organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzamido-1-benzoyl-1H-pyrrol-2(5H)-one

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
*Correspondence e-mail: marta.kasunic@fkkt.uni-lj.si

(Received 18 February 2010; accepted 19 February 2010; online 24 February 2010)

In the title compound, C18H14N2O3, one of the phenyl rings is almost coplanar with the pyrrole ring [dihedral angle = 2.56 (14)°], whereas the other one is tilted by 63.01 (6)° with respect to the pyrrole ring. Since the NH group is shielded from possible acceptors, this group is not involved in hydrogen bonding.

Related literature

For the synthesis of 1,5-dihydro-2H-pyrrol-2-ones, see: Gao et al. (1997[Gao, Y., Shirai, M. & Sato, F. (1997). Tetrahedron Lett. 38, 6849-6852.]); Alizadeh et al. (2006[Alizadeh, A., Movahedi, F., Masrouri, H. & Zhu, L. G. (2006). Synthesis, pp. 3431-3436.]); Nedolya et al. (2002[Nedolya, N. A., Brandsma, L. & Tolmachev, S. V. (2002). Russ. J. Org. Chem. 38, 948-949.]); Mušič et al. (1998[Mušič, I., Golobič, A. & Verček, B. (1998). Heterocycles, 48, 353-358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O3

  • Mr = 306.31

  • Monoclinic, P 21 /c

  • a = 20.966 (2) Å

  • b = 5.8891 (7) Å

  • c = 12.329 (1) Å

  • β = 95.908 (8)°

  • V = 1514.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.58 × 0.36 × 0.09 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 13450 measured reflections

  • 3648 independent reflections

  • 2119 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 333.3 min intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.00

  • 3648 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: the XRAY76 System (Stewart et al., 1976[Stewart, R. F., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. & Flack, H. (1976). The XRAY76 System. Technical Report TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.]); data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,5-dihydro-2H-pyrrol-2-ones comprise a family of lactams which are found as substructures in several natural products with promising pharmalogical properties. Several reports on synthesis of substituted 1,5-dihydro-2H-pyrrol-2-ones exist and these compounds can be prepared via different synthetic pathways (e.g. Gao et al., 1997; Alizadeh et al., 2006; Nedolya et al., 2002), Mušič et al. (1998). The asymmetry unit of the title compound with atom labelling scheme can be seen in Fig. 1.

Related literature top

For the synthesis of 1,5-dihydro-2H-pyrrol-2-ones, see: Gao et al. (1997); Alizadeh et al. (2006); Nedolya et al. (2002); Mušič et al. (1998).

Experimental top

The title compound was prepared according to the procedure by Mušič et al. (1998). The crystals, suitable for X-ray structure analysis, were obtained by slow crystallization from the mixture of acetonitrile and hexane at room temperature.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms [C—H = 0.97 for methylene and 0.93 Å for aromatic hydrogens, respectively, N—H = 0.86 Å and Uiso(H) = 1.2 times Ueq(C, N)].

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: the XRAY76 System (Stewart et al., 1976); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELX97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELX97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.
3-Benzamido-1-benzoyl-1H-pyrrol-2(5H)-one top
Crystal data top
C18H14N2O3F(000) = 640
Mr = 306.31Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 75 reflections
a = 20.966 (2) Åθ = 8.0–15.3°
b = 5.8891 (7) ŵ = 0.09 mm1
c = 12.329 (1) ÅT = 293 K
β = 95.908 (8)°Plate, pale yellow
V = 1514.2 (3) Å30.58 × 0.36 × 0.09 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.056
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.0°
Graphite monochromatorh = 2727
ω/2θ scans [width (0.85 + 0.3tanθ)]k = 77
13450 measured reflectionsl = 1614
3648 independent reflections3 standard reflections every 333.3 min
2119 reflections with I > 2σ(I) intensity decay: 1.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.1617P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3648 reflectionsΔρmax = 0.16 e Å3
209 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELX97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (3)
Crystal data top
C18H14N2O3V = 1514.2 (3) Å3
Mr = 306.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.966 (2) ŵ = 0.09 mm1
b = 5.8891 (7) ÅT = 293 K
c = 12.329 (1) Å0.58 × 0.36 × 0.09 mm
β = 95.908 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.056
13450 measured reflections3 standard reflections every 333.3 min
3648 independent reflections intensity decay: 1.1%
2119 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
3648 reflectionsΔρmin = 0.18 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.80491 (6)0.1771 (2)0.90089 (10)0.0492 (3)
N20.69375 (7)0.6347 (2)0.88815 (11)0.0554 (4)
H20.69850.68200.82350.066*
O10.77372 (6)0.4192 (2)0.75402 (9)0.0632 (4)
O20.85617 (8)0.1579 (2)0.90309 (12)0.0846 (5)
O30.64221 (7)0.6962 (3)1.03607 (10)0.0784 (4)
C10.78338 (8)0.1439 (3)1.00943 (12)0.0534 (4)
H1A0.81900.15481.06600.064*
H1B0.76270.00241.01470.064*
C20.73736 (8)0.3319 (3)1.01751 (13)0.0550 (4)
H2A0.71620.36271.07850.066*
C30.73060 (7)0.4501 (3)0.92579 (12)0.0483 (4)
C40.77164 (7)0.3562 (3)0.84693 (12)0.0472 (4)
C50.84667 (8)0.0250 (3)0.85911 (13)0.0534 (4)
C60.88045 (7)0.0966 (3)0.76467 (12)0.0453 (4)
C70.88460 (8)0.0552 (3)0.67966 (14)0.0549 (4)
H70.86400.19500.68000.066*
C80.91946 (9)0.0018 (3)0.59465 (14)0.0634 (5)
H80.92100.09750.53630.076*
C90.95206 (9)0.2049 (3)0.59581 (15)0.0619 (5)
H90.97630.24080.53910.074*
C100.94882 (8)0.3549 (3)0.68073 (14)0.0555 (4)
H100.97120.49130.68170.067*
C110.91240 (7)0.3029 (3)0.76453 (12)0.0487 (4)
H110.90930.40610.82080.058*
C120.65088 (8)0.7482 (3)0.94360 (13)0.0528 (4)
C130.61696 (8)0.9416 (3)0.88463 (13)0.0512 (4)
C140.57527 (10)1.0680 (4)0.93989 (16)0.0712 (6)
H140.56781.02681.01030.085*
C150.54448 (12)1.2550 (4)0.8915 (2)0.0884 (7)
H150.51661.33970.92940.106*
C160.55488 (11)1.3153 (4)0.7884 (2)0.0860 (7)
H160.53471.44250.75610.103*
C170.59485 (12)1.1893 (5)0.7325 (2)0.0956 (8)
H170.60151.22990.66160.115*
C180.62549 (10)1.0025 (4)0.77981 (16)0.0770 (6)
H180.65230.91650.74030.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0550 (8)0.0540 (8)0.0394 (7)0.0026 (7)0.0086 (6)0.0046 (6)
N20.0570 (8)0.0713 (10)0.0406 (7)0.0103 (7)0.0184 (6)0.0029 (7)
O10.0735 (8)0.0808 (9)0.0375 (6)0.0250 (7)0.0167 (5)0.0084 (6)
O20.1141 (12)0.0581 (8)0.0851 (10)0.0181 (8)0.0264 (9)0.0236 (7)
O30.0878 (10)0.1034 (11)0.0492 (7)0.0198 (8)0.0315 (7)0.0071 (7)
C10.0575 (10)0.0645 (11)0.0387 (8)0.0111 (8)0.0071 (7)0.0064 (8)
C20.0519 (9)0.0741 (11)0.0409 (8)0.0055 (9)0.0139 (7)0.0004 (8)
C30.0457 (8)0.0620 (11)0.0385 (8)0.0033 (8)0.0105 (6)0.0017 (7)
C40.0489 (9)0.0573 (10)0.0361 (8)0.0018 (8)0.0075 (6)0.0009 (7)
C50.0589 (10)0.0492 (10)0.0515 (9)0.0025 (8)0.0031 (8)0.0027 (8)
C60.0466 (8)0.0432 (8)0.0457 (8)0.0093 (7)0.0027 (6)0.0018 (7)
C70.0574 (10)0.0444 (9)0.0625 (11)0.0076 (8)0.0048 (8)0.0092 (8)
C80.0682 (12)0.0659 (12)0.0566 (11)0.0189 (10)0.0093 (9)0.0179 (9)
C90.0539 (10)0.0758 (13)0.0584 (11)0.0125 (9)0.0168 (8)0.0003 (9)
C100.0486 (9)0.0561 (10)0.0624 (10)0.0002 (8)0.0089 (8)0.0008 (8)
C110.0514 (9)0.0466 (9)0.0475 (9)0.0047 (7)0.0026 (7)0.0060 (7)
C120.0484 (9)0.0688 (11)0.0432 (9)0.0040 (8)0.0152 (7)0.0079 (8)
C130.0446 (8)0.0621 (10)0.0479 (9)0.0041 (8)0.0098 (7)0.0112 (8)
C140.0744 (13)0.0822 (14)0.0590 (11)0.0110 (11)0.0160 (9)0.0205 (10)
C150.0897 (17)0.0788 (15)0.0968 (17)0.0231 (13)0.0096 (13)0.0297 (13)
C160.0808 (16)0.0710 (14)0.1039 (19)0.0063 (12)0.0011 (13)0.0066 (13)
C170.0862 (16)0.116 (2)0.0873 (16)0.0289 (15)0.0238 (13)0.0341 (15)
C180.0704 (12)0.1031 (16)0.0608 (11)0.0271 (12)0.0233 (10)0.0130 (11)
Geometric parameters (Å, º) top
N1—C51.388 (2)C8—C91.377 (3)
N1—C41.395 (2)C8—H80.9300
N1—C11.4687 (19)C9—C101.377 (2)
N2—C121.360 (2)C9—H90.9300
N2—C31.385 (2)C10—C111.381 (2)
N2—H20.8600C10—H100.9300
O1—C41.2091 (18)C11—H110.9300
O2—C51.213 (2)C12—C131.492 (2)
O3—C121.2121 (19)C13—C181.370 (2)
C1—C21.479 (3)C13—C141.380 (2)
C1—H1A0.9700C14—C151.381 (3)
C1—H1B0.9700C14—H140.9300
C2—C31.323 (2)C15—C161.358 (3)
C2—H2A0.9300C15—H150.9300
C3—C41.471 (2)C16—C171.359 (3)
C5—C61.485 (2)C16—H160.9300
C6—C111.387 (2)C17—C181.373 (3)
C6—C71.387 (2)C17—H170.9300
C7—C81.379 (2)C18—H180.9300
C7—H70.9300
C5—N1—C4127.91 (13)C7—C8—H8119.8
C5—N1—C1121.13 (13)C8—C9—C10120.13 (17)
C4—N1—C1110.46 (13)C8—C9—H9119.9
C12—N2—C3126.31 (14)C10—C9—H9119.9
C12—N2—H2116.8C9—C10—C11120.07 (17)
C3—N2—H2116.8C9—C10—H10120.0
N1—C1—C2103.04 (13)C11—C10—H10120.0
N1—C1—H1A111.2C10—C11—C6119.96 (15)
C2—C1—H1A111.2C10—C11—H11120.0
N1—C1—H1B111.2C6—C11—H11120.0
C2—C1—H1B111.2O3—C12—N2121.29 (17)
H1A—C1—H1B109.1O3—C12—C13122.77 (15)
C3—C2—C1110.47 (14)N2—C12—C13115.92 (14)
C3—C2—H2A124.8C18—C13—C14118.38 (18)
C1—C2—H2A124.8C18—C13—C12123.87 (16)
C2—C3—N2134.92 (15)C14—C13—C12117.74 (16)
C2—C3—C4110.40 (15)C15—C14—C13120.6 (2)
N2—C3—C4114.67 (13)C15—C14—H14119.7
O1—C4—N1128.21 (15)C13—C14—H14119.7
O1—C4—C3126.27 (15)C16—C15—C14120.0 (2)
N1—C4—C3105.48 (13)C16—C15—H15120.0
O2—C5—N1119.19 (16)C14—C15—H15120.0
O2—C5—C6122.21 (16)C15—C16—C17119.9 (2)
N1—C5—C6118.54 (14)C15—C16—H16120.0
C11—C6—C7119.70 (15)C17—C16—H16120.0
C11—C6—C5121.26 (14)C16—C17—C18120.5 (2)
C7—C6—C5118.79 (15)C16—C17—H17119.7
C8—C7—C6119.78 (17)C18—C17—H17119.7
C8—C7—H7120.1C13—C18—C17120.6 (2)
C6—C7—H7120.1C13—C18—H18119.7
C9—C8—C7120.31 (16)C17—C18—H18119.7
C9—C8—H8119.8
C5—N1—C1—C2176.46 (15)C11—C6—C7—C81.2 (2)
C4—N1—C1—C23.92 (17)C5—C6—C7—C8175.60 (15)
N1—C1—C2—C32.68 (19)C6—C7—C8—C92.4 (3)
C1—C2—C3—N2178.14 (18)C7—C8—C9—C101.5 (3)
C1—C2—C3—C40.6 (2)C8—C9—C10—C110.6 (3)
C12—N2—C3—C20.5 (3)C9—C10—C11—C61.8 (2)
C12—N2—C3—C4178.20 (15)C7—C6—C11—C100.9 (2)
C5—N1—C4—O12.2 (3)C5—C6—C11—C10173.38 (15)
C1—N1—C4—O1174.11 (17)C3—N2—C12—O31.6 (3)
C5—N1—C4—C3175.56 (15)C3—N2—C12—C13179.80 (15)
C1—N1—C4—C33.67 (17)O3—C12—C13—C18179.38 (19)
C2—C3—C4—O1175.90 (17)N2—C12—C13—C182.0 (3)
N2—C3—C4—O13.1 (3)O3—C12—C13—C141.6 (3)
C2—C3—C4—N11.93 (19)N2—C12—C13—C14177.04 (16)
N2—C3—C4—N1179.08 (13)C18—C13—C14—C151.9 (3)
C4—N1—C5—O2157.39 (17)C12—C13—C14—C15177.23 (18)
C1—N1—C5—O213.7 (2)C13—C14—C15—C160.4 (3)
C4—N1—C5—C625.3 (2)C14—C15—C16—C171.0 (4)
C1—N1—C5—C6163.60 (14)C15—C16—C17—C180.7 (4)
O2—C5—C6—C11127.91 (19)C14—C13—C18—C172.1 (3)
N1—C5—C6—C1149.3 (2)C12—C13—C18—C17176.9 (2)
O2—C5—C6—C746.4 (2)C16—C17—C18—C130.9 (4)
N1—C5—C6—C7136.36 (16)

Experimental details

Crystal data
Chemical formulaC18H14N2O3
Mr306.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.966 (2), 5.8891 (7), 12.329 (1)
β (°) 95.908 (8)
V3)1514.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.36 × 0.09
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13450, 3648, 2119
Rint0.056
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.00
No. of reflections3648
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), the XRAY76 System (Stewart et al., 1976), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELX97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This work was supported by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia (grants P1–0175 and MR-29397).

References

First citationAlizadeh, A., Movahedi, F., Masrouri, H. & Zhu, L. G. (2006). Synthesis, pp. 3431–3436.  Web of Science CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, Y., Shirai, M. & Sato, F. (1997). Tetrahedron Lett. 38, 6849–6852.  CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMušič, I., Golobič, A. & Verček, B. (1998). Heterocycles, 48, 353–358.  Google Scholar
First citationNedolya, N. A., Brandsma, L. & Tolmachev, S. V. (2002). Russ. J. Org. Chem. 38, 948–949.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, R. F., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. & Flack, H. (1976). The XRAY76 System. Technical Report TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds