (13)0.0304 (13)0.0297 (12)0.0008 (12)0.0003 (10)0.0007 (11)
C50.0366 (16)0.0284 (14)0.0547 (17)0.0077 (13)0.0036 (13)0.0055 (14)
C60.0350 (15)0.0281 (14)0.0466 (15)0.0013 (12)0.0019 (12)0.0054 (13)
C70.0287 (13)0.0328 (14)0.0289 (12)0.0008 (12)0.0010 (10)0.0031 (11)
C80.0349 (15)0.0314 (15)0.0438 (15)0.0055 (13)0.0064 (12)0.0025 (14)
C90.0356 (14)0.0275 (14)0.0426 (15)0.0031 (12)0.0031 (12)0.0060 (13)
C100.0316 (14)0.0328 (15)0.0334 (13)0.0029 (12)0.0038 (11)0.0045 (11)
C110.0336 (14)0.0330 (16)0.0296 (13)0.0038 (12)0.0029 (10)0.0011 (11)
C120.0299 (13)0.0320 (14)0.0288 (12)0.0032 (12)0.0037 (10)0.0027 (11)
C130.0343 (14)0.0320 (14)0.0349 (13)0.0020 (13)0.0015 (11)0.0011 (12)
C140.0309 (14)0.0318 (15)0.0411 (15)0.0020 (12)0.0027 (11)0.0006 (12)
C150.0290 (13)0.0362 (15)0.0302 (12)0.0040 (12)0.0027 (10)0.0031 (12)
C160.0342 (15)0.0318 (15)0.0434 (15)0.0035 (12)0.0054 (12)0.0012 (12)
C170.0335 (15)0.0349 (16)0.0451 (16)0.0027 (13)0.0061 (12)0.0021 (14)
C180.0351 (15)0.0372 (16)0.0296 (13)0.0048 (12)0.0011 (11)0.0054 (11)
C190.0404 (17)0.059 (2)0.0382 (16)0.0084 (16)0.0010 (12)0.0103 (15)
C200.0319 (15)0.0471 (18)0.0416 (15)0.0016 (14)0.0048 (12)0.0004 (15)
Geometric parameters (Å, º) top
N1—C101.280 (4)C10—H100.9500
N1—N21.421 (3)C11—C121.456 (4)
N2—C111.282 (4)C11—H110.9500
C1—C21.499 (4)C12—C131.338 (4)
C1—H1A0.9800C12—C171.503 (4)
C1—H1B0.9800C13—C141.501 (4)
C1—H1C0.9800C13—H130.9500
C2—C31.325 (4)C14—C151.529 (4)
C2—C41.519 (4)C14—H14A0.9900
C3—H3A0.9500C14—H14B0.9900
C3—H3B0.9500C15—C181.519 (4)
C4—C91.513 (4)C15—C161.533 (4)
C4—C51.537 (4)C15—H151.0000
C4—H41.0000C16—C171.528 (4)
C5—C61.493 (4)C16—H16A0.9900
C5—H5A0.9900C16—H16B0.9900
C5—H5B0.9900C17—H17A0.9900
C6—C71.335 (4)C17—H17B0.9900
C6—H60.9500C18—C201.318 (4)
C7—C101.459 (4)C18—C191.507 (4)
C7—C81.500 (4)C19—H19A0.9800
C8—C91.523 (4)C19—H19B0.9800
C8—H8A0.9900C19—H19C0.9800
C8—H8B0.9900C20—H20A0.9500
C9—H9A0.9900C20—H20B0.9500
C9—H9B0.9900
C10—N1—N2110.8 (3)C7—C10—H10119.0
C11—N2—N1111.2 (2)N2—C11—C12121.5 (3)
C2—C1—H1A109.5N2—C11—H11119.3
C2—C1—H1B109.5C12—C11—H11119.3
H1A—C1—H1B109.5C13—C12—C11119.1 (3)
C2—C1—H1C109.5C13—C12—C17122.0 (3)
H1A—C1—H1C109.5C11—C12—C17118.9 (3)
H1B—C1—H1C109.5C12—C13—C14124.2 (3)
C3—C2—C1121.0 (3)C12—C13—H13117.9
C3—C2—C4123.2 (3)C14—C13—H13117.9
C1—C2—C4115.8 (3)C13—C14—C15112.4 (2)
C2—C3—H3A120.0C13—C14—H14A109.1
C2—C3—H3B120.0C15—C14—H14A109.1
H3A—C3—H3B120.0C13—C14—H14B109.1
C9—C4—C2115.3 (2)C15—C14—H14B109.1
C9—C4—C5110.2 (2)H14A—C14—H14B107.9
C2—C4—C5110.7 (2)C18—C15—C14114.5 (2)
C9—C4—H4106.7C18—C15—C16112.0 (2)
C2—C4—H4106.7C14—C15—C16108.4 (2)
C5—C4—H4106.7C18—C15—H15107.2
C6—C5—C4113.1 (2)C14—C15—H15107.2
C6—C5—H5A108.9C16—C15—H15107.2
C4—C5—H5A108.9C17—C16—C15110.8 (2)
C6—C5—H5B108.9C17—C16—H16A109.5
C4—C5—H5B108.9C15—C16—H16A109.5
H5A—C5—H5B107.8C17—C16—H16B109.5
C7—C6—C5124.0 (3)C15—C16—H16B109.5
C7—C6—H6118.0H16A—C16—H16B108.1
C5—C6—H6118.0C12—C17—C16111.4 (3)
C6—C7—C10118.6 (3)C12—C17—H17A109.3
C6—C7—C8121.9 (2)C16—C17—H17A109.3
C10—C7—C8119.5 (3)C12—C17—H17B109.3
C7—C8—C9112.5 (2)C16—C17—H17B109.3
C7—C8—H8A109.1H17A—C17—H17B108.0
C9—C8—H8A109.1C20—C18—C19120.9 (3)
C7—C8—H8B109.1C20—C18—C15123.6 (3)
C9—C8—H8B109.1C19—C18—C15115.6 (3)
H8A—C8—H8B107.8C18—C19—H19A109.5
C4—C9—C8111.2 (2)C18—C19—H19B109.5
C4—C9—H9A109.4H19A—C19—H19B109.5
C8—C9—H9A109.4C18—C19—H19C109.5
C4—C9—H9B109.4H19A—C19—H19C109.5
C8—C9—H9B109.4H19B—C19—H19C109.5
H9A—C9—H9B108.0C18—C20—H20A120.0
N1—C10—C7122.1 (3)C18—C20—H20B120.0
N1—C10—H10119.0H20A—C20—H20B120.0
C10—N1—N2—C11172.5 (2)N1—N2—C11—C12179.6 (2)
C3—C2—C4—C94.6 (4)N2—C11—C12—C13176.9 (3)
C1—C2—C4—C9175.2 (3)N2—C11—C12—C173.0 (4)
C3—C2—C4—C5121.3 (4)C11—C12—C13—C14179.7 (2)
C1—C2—C4—C558.9 (4)C17—C12—C13—C140.2 (4)
C9—C4—C5—C642.0 (3)C12—C13—C14—C1515.4 (4)
C2—C4—C5—C6170.7 (2)C13—C14—C15—C18171.5 (2)
C4—C5—C6—C712.8 (4)C13—C14—C15—C1645.7 (3)
C5—C6—C7—C10179.6 (3)C18—C15—C16—C17168.8 (2)
C5—C6—C7—C80.1 (5)C14—C15—C16—C1763.9 (3)
C6—C7—C8—C917.4 (4)C13—C12—C17—C1616.9 (4)
C10—C7—C8—C9162.3 (2)C11—C12—C17—C16163.0 (2)
C2—C4—C9—C8173.8 (3)C15—C16—C17—C1248.7 (3)
C5—C4—C9—C860.0 (3)C14—C15—C18—C209.7 (4)
C7—C8—C9—C447.3 (4)C16—C15—C18—C20114.2 (3)
N2—N1—C10—C7178.1 (2)C14—C15—C18—C19170.4 (3)
C6—C7—C10—N1178.4 (3)C16—C15—C18—C1965.7 (3)
C8—C7—C10—N11.2 (4)

Experimental details

Crystal data
Chemical formulaC20H28N2
Mr296.44
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)8.8200 (5), 9.7603 (6), 10.1710 (6)
β (°) 94.970 (1)
V3)872.29 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.48 × 0.46 × 0.21
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7179, 2013, 1802
Rint0.035
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.12
No. of reflections2013
No. of parameters201
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Key Subject Construction Project of Hunan Province (No. 2006–180), the Key Scientific Research Project of Hunan Provincial Education Department (No. 08 A023, 05 C736), the NSF of Hunan Province (09 J J3028) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBerthou, J., Marzin, C., Rérat, B., Rérat, C. & Uesu, Y. (1970). C. R. Acad. Sci. Ser. C, pp. 918–921.  Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, S. H. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 137–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarek, R., St'astná-Sedláčková, I., Toušek, J., Marek, J. & Potacek, M. (1997). Bull. Soc. Chim. Belg. 106, 645–649.  CAS Google Scholar
First citationRizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSanz, D., Ponce, M. J., Claramunt, R. M., Fernández-Castaño, C., Foces-Foces, C. & Elguero, J. (1999). J. Phys. Org. Chem. 12, 455–469.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYuan, X.-Y., Zhang, M. & Ng, S. W. (2009). Acta Cryst. E65, o2149.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds