metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m253-m254

Di­chloridobis[5-nitro-1-tri­methyl­silyl­methyl-1H-benzimidazole-κN3]cobalt(II) N,N-di­methyl­formamide solvate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Harran University, 63300 Şanlıurfa, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and dDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 29 January 2010; accepted 1 February 2010; online 6 February 2010)

The title compound, [CoCl2(C11H15N3O2Si)2]·C3H7NO, was synthesized from 5-nitro-1-trimethyl­silylmethyl-1H-benzimid­azole and cobalt(II) chloride in dimethyl­formamide. The CoII atom is coordinated in a distorted tetra­hedral environment by two Cl atoms and two N atoms. In the crystal structure, there are a number of C—H⋯Cl and C—H⋯O hydrogen-bonding inter­actions between symmetry-related mol­ecules.

Related literature

For the structures and properties of benzimidazole compounds and their metal complexes, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, m41-m43.]); Castro et al. (2002[Castro, J., Pérez Lourido, P., Sousa-Pedrares, A., Labisbal, E., Piso, J. & García-Vázquez, J. A. (2002). Acta Cryst. C58, m319-m322.]); Küçükbay et al. (1996[Küçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434-2439.], 2004[Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64-68.], 2009[Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2009). Asian J. Chem. 21, 6181-6189.]); Liu et al. (2004[Liu, J.-W., Gao, S., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m501-m503.]); Lukevics et al. (2001[Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507-515.]); Pınar et al. (2006[Pınar, Ş., Akkurt, M., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2006). Acta Cryst. E62, m1663-m1665.]); Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]); Türktekin et al. (2004[Türktekin, S., Akkurt, M., Orhan, E., Küçükbay, F. Z., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m1220-m1222.]); Tavman et al. (2005[Tavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobio. 50, 467-472.]); Özdemir et al. (2005[Özdemir, İ., Demir, S. & Çetinkaya, B. (2005). Tetrahedron, 61, 9791-9798.]); Çetinkaya et al. (1996[Çetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 1154-1158.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C11H15N3O2Si)2]·C3H7NO

  • Mr = 701.63

  • Triclinic, [P \overline 1]

  • a = 9.8982 (4) Å

  • b = 11.6936 (5) Å

  • c = 15.9293 (6) Å

  • α = 106.041 (2)°

  • β = 107.408 (2)°

  • γ = 99.040 (3)°

  • V = 1631.97 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 100 K

  • 0.20 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII QUAZAR diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.890, Tmax = 0.937

  • 30895 measured reflections

  • 8851 independent reflections

  • 5342 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.123

  • S = 1.02

  • 8851 reflections

  • 387 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl1i 0.95 2.79 3.564 (3) 140
C7—H7⋯O5ii 0.95 2.32 3.132 (4) 143
C8—H8B⋯O5ii 0.99 2.54 3.406 (4) 145
C19—H19A⋯Cl2iii 0.99 2.67 3.659 (3) 175
C19—H19B⋯O4i 0.99 2.38 3.182 (4) 137
C22—H22C⋯Cl1iv 0.98 2.82 3.695 (3) 149
C24—H24A⋯O5 0.98 2.42 2.793 (5) 102
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Benzimidazole compounds and their metal complexes have been extensively investigated for their versatile properties such as biological activities (Küçükbay et al., 2004; Çetinkaya et al., 1996; Küçükbay et al., 2009; Tavman et al., 2005) and catalytic activities of their metal complexes in many organic syntheses (Küçükbay et al.,1996, Özdemir et al., 2005). Contrary to an extensive chemistry about substituted alkyl derivatives of benzimidazole, there are a limited number of studies of alkylsilyl substituted benzimidazoles (Lukevics et al., 2001). Alkylsilyl substituted benzimidazole derivatives exhibit important in vitro cytotoxicactivity. The insertion of the silicon atom into the N-alkyl chain in benzimidazoles increases the cytotoxic activity. For example,1-(3-trimethylsilylpropyl)benzimidazole inhibits carcinoma S-180 tumour growth in dose 1 mg kg-1 by 62 % (on ICR mice) (Lukevics et al., 2001). The objective of the present study was to synthesize a trimethylsilylmethyl and NO2 substituted benzimidazole CoII complex for the first time and compare it to those of related benzimidazole derivatives (Türktekin et al., 2004; Pınar et al., 2006; Akkurt et al., 2005) reported previously.

In the title molecule (Fig. 1), the CoII atom is coordinated in a distorted tetrahedral environment by two Cl atoms and two N atoms. The bond lengths involving the Co atoms are Co1—N1 = 2.013 (3), Co1—N4 = 2.013 (2), Co1—Cl1 = 2.2330 (10) and Co1—Cl2 = 2.2455 (9) Å, while the angles around the Co atom are Cl1— Co1— Cl2 = 112.94 (4), Cl1— Co1— N1 = 111.06 (8), Cl1— Co1— N4 = 110.18 (7), Cl2— Co1— N1 = 106.74 (7), Cl2— Co1— N4 = 111.81 (7) and N1— Co1— N4 = 103.67 (9)°. The average Co—N bond length of 2.013 (3)Å is almost equal to the value of 2.008 (2)Å in dichlorobis[1-(2-ethoxyethyl)-1H-benzimidazole-κN3]cobalt(II) (Türktekin et al., 2004) and 2.032 (2) Å inbis[1-(but-2-enyl)-5-nitro-1H-benzimidazole-κN3]dichlorocobalt(II) (Pınar et al., 2006).

The Co—Cl bond lengths [2.2330 (10) and 2.2455 (9) Å] are comparable to the values of 2.2525 (8)Å inquinolinium trichloro(quinoline-N)cobaltate(II) (Pan & Xu, 2004) and 2.236 (1) Å in dichlorobis(1-propylimidazolidine-2-thione-κS)cobalt(II) (Castro et al., 2002) and 2.2680 (8) in bis[1-(but-2-enyl)-5-nitro-1H-benzimidazole-κN3]dichlorocobalt(II)(Pınar et al., 2006), but shorter than the value of 2.391 (1)Å observed in aquachlorobis(1,10-phenanthroline)cobalt(II)chloride dimethyl formamide solvate (Liu et al., 2004).

The two benzimidazole ring systems N1/N2/C1–C7 and N4/N5/C12–C18 are almost planar, with maximum deviations of -0.037 (3) for C6 and -0.016 (2) for N4, respectively. The dihedral angle between them is 64.54 (10)°. The angles around the Si atoms with a distorted tetrahedral geometry rang from 106.02 (18)° to 113.60 (17)°.

The crystal structure of the title compound is stabilized by C—H···Cl and C—H···O hydrogen-bonding interactions (Fig. 2 and Table 1).

Related literature top

For the structures and properties of benzimidazole compounds and their metal complexes, see: Akkurt et al. (2005); Castro et al. (2002); Küçükbay et al. (1996, 2004, 2009); Liu et al. (2004); Lukevics et al. (2001); Pınar et al. (2006); Pan & Xu (2004); Türktekin et al. (2004); Tavman et al. (2005); Özdemir et al. (2005); Çetinkaya et al. (1996).

Experimental top

1-(Trimethylsilylmethyl)-5-nitrobenzimidazole used in this work as a starting compounds were prepared from reaction of 5(6)-methylbenzimidazole, (chloromethyl)trimethylsilane and KOH under reflux in EtOH.

A solution of 1-(trimethylsilylmethyl)-5-nitrobenzimidazole (2.0 g, 8.02 mmol) and cobalt(II) chloride (0.52 g, 4.01 mmol) in DMF (4 ml) was heated under reflux for 2 h. The mixture was then cooled to room temperature, after which the solvent was then removed from the filtrate in vacuo. The precipitate was then crystallized from EtOH / DMF(2:1). Yield : 2.30 g, 91%; m.p.: 473-474 K. Analysis calculated for C22H30N6O4Si2CoCl2.HCON(CH3)2 : C 42.80, H 5.32, N 13.97%. Found: C 42.79, H 5.31, N 13.92%. IR : ν(C=N): 1523 cm-1. 1H-NMR (DMSO-d6): δ = 7.97 ppm (s, 2H, N=CH—N), 6.39 (m, 6H, Ar—H), 4.25 (m, 4H, CH2Si), -0.27 (s, 18H, Si (CH3)3).

Refinement top

All H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.95–0.99 Å, and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule showing the atom-labelling scheme. The probability level for the anisotropic displacement parameters is at 50%.
[Figure 2] Fig. 2. View of the packing diagram of the title compound in the unit cell. Hydrogen bonds are indicated as dashed lines.
Dichloridobis[5-nitro-1-trimethylsilylmethyl-1H-benzimidazole- κN3]cobalt(II) N,N-dimethylformamide solvate top
Crystal data top
[CoCl2(C11H15N3O2Si)2]·C3H7NOZ = 2
Mr = 701.63F(000) = 730
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8982 (4) ÅCell parameters from 4864 reflections
b = 11.6936 (5) Åθ = 5.4–51.0°
c = 15.9293 (6) ŵ = 0.81 mm1
α = 106.041 (2)°T = 100 K
β = 107.408 (2)°Plate, blue
γ = 99.040 (3)°0.20 × 0.12 × 0.08 mm
V = 1631.97 (12) Å3
Data collection top
Brruker APEXII QUAZAR
diffractometer
8851 independent reflections
Radiation source: ImuS5342 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.059
ω and ϕ scansθmax = 29.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.890, Tmax = 0.937k = 1616
30895 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.0752P]
where P = (Fo2 + 2Fc2)/3
8851 reflections(Δ/σ)max = 0.001
387 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[CoCl2(C11H15N3O2Si)2]·C3H7NOγ = 99.040 (3)°
Mr = 701.63V = 1631.97 (12) Å3
Triclinic, P1Z = 2
a = 9.8982 (4) ÅMo Kα radiation
b = 11.6936 (5) ŵ = 0.81 mm1
c = 15.9293 (6) ÅT = 100 K
α = 106.041 (2)°0.20 × 0.12 × 0.08 mm
β = 107.408 (2)°
Data collection top
Brruker APEXII QUAZAR
diffractometer
8851 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5342 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.937Rint = 0.059
30895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.90 e Å3
8851 reflectionsΔρmin = 0.48 e Å3
387 parameters
Special details top

Experimental. Data were collected on an APEX II QUAZAR diffractometer equipped with a brilliant, high intense IµS (microfocus source) with multilayer mirrors for monochromation and collimation.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.38557 (4)0.69835 (4)0.77352 (3)0.0194 (1)
Cl10.23442 (8)0.51641 (7)0.74255 (6)0.0299 (2)
Cl20.28764 (9)0.80333 (7)0.68299 (5)0.0305 (3)
Si10.80522 (9)0.66034 (8)0.52977 (6)0.0220 (3)
Si20.76085 (9)0.79463 (8)1.19186 (6)0.0242 (3)
O10.6900 (3)0.3815 (2)0.93714 (16)0.0374 (8)
O20.9030 (3)0.3653 (2)0.93302 (19)0.0490 (10)
O30.0582 (2)0.8517 (2)0.90291 (16)0.0357 (8)
O40.0395 (2)0.8620 (2)1.04422 (17)0.0393 (8)
N10.5723 (3)0.6770 (2)0.75277 (16)0.0202 (8)
N20.7576 (3)0.7092 (2)0.70128 (16)0.0210 (8)
N30.7937 (3)0.4046 (2)0.91233 (19)0.0310 (9)
N40.4540 (2)0.7981 (2)0.91071 (16)0.0183 (7)
N50.6010 (2)0.8884 (2)1.06061 (15)0.0172 (7)
N60.0135 (3)0.8609 (2)0.98339 (19)0.0264 (8)
C10.6695 (3)0.6074 (3)0.78068 (19)0.0206 (9)
C20.6672 (3)0.5322 (3)0.8338 (2)0.0239 (9)
C30.7870 (3)0.4827 (3)0.8532 (2)0.0240 (10)
C40.9025 (3)0.5029 (3)0.8219 (2)0.0262 (10)
C50.9033 (3)0.5751 (3)0.7674 (2)0.0249 (10)
C60.7850 (3)0.6276 (3)0.74777 (19)0.0209 (9)
C70.6315 (3)0.7364 (3)0.70664 (19)0.0211 (9)
C80.8477 (3)0.7615 (3)0.6555 (2)0.0233 (9)
C90.8366 (4)0.5082 (3)0.5292 (2)0.0316 (11)
C100.9278 (3)0.7459 (3)0.4868 (2)0.0286 (10)
C110.6093 (3)0.6419 (3)0.4624 (2)0.0301 (11)
C120.3698 (3)0.8356 (3)0.96419 (19)0.0173 (9)
C130.2206 (3)0.8261 (3)0.9372 (2)0.0190 (9)
C140.1713 (3)0.8717 (3)1.0084 (2)0.0215 (9)
C150.2602 (3)0.9252 (3)1.1030 (2)0.0221 (9)
C160.4089 (3)0.9373 (3)1.1298 (2)0.0206 (9)
C170.4614 (3)0.8913 (3)1.05910 (19)0.0167 (8)
C180.5901 (3)0.8324 (3)0.97189 (19)0.0176 (8)
C190.7347 (3)0.9258 (3)1.14482 (19)0.0204 (9)
C200.6391 (3)0.7803 (3)1.2593 (2)0.0302 (11)
C210.9569 (4)0.8365 (4)1.2669 (3)0.0517 (16)
C220.7128 (4)0.6516 (3)1.0898 (2)0.0424 (14)
O50.3510 (3)1.0259 (2)0.34832 (19)0.0470 (10)
N70.3118 (3)0.8861 (2)0.41855 (17)0.0256 (8)
C230.3349 (4)0.9199 (4)0.3519 (3)0.0478 (16)
C240.2906 (4)0.9746 (4)0.4965 (3)0.0484 (14)
C250.2834 (4)0.7605 (3)0.4171 (3)0.0472 (14)
H20.589200.515400.855500.0290*
H40.981300.466400.838400.0310*
H50.980000.588900.744200.0300*
H70.589700.792000.680200.0250*
H8A0.952500.774100.692200.0280*
H8B0.831700.843100.656100.0280*
H9A0.818300.456100.465000.0470*
H9B0.769700.468600.553700.0470*
H9C0.938200.519200.568800.0470*
H10A1.030200.760200.526600.0430*
H10B0.905600.825200.488900.0430*
H10C0.912400.697500.422200.0430*
H11A0.593100.722900.464100.0450*
H11B0.547300.603700.490300.0450*
H11C0.584100.589300.397300.0450*
H130.156500.790300.873500.0230*
H150.218200.953201.148700.0270*
H160.472500.975301.193400.0250*
H180.671900.818900.954900.0210*
H19A0.728600.996001.194000.0250*
H19B0.821000.954001.129400.0250*
H20A0.658200.718001.288500.0450*
H20B0.536500.755401.217000.0450*
H20C0.658400.859801.308000.0450*
H21A0.977700.769801.290500.0780*
H21B0.979000.912401.319800.0780*
H21C1.017700.849601.230200.0780*
H22A0.776400.662301.054300.0640*
H22B0.610200.634701.049400.0640*
H22C0.726500.582401.111900.0640*
H230.339900.857600.300800.0580*
H24A0.331001.058800.500500.0720*
H24B0.341200.962700.555300.0720*
H24C0.185600.961100.485600.0720*
H25A0.180700.731400.409700.0710*
H25B0.347600.756800.476100.0710*
H25C0.302700.708000.364700.0710*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0190 (2)0.0224 (2)0.0177 (2)0.0079 (2)0.0067 (2)0.0069 (2)
Cl10.0287 (4)0.0262 (4)0.0359 (4)0.0061 (3)0.0135 (4)0.0110 (4)
Cl20.0374 (5)0.0281 (4)0.0214 (4)0.0142 (4)0.0023 (3)0.0075 (3)
Si10.0215 (5)0.0251 (5)0.0226 (4)0.0078 (4)0.0107 (4)0.0090 (4)
Si20.0231 (5)0.0326 (5)0.0214 (4)0.0123 (4)0.0080 (4)0.0135 (4)
O10.0466 (15)0.0345 (14)0.0415 (14)0.0148 (12)0.0206 (12)0.0211 (12)
O20.0418 (15)0.0509 (17)0.0700 (19)0.0243 (13)0.0154 (14)0.0429 (15)
O30.0227 (12)0.0408 (15)0.0360 (14)0.0129 (11)0.0039 (11)0.0066 (12)
O40.0273 (13)0.0520 (16)0.0509 (15)0.0176 (12)0.0260 (12)0.0193 (13)
N10.0220 (13)0.0228 (14)0.0194 (13)0.0090 (11)0.0087 (11)0.0094 (11)
N20.0212 (13)0.0264 (14)0.0209 (13)0.0091 (11)0.0118 (11)0.0102 (11)
N30.0365 (17)0.0254 (15)0.0351 (16)0.0097 (13)0.0128 (14)0.0157 (13)
N40.0162 (13)0.0227 (13)0.0195 (12)0.0071 (11)0.0082 (10)0.0097 (11)
N50.0160 (12)0.0194 (13)0.0182 (12)0.0076 (10)0.0055 (10)0.0086 (10)
N60.0215 (14)0.0193 (14)0.0369 (16)0.0071 (11)0.0116 (13)0.0054 (12)
C10.0240 (16)0.0192 (16)0.0168 (15)0.0085 (13)0.0056 (13)0.0040 (12)
C20.0283 (17)0.0217 (16)0.0220 (16)0.0045 (14)0.0102 (14)0.0078 (13)
C30.0320 (18)0.0171 (16)0.0220 (16)0.0087 (14)0.0049 (14)0.0094 (13)
C40.0234 (17)0.0263 (17)0.0272 (17)0.0097 (14)0.0057 (14)0.0085 (14)
C50.0205 (16)0.0278 (18)0.0256 (16)0.0079 (14)0.0082 (13)0.0071 (14)
C60.0200 (16)0.0227 (16)0.0199 (15)0.0073 (13)0.0060 (13)0.0075 (13)
C70.0236 (16)0.0269 (17)0.0176 (15)0.0119 (14)0.0102 (13)0.0089 (13)
C80.0241 (16)0.0250 (17)0.0259 (16)0.0063 (14)0.0148 (14)0.0102 (14)
C90.043 (2)0.0286 (19)0.0313 (18)0.0171 (16)0.0195 (16)0.0115 (15)
C100.0207 (16)0.038 (2)0.0291 (17)0.0065 (15)0.0111 (14)0.0130 (15)
C110.0245 (17)0.034 (2)0.0329 (18)0.0062 (15)0.0098 (15)0.0144 (16)
C120.0171 (15)0.0176 (15)0.0203 (15)0.0058 (12)0.0072 (12)0.0099 (12)
C130.0186 (15)0.0161 (15)0.0221 (15)0.0048 (12)0.0034 (12)0.0103 (12)
C140.0169 (15)0.0194 (16)0.0334 (17)0.0078 (13)0.0117 (13)0.0125 (14)
C150.0254 (16)0.0208 (16)0.0259 (16)0.0078 (13)0.0153 (14)0.0092 (13)
C160.0241 (16)0.0216 (16)0.0185 (15)0.0088 (13)0.0094 (13)0.0072 (13)
C170.0174 (15)0.0156 (15)0.0200 (14)0.0062 (12)0.0072 (12)0.0088 (12)
C180.0200 (15)0.0193 (15)0.0191 (14)0.0084 (13)0.0112 (13)0.0085 (12)
C190.0175 (15)0.0226 (16)0.0192 (15)0.0053 (13)0.0053 (12)0.0056 (13)
C200.0287 (18)0.038 (2)0.0277 (17)0.0101 (16)0.0114 (14)0.0151 (16)
C210.026 (2)0.088 (3)0.058 (3)0.020 (2)0.0110 (19)0.052 (3)
C220.074 (3)0.036 (2)0.038 (2)0.030 (2)0.032 (2)0.0223 (18)
O50.0476 (16)0.0460 (16)0.0694 (19)0.0174 (13)0.0287 (14)0.0420 (15)
N70.0230 (14)0.0266 (15)0.0286 (14)0.0060 (12)0.0061 (12)0.0153 (12)
C230.039 (2)0.062 (3)0.055 (3)0.018 (2)0.020 (2)0.033 (2)
C240.056 (3)0.044 (2)0.041 (2)0.012 (2)0.018 (2)0.0085 (19)
C250.045 (2)0.045 (2)0.065 (3)0.0190 (19)0.021 (2)0.034 (2)
Geometric parameters (Å, º) top
Co1—Cl12.2330 (10)C14—C151.396 (4)
Co1—Cl22.2455 (9)C15—C161.376 (4)
Co1—N12.013 (3)C16—C171.390 (4)
Co1—N42.013 (2)C2—H20.9500
Si1—C81.902 (3)C4—H40.9500
Si1—C91.852 (4)C5—H50.9500
Si1—C101.854 (3)C7—H70.9500
Si1—C111.859 (3)C8—H8B0.9900
Si2—C191.904 (4)C8—H8A0.9900
Si2—C201.856 (3)C9—H9A0.9800
Si2—C211.851 (4)C9—H9B0.9800
Si2—C221.858 (3)C9—H9C0.9800
O1—N31.224 (4)C10—H10A0.9800
O2—N31.232 (4)C10—H10B0.9800
O3—N61.231 (4)C10—H10C0.9800
O4—N61.230 (4)C11—H11B0.9800
O5—C231.244 (5)C11—H11C0.9800
N1—C11.406 (4)C11—H11A0.9800
N1—C71.333 (4)C13—H130.9500
N2—C71.356 (4)C15—H150.9500
N2—C81.472 (4)C16—H160.9500
N2—C61.373 (4)C18—H180.9500
N3—C31.477 (4)C19—H19B0.9900
N4—C121.395 (4)C19—H19A0.9900
N4—C181.324 (4)C20—H20A0.9800
N5—C181.346 (4)C20—H20B0.9800
N5—C191.474 (4)C20—H20C0.9800
N5—C171.381 (4)C21—H21A0.9800
N6—C141.467 (4)C21—H21B0.9800
N7—C251.444 (5)C21—H21C0.9800
N7—C231.298 (5)C22—H22B0.9800
N7—C241.473 (5)C22—H22C0.9800
C1—C61.407 (4)C22—H22A0.9800
C1—C21.381 (5)C23—H230.9500
C2—C31.390 (5)C24—H24A0.9800
C3—C41.390 (4)C24—H24B0.9800
C4—C51.369 (5)C24—H24C0.9800
C5—C61.400 (5)C25—H25A0.9800
C12—C131.386 (4)C25—H25B0.9800
C12—C171.408 (4)C25—H25C0.9800
C13—C141.374 (4)
Co1···H23.4200C22···O13.338 (4)
Co1···H133.2900C22···C183.333 (5)
Cl1···N43.484 (3)C23···C21xi3.446 (6)
Cl1···C5i3.564 (3)C23···C24viii3.557 (6)
Cl2···N13.420 (3)C24···C23viii3.557 (6)
Cl2···C73.546 (3)C25···C9iii3.597 (5)
Cl1···H5i2.7900C5···H13v2.9300
Cl1···H22Cii2.8200C5···H8A2.9400
Cl1···H10Ciii2.8600C5···H9B3.0600
Cl1···H20Aii3.0600C6···H9B3.0800
Cl2···H73.0300C8···H53.0100
Cl2···H10Ai2.8400C9···H9Cxii3.0900
Cl2···H9Aiii3.0700C9···H53.0900
Cl2···H16iv2.9400C13···H19Biv3.0800
Cl2···H19Aiv2.6700C16···H20B3.0800
Si2···O4v3.657 (2)C16···H19A2.9200
O1···C223.338 (4)C18···H22B2.9100
O1···C12ii3.399 (4)C19···H163.0200
O1···C17ii3.329 (4)C23···H24Bviii3.0000
O2···C14ii3.208 (4)C23···H21Cxi2.9900
O2···O4ii3.223 (4)C24···H20Civ3.0200
O2···O2vi3.178 (4)C25···H11A3.0600
O2···C15ii3.335 (4)C25···H9Biii2.8400
O3···C5i3.245 (4)H2···O12.4500
O3···C1i3.253 (4)H2···Co13.4200
O3···O4vii3.129 (3)H4···O22.3800
O3···N2i3.000 (3)H5···H13v2.5900
O3···C7i3.413 (4)H5···H9C2.5700
O3···C6i2.869 (4)H5···Cl1v2.7900
O3···N6vii3.234 (4)H5···C83.0100
O4···O3vii3.129 (3)H5···C93.0900
O4···Si2i3.657 (2)H5···H8A2.5500
O4···O2ii3.223 (4)H7···Cl23.0300
O4···C19i3.182 (4)H7···H8B2.5400
O5···C8viii3.406 (4)H7···O5viii2.3200
O5···C7viii3.132 (4)H8A···C52.9400
O1···H22.4500H8A···H52.5500
O1···H20Bii2.6500H8B···H72.5400
O2···H42.3800H8B···O5viii2.5400
O3···H132.4800H9A···Cl2iii3.0700
O4···H18i2.6800H9B···C53.0600
O4···H19Bi2.3800H9B···C63.0800
O4···H152.4600H9B···C25iii2.8400
O4···H22Ai2.8000H9B···H25Biii2.5600
O4···H21Ci2.8900H9C···H52.5700
O5···H8Bviii2.5400H9C···C9xii3.0900
O5···H7viii2.3200H10A···Cl2v2.8400
O5···H24A2.4200H10C···Cl1iii2.8600
O5···H15ix2.8700H11A···H24Aviii2.4000
N1···N43.166 (3)H11A···C253.0600
N1···Cl23.420 (3)H11A···H25B2.5800
N1···N22.243 (4)H11B···H11Biii2.5900
N1···C183.397 (4)H13···C5i2.9300
N2···O3v3.000 (3)H13···Co13.2900
N2···N12.243 (4)H13···O32.4800
N4···N52.231 (3)H13···H5i2.5900
N4···Cl13.484 (3)H15···O5xiii2.8700
N4···N13.166 (3)H15···O42.4600
N5···N42.231 (3)H16···Cl2iv2.9400
N5···C12iv3.337 (4)H16···C193.0200
N6···O3vii3.234 (4)H16···H19A2.5100
N6···N6vii3.216 (4)H18···O4v2.6800
N5···H22B2.9400H19A···H162.5100
C1···O3v3.253 (4)H19A···C162.9200
C5···C93.485 (4)H19A···Cl2iv2.6700
C5···Cl1v3.564 (3)H19B···O4v2.3800
C5···O3v3.245 (4)H19B···C13iv3.0800
C6···C93.596 (4)H20A···Cl1ii3.0600
C6···O3v2.869 (4)H20B···C163.0800
C7···O5viii3.132 (4)H20B···O1ii2.6500
C7···O3v3.413 (4)H20C···C24iv3.0200
C8···O5viii3.406 (4)H20C···H24Biv2.5600
C9···C63.596 (4)H21A···H25Ax2.5100
C9···C25iii3.597 (5)H21C···O4v2.8900
C9···C53.485 (4)H21C···C23x2.9900
C12···O1ii3.399 (4)H22A···O4v2.8000
C12···N5iv3.337 (4)H22B···N52.9400
C12···C17iv3.532 (5)H22B···C182.9100
C13···C19iv3.515 (5)H22C···Cl1ii2.8200
C14···O2ii3.208 (4)H23···H25C2.2900
C15···O2ii3.335 (4)H24A···O52.4200
C16···C18iv3.506 (5)H24A···H11Aviii2.4000
C17···C18iv3.492 (5)H24B···H25B2.4100
C17···O1ii3.329 (4)H24B···C23viii3.0000
C17···C12iv3.532 (5)H24B···H20Civ2.5600
C18···C223.333 (5)H25A···H21Axi2.5100
C18···C16iv3.506 (5)H25B···H11A2.5800
C18···C17iv3.492 (5)H25B···H24B2.4100
C19···C13iv3.515 (5)H25B···H9Biii2.5600
C19···O4v3.182 (4)H25C···H232.2900
C21···C23x3.446 (6)
Cl1—Co1—Cl2112.94 (4)C4—C5—H5122.00
Cl1—Co1—N1111.06 (8)N1—C7—H7124.00
Cl1—Co1—N4110.18 (7)N2—C7—H7123.00
Cl2—Co1—N1106.74 (7)Si1—C8—H8A109.00
Cl2—Co1—N4111.81 (7)H8A—C8—H8B108.00
N1—Co1—N4103.67 (9)Si1—C8—H8B109.00
C8—Si1—C9108.71 (15)N2—C8—H8A109.00
C8—Si1—C10105.46 (15)N2—C8—H8B109.00
C8—Si1—C11107.76 (14)Si1—C9—H9A110.00
C9—Si1—C10113.60 (17)Si1—C9—H9B109.00
C9—Si1—C11109.95 (17)Si1—C9—H9C110.00
C10—Si1—C11111.09 (15)H9B—C9—H9C109.00
C19—Si2—C20108.88 (15)H9A—C9—H9B109.00
C19—Si2—C21106.02 (18)H9A—C9—H9C110.00
C19—Si2—C22107.56 (14)Si1—C10—H10B109.00
C20—Si2—C21111.80 (17)H10A—C10—H10C109.00
C20—Si2—C22110.98 (17)Si1—C10—H10C109.00
C21—Si2—C22111.36 (19)H10A—C10—H10B110.00
Co1—N1—C1132.6 (2)Si1—C10—H10A109.00
Co1—N1—C7122.7 (2)H10B—C10—H10C109.00
C1—N1—C7104.7 (3)Si1—C11—H11C109.00
C6—N2—C7107.3 (3)H11A—C11—H11C110.00
C6—N2—C8127.5 (3)H11B—C11—H11C109.00
C7—N2—C8125.2 (3)H11A—C11—H11B109.00
O1—N3—O2123.7 (3)Si1—C11—H11A109.00
O1—N3—C3118.3 (3)Si1—C11—H11B109.00
O2—N3—C3118.0 (3)C14—C13—H13122.00
Co1—N4—C12128.49 (18)C12—C13—H13122.00
Co1—N4—C18126.50 (19)C14—C15—H15120.00
C12—N4—C18104.7 (2)C16—C15—H15120.00
C17—N5—C18107.4 (2)C17—C16—H16122.00
C17—N5—C19126.3 (2)C15—C16—H16122.00
C18—N5—C19125.9 (2)N4—C18—H18123.00
O3—N6—O4123.7 (3)N5—C18—H18123.00
O3—N6—C14118.2 (3)Si2—C19—H19A109.00
O4—N6—C14118.1 (3)H19A—C19—H19B108.00
C24—N7—C25114.4 (3)Si2—C19—H19B109.00
C23—N7—C24120.3 (3)N5—C19—H19A109.00
C23—N7—C25124.7 (3)N5—C19—H19B109.00
N1—C1—C6108.8 (3)Si2—C20—H20A109.00
N1—C1—C2130.4 (3)Si2—C20—H20B109.00
C2—C1—C6120.8 (3)Si2—C20—H20C109.00
C1—C2—C3115.2 (3)H20B—C20—H20C110.00
N3—C3—C2118.0 (3)H20A—C20—H20B109.00
N3—C3—C4117.5 (3)H20A—C20—H20C109.00
C2—C3—C4124.6 (3)Si2—C21—H21B109.00
C3—C4—C5120.3 (3)H21A—C21—H21C110.00
C4—C5—C6116.4 (3)Si2—C21—H21C109.00
N2—C6—C1106.2 (3)H21A—C21—H21B109.00
N2—C6—C5131.0 (3)Si2—C21—H21A109.00
C1—C6—C5122.7 (3)H21B—C21—H21C109.00
N1—C7—N2113.0 (3)Si2—C22—H22C109.00
Si1—C8—N2113.4 (2)H22A—C22—H22C109.00
C13—C12—C17120.4 (3)H22B—C22—H22C110.00
N4—C12—C17109.3 (3)H22A—C22—H22B109.00
N4—C12—C13130.3 (3)Si2—C22—H22A109.00
C12—C13—C14115.7 (3)Si2—C22—H22B109.00
N6—C14—C13117.6 (3)O5—C23—N7126.4 (4)
N6—C14—C15117.7 (3)O5—C23—H23117.00
C13—C14—C15124.7 (3)N7—C23—H23117.00
C14—C15—C16119.8 (3)N7—C24—H24A109.00
C15—C16—C17116.7 (3)N7—C24—H24B109.00
N5—C17—C12105.2 (2)N7—C24—H24C109.00
N5—C17—C16132.0 (3)H24A—C24—H24B109.00
C12—C17—C16122.8 (3)H24A—C24—H24C110.00
N4—C18—N5113.3 (3)H24B—C24—H24C109.00
Si2—C19—N5112.1 (2)N7—C25—H25A109.00
C1—C2—H2122.00N7—C25—H25B109.00
C3—C2—H2122.00N7—C25—H25C110.00
C3—C4—H4120.00H25A—C25—H25B109.00
C5—C4—H4120.00H25A—C25—H25C109.00
C6—C5—H5122.00H25B—C25—H25C109.00
Cl1—Co1—N1—C147.5 (3)Co1—N4—C18—N5174.0 (2)
Cl2—Co1—N1—C1171.0 (2)C17—N5—C19—Si286.6 (3)
N4—Co1—N1—C170.8 (3)C18—N5—C17—C121.0 (4)
Cl1—Co1—N1—C7134.4 (2)C19—N5—C18—N4173.7 (3)
Cl2—Co1—N1—C710.9 (2)C19—N5—C17—C12174.2 (3)
N4—Co1—N1—C7107.3 (2)C17—N5—C18—N40.4 (4)
Cl1—Co1—N4—C1258.2 (3)C18—N5—C19—Si285.4 (3)
Cl2—Co1—N4—C1268.3 (3)C19—N5—C17—C166.6 (6)
N1—Co1—N4—C12177.1 (3)C18—N5—C17—C16179.8 (4)
Cl1—Co1—N4—C18114.8 (3)O3—N6—C14—C15157.4 (3)
Cl2—Co1—N4—C18118.7 (3)O4—N6—C14—C1522.3 (4)
N1—Co1—N4—C184.1 (3)O3—N6—C14—C1323.9 (4)
C11—Si1—C8—N260.1 (3)O4—N6—C14—C13156.4 (3)
C10—Si1—C8—N2178.8 (2)C24—N7—C23—O54.9 (6)
C9—Si1—C8—N259.0 (3)C25—N7—C23—O5175.4 (4)
C22—Si2—C19—N541.2 (3)C2—C1—C6—C50.8 (5)
C20—Si2—C19—N579.2 (2)N1—C1—C6—N20.5 (3)
C21—Si2—C19—N5160.4 (2)C6—C1—C2—C31.6 (4)
C7—N1—C1—C60.9 (3)C2—C1—C6—N2177.7 (3)
Co1—N1—C1—C6179.3 (2)N1—C1—C6—C5177.3 (3)
C1—N1—C7—N21.0 (3)N1—C1—C2—C3176.1 (3)
C7—N1—C1—C2177.0 (3)C1—C2—C3—C41.0 (5)
Co1—N1—C7—N2179.59 (18)C1—C2—C3—N3178.1 (3)
Co1—N1—C1—C21.4 (5)C2—C3—C4—C50.5 (5)
C7—N2—C6—C10.2 (3)N3—C3—C4—C5179.6 (3)
C8—N2—C7—N1179.4 (3)C3—C4—C5—C61.3 (5)
C6—N2—C7—N10.8 (3)C4—C5—C6—C10.7 (5)
C7—N2—C8—Si195.2 (3)C4—C5—C6—N2175.3 (3)
C8—N2—C6—C52.3 (5)C17—C12—C13—C141.2 (5)
C8—N2—C6—C1178.8 (3)C13—C12—C17—C161.0 (6)
C7—N2—C6—C5176.4 (3)N4—C12—C17—N51.2 (4)
C6—N2—C8—Si186.4 (3)N4—C12—C17—C16179.5 (3)
O1—N3—C3—C24.0 (4)N4—C12—C13—C14179.4 (3)
O2—N3—C3—C2176.8 (3)C13—C12—C17—N5178.4 (3)
O1—N3—C3—C4176.9 (3)C12—C13—C14—N6178.5 (3)
O2—N3—C3—C42.3 (4)C12—C13—C14—C150.0 (6)
C12—N4—C18—N50.3 (4)N6—C14—C15—C16180.0 (3)
C18—N4—C12—C171.0 (4)C13—C14—C15—C161.4 (6)
Co1—N4—C12—C17173.2 (2)C14—C15—C16—C171.6 (5)
Co1—N4—C12—C137.3 (5)C15—C16—C17—N5179.6 (4)
C18—N4—C12—C13178.6 (4)C15—C16—C17—C120.5 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+2; (v) x+1, y, z; (vi) x+2, y+1, z+2; (vii) x, y+2, z+2; (viii) x+1, y+2, z+1; (ix) x, y, z1; (x) x+1, y, z+1; (xi) x1, y, z1; (xii) x+2, y+1, z+1; (xiii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1v0.952.793.564 (3)140
C7—H7···O5viii0.952.323.132 (4)143
C8—H8B···O5viii0.992.543.406 (4)145
C19—H19A···Cl2iv0.992.673.659 (3)175
C19—H19B···O4v0.992.383.182 (4)137
C22—H22C···Cl1ii0.982.823.695 (3)149
C24—H24A···O50.982.422.793 (5)102
Symmetry codes: (ii) x+1, y+1, z+2; (iv) x+1, y+2, z+2; (v) x+1, y, z; (viii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[CoCl2(C11H15N3O2Si)2]·C3H7NO
Mr701.63
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8982 (4), 11.6936 (5), 15.9293 (6)
α, β, γ (°)106.041 (2), 107.408 (2), 99.040 (3)
V3)1631.97 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.20 × 0.12 × 0.08
Data collection
DiffractometerBrruker APEXII QUAZAR
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.890, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
30895, 8851, 5342
Rint0.059
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.123, 1.02
No. of reflections8851
No. of parameters387
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.952.793.564 (3)140
C7—H7···O5ii0.952.323.132 (4)143
C8—H8B···O5ii0.992.543.406 (4)145
C19—H19A···Cl2iii0.992.673.659 (3)175
C19—H19B···O4i0.992.383.182 (4)137
C22—H22C···Cl1iv0.982.823.695 (3)149
C24—H24A···O50.982.422.793 (5)102
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+2.
 

Acknowledgements

We thank Dr Holger Ott (Bruker AXS GmbH, Karlsruhe, Germany) for the data collection. HK & NŞ also thank İnönü University Research Fund (BAPB-2008–60) for financial support of this study.

References

First citationAkkurt, M., Karaca, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, m41–m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, J., Pérez Lourido, P., Sousa-Pedrares, A., Labisbal, E., Piso, J. & García-Vázquez, J. A. (2002). Acta Cryst. C58, m319–m322.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Küçükbay, H. & Durmaz, R. (1996). Arzneim. Forsch. Drug Res. 46, 1154–1158.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKüçükbay, H., Çetinkaya, B., Guesmi, S. & Dixneuf, P. H. (1996). Organometallics, 15, 2434–2439.  CrossRef CAS Web of Science Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64–68.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2009). Asian J. Chem. 21, 6181–6189.  Google Scholar
First citationLiu, J.-W., Gao, S., Huo, L.-H. & Ng, S. W. (2004). Acta Cryst. E60, m501–m503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzdemir, İ., Demir, S. & Çetinkaya, B. (2005). Tetrahedron, 61, 9791–9798.  Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationPınar, Ş., Akkurt, M., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2006). Acta Cryst. E62, m1663–m1665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTavman, A., Birteksöz, S. & Ötük, G. (2005). Folia Mirobio. 50, 467-472.  Web of Science CrossRef CAS Google Scholar
First citationTürktekin, S., Akkurt, M., Orhan, E., Küçükbay, F. Z., Küçükbay, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, m1220–m1222.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m253-m254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds