organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Meranzin hydrate from Muraya paniculata

aDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jatinangor 45363, West Java, Indonesia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 February 2010; accepted 9 February 2010; online 13 February 2010)

The coumarin ring system in the title compound, C15H18O5 [IUPAC name: 8-(2,3-dihydr­oxy-3-methyl­butyl)-7-meth­oxy-2H-1-benzopyran-2-one], isolated from Muraya paniculata, is planar (r.m.s. deviation 0.017 Å). In the crystal, the two hydr­oxy groups are involved in O—H⋯O hydrogen bonding with adjacent mol­ecules, forming a sheet structure.

Related literature

For the asymmetric synthesis and absolute configuration of meranzin hydrate, see: Grundon & McColl (1975[Grundon, M. F. & McColl, I. S. (1975). Phytochemistry, 14, 143-150.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18O5

  • Mr = 278.29

  • Monoclinic, P 21

  • a = 5.8061 (7) Å

  • b = 10.5146 (13) Å

  • c = 11.4477 (14) Å

  • β = 91.547 (2)°

  • V = 698.61 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 6694 measured reflections

  • 1699 independent reflections

  • 1338 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.00

  • 1699 reflections

  • 192 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.84 (1) 2.01 (1) 2.842 (3) 169 (5)
O5—H5⋯O2ii 0.85 (1) 2.12 (2) 2.936 (3) 163 (4)
Symmetry codes: (i) x-1, y, z; (ii) [-x+3, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Muraya paniculata (Rutaceae, known as kemuning in Indonesia) is a perennial herb having succulent leaves. The plant is used for the treatment of orchitis, bronchitis and urine infections.

Related literature top

For the asymmetric synthesis and absolute configuration of meranzin hydrate, see: Grundon & McColl (1975).

Experimental top

M. paniculata was collected in from Bandung, Indonesia. The plant was identified by the Department of Biology of Padjadjaran University. The dried leaves of M. paniculata (4 kg) was extracted exhaustively by methanol at room temperature and then concentrated to yield a methanol extract (438 g); 200 g was partitioned between n-hexane and methanol containing 10% water. The aqueous extract was extracted with ethyl acetate. The ethyl acetate portion was removed and subjected to column chromatography on silica gel 60 by using a step gradient of n-hexane–ethyl acetate–methanol. The fraction eluted by n-hexane/ethyl acetate (1:4) was further separated by column chromatography on silica gel (chloroform:ethyl acetate 1:1) to give meranzin hydrate, 8-[2,3-dihydroxy-3-methylbutyl]-7-methoxy-2H-1-benzopyran-2-one (12 mg).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The oxygen-bound H atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of O—H 0.84 (1) Å.

In the absence of anomalous scatterers, Friedel pairs were merged. The absolute configuration was set to match the one determined by the asymmetric synthesis of meranzin (Grundon & McColl, 1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C15H18O5; at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
8-[2,3-dihydroxy-3-methylbutyl]-7-methoxy-2H-1-benzopyran-2-one top
Crystal data top
C15H18O5F(000) = 296
Mr = 278.29Dx = 1.323 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1731 reflections
a = 5.8061 (7) Åθ = 2.6–22.3°
b = 10.5146 (13) ŵ = 0.10 mm1
c = 11.4477 (14) ÅT = 293 K
β = 91.547 (2)°Prism, colourless
V = 698.61 (15) Å30.35 × 0.15 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 77
6694 measured reflectionsk = 1113
1699 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
1699 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.12 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H18O5V = 698.61 (15) Å3
Mr = 278.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8061 (7) ŵ = 0.10 mm1
b = 10.5146 (13) ÅT = 293 K
c = 11.4477 (14) Å0.35 × 0.15 × 0.15 mm
β = 91.547 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1338 reflections with I > 2σ(I)
6694 measured reflectionsRint = 0.040
1699 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.12 e Å3
1699 reflectionsΔρmin = 0.16 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4383 (3)0.50000 (16)0.83522 (15)0.0436 (4)
O21.7272 (3)0.51296 (19)0.96204 (18)0.0592 (5)
O30.8098 (4)0.4410 (2)0.57958 (18)0.0677 (6)
O41.0213 (3)0.30444 (18)0.91374 (15)0.0500 (5)
O51.1435 (3)0.06759 (16)0.79342 (17)0.0490 (4)
C11.5866 (4)0.5712 (3)0.9034 (2)0.0461 (6)
C21.5618 (5)0.7069 (3)0.8999 (3)0.0553 (7)
H21.66320.75760.94360.066*
C31.3954 (5)0.7612 (3)0.8350 (3)0.0567 (7)
H31.38130.84930.83450.068*
C41.2374 (5)0.6858 (2)0.7657 (2)0.0476 (6)
C51.0585 (5)0.7350 (3)0.6972 (3)0.0596 (8)
H5A1.03730.82260.69390.071*
C60.9124 (5)0.6572 (3)0.6344 (3)0.0610 (8)
H60.79310.69180.58880.073*
C70.9433 (5)0.5268 (3)0.6391 (2)0.0513 (7)
C81.1185 (4)0.4708 (2)0.7080 (2)0.0415 (5)
C91.2625 (4)0.5534 (2)0.7693 (2)0.0400 (5)
C100.6251 (5)0.4863 (4)0.5056 (3)0.0792 (11)
H10A0.54290.41530.47230.119*
H10B0.68640.53720.44420.119*
H10C0.52220.53670.55070.119*
C111.1382 (4)0.3280 (2)0.7160 (2)0.0419 (5)
H11A1.29060.30520.74590.050*
H11B1.11810.29120.63870.050*
C120.9563 (4)0.2742 (2)0.79647 (19)0.0388 (5)
H120.80900.31590.77770.047*
C130.9231 (4)0.1295 (2)0.7838 (2)0.0406 (5)
C140.7685 (5)0.0804 (3)0.8780 (3)0.0628 (8)
H14A0.75200.01000.87040.094*
H14B0.61990.12000.87000.094*
H14C0.83540.10020.95340.094*
C150.8225 (5)0.0987 (3)0.6642 (3)0.0628 (8)
H15A0.78660.00960.66000.094*
H15B0.93240.11930.60590.094*
H15C0.68460.14740.65050.094*
H40.935 (6)0.363 (3)0.937 (4)0.119 (17)*
H51.183 (6)0.068 (4)0.8650 (12)0.089 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (9)0.0336 (9)0.0515 (10)0.0040 (7)0.0063 (7)0.0039 (7)
O20.0526 (10)0.0556 (12)0.0683 (12)0.0103 (9)0.0159 (9)0.0154 (10)
O30.0719 (13)0.0715 (15)0.0581 (12)0.0035 (11)0.0275 (10)0.0085 (11)
O40.0630 (11)0.0466 (11)0.0400 (9)0.0096 (9)0.0081 (8)0.0065 (8)
O50.0460 (9)0.0389 (10)0.0616 (12)0.0071 (7)0.0058 (8)0.0042 (9)
C10.0428 (12)0.0441 (15)0.0512 (14)0.0015 (11)0.0013 (11)0.0098 (12)
C20.0581 (15)0.0403 (15)0.0676 (18)0.0087 (12)0.0002 (14)0.0088 (13)
C30.0722 (17)0.0299 (13)0.0683 (18)0.0035 (13)0.0078 (15)0.0034 (12)
C40.0567 (14)0.0356 (14)0.0508 (15)0.0018 (12)0.0047 (12)0.0054 (12)
C50.0716 (18)0.0427 (16)0.0645 (18)0.0122 (14)0.0013 (15)0.0140 (14)
C60.0656 (17)0.0572 (19)0.0599 (17)0.0137 (14)0.0073 (14)0.0186 (15)
C70.0573 (15)0.0544 (17)0.0416 (14)0.0014 (13)0.0065 (12)0.0098 (13)
C80.0475 (12)0.0371 (12)0.0398 (13)0.0011 (10)0.0002 (10)0.0037 (10)
C90.0450 (12)0.0345 (13)0.0406 (13)0.0035 (10)0.0023 (10)0.0042 (10)
C100.0586 (16)0.114 (3)0.0636 (19)0.001 (2)0.0203 (15)0.016 (2)
C110.0447 (12)0.0353 (12)0.0455 (13)0.0001 (10)0.0016 (10)0.0042 (11)
C120.0402 (10)0.0373 (12)0.0384 (12)0.0051 (10)0.0072 (9)0.0023 (10)
C130.0373 (10)0.0343 (12)0.0499 (13)0.0004 (10)0.0055 (9)0.0011 (11)
C140.0524 (15)0.0546 (17)0.082 (2)0.0116 (13)0.0071 (14)0.0101 (16)
C150.0668 (17)0.0530 (17)0.0672 (18)0.0063 (14)0.0239 (14)0.0130 (15)
Geometric parameters (Å, º) top
O1—C11.369 (3)C7—C81.400 (3)
O1—C91.373 (3)C8—C91.383 (3)
O2—C11.209 (3)C8—C111.509 (3)
O3—C71.361 (3)C10—H10A0.9600
O3—C101.430 (3)C10—H10B0.9600
O4—C121.421 (3)C10—H10C0.9600
O4—H40.840 (10)C11—C121.529 (3)
O5—C131.437 (3)C11—H11A0.9700
O5—H50.846 (10)C11—H11B0.9700
C1—C21.434 (4)C12—C131.540 (3)
C2—C31.332 (4)C12—H120.9800
C2—H20.9300C13—C151.510 (4)
C3—C41.434 (4)C13—C141.512 (4)
C3—H30.9300C14—H14A0.9600
C4—C51.384 (4)C14—H14B0.9600
C4—C91.401 (3)C14—H14C0.9600
C5—C61.369 (4)C15—H15A0.9600
C5—H5A0.9300C15—H15B0.9600
C6—C71.383 (4)C15—H15C0.9600
C6—H60.9300
C1—O1—C9122.44 (19)O3—C10—H10C109.5
C7—O3—C10118.9 (3)H10A—C10—H10C109.5
C12—O4—H4109 (3)H10B—C10—H10C109.5
C13—O5—H5107 (3)C8—C11—C12110.6 (2)
O2—C1—O1116.4 (2)C8—C11—H11A109.5
O2—C1—C2125.8 (3)C12—C11—H11A109.5
O1—C1—C2117.9 (2)C8—C11—H11B109.5
C3—C2—C1120.8 (3)C12—C11—H11B109.5
C3—C2—H2119.6H11A—C11—H11B108.1
C1—C2—H2119.6O4—C12—C11108.45 (18)
C2—C3—C4121.0 (2)O4—C12—C13109.84 (19)
C2—C3—H3119.5C11—C12—C13113.30 (19)
C4—C3—H3119.5O4—C12—H12108.4
C5—C4—C9117.6 (3)C11—C12—H12108.4
C5—C4—C3124.4 (3)C13—C12—H12108.4
C9—C4—C3118.0 (2)O5—C13—C15107.1 (2)
C6—C5—C4121.3 (3)O5—C13—C14109.6 (2)
C6—C5—H5A119.3C15—C13—C14110.5 (2)
C4—C5—H5A119.3O5—C13—C12109.36 (17)
C5—C6—C7119.6 (3)C15—C13—C12110.0 (2)
C5—C6—H6120.2C14—C13—C12110.2 (2)
C7—C6—H6120.2C13—C14—H14A109.5
O3—C7—C6124.5 (2)C13—C14—H14B109.5
O3—C7—C8113.5 (2)H14A—C14—H14B109.5
C6—C7—C8122.0 (3)C13—C14—H14C109.5
C9—C8—C7116.2 (2)H14A—C14—H14C109.5
C9—C8—C11123.4 (2)H14B—C14—H14C109.5
C7—C8—C11120.4 (2)C13—C15—H15A109.5
O1—C9—C8116.90 (19)C13—C15—H15B109.5
O1—C9—C4119.8 (2)H15A—C15—H15B109.5
C8—C9—C4123.3 (2)C13—C15—H15C109.5
O3—C10—H10A109.5H15A—C15—H15C109.5
O3—C10—H10B109.5H15B—C15—H15C109.5
H10A—C10—H10B109.5
C9—O1—C1—O2176.4 (2)C1—O1—C9—C43.2 (3)
C9—O1—C1—C23.2 (4)C7—C8—C9—O1178.6 (2)
O2—C1—C2—C3177.7 (3)C11—C8—C9—O13.6 (3)
O1—C1—C2—C31.9 (4)C7—C8—C9—C40.8 (4)
C1—C2—C3—C40.6 (5)C11—C8—C9—C4177.1 (3)
C2—C3—C4—C5179.2 (3)C5—C4—C9—O1179.5 (2)
C2—C3—C4—C90.5 (4)C3—C4—C9—O11.8 (4)
C9—C4—C5—C60.6 (4)C5—C4—C9—C80.1 (4)
C3—C4—C5—C6179.2 (3)C3—C4—C9—C8178.9 (2)
C4—C5—C6—C70.0 (5)C9—C8—C11—C12101.1 (3)
C10—O3—C7—C60.6 (4)C7—C8—C11—C1276.7 (3)
C10—O3—C7—C8179.7 (2)C8—C11—C12—O473.0 (2)
C5—C6—C7—O3179.4 (3)C8—C11—C12—C13164.76 (19)
C5—C6—C7—C81.0 (5)O4—C12—C13—O570.5 (2)
O3—C7—C8—C9179.0 (2)C11—C12—C13—O551.0 (2)
C6—C7—C8—C91.3 (4)O4—C12—C13—C15172.2 (2)
O3—C7—C8—C113.1 (4)C11—C12—C13—C1566.4 (3)
C6—C7—C8—C11176.6 (3)O4—C12—C13—C1450.0 (2)
C1—O1—C9—C8177.4 (2)C11—C12—C13—C14171.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.84 (1)2.01 (1)2.842 (3)169 (5)
O5—H5···O2ii0.85 (1)2.12 (2)2.936 (3)163 (4)
Symmetry codes: (i) x1, y, z; (ii) x+3, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H18O5
Mr278.29
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.8061 (7), 10.5146 (13), 11.4477 (14)
β (°) 91.547 (2)
V3)698.61 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6694, 1699, 1338
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.00
No. of reflections1699
No. of parameters192
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.84 (1)2.01 (1)2.842 (3)169 (5)
O5—H5···O2ii0.85 (1)2.12 (2)2.936 (3)163 (4)
Symmetry codes: (i) x1, y, z; (ii) x+3, y1/2, z+2.
 

Acknowledgements

This work was supported by the Directorate General of Higher Education, Ministry of National Education, Indonesia (BPPS-Doctoral Program), the I-MHERE Project of Padjadjaran University, the Science Fund of Malaysia (12-02-03-2063) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrundon, M. F. & McColl, I. S. (1975). Phytochemistry, 14, 143–150.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds