metal-organic compounds
Poly[tris(2,5-dimethylbenzene-1,4-dicarboxylato)bis(pyridine)trizinc(II)]
aDepartment of Chemistry, West Anhui University, Lu' an 237012, People's Republic of China, and bDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: wangfangkuo2491@126.com
The 3(C10H8O4)3(C5H5N)2]n or [Zn3(dmbdc)3(py)2]n (dmbdc = 2,5-dimethylbenzenedicarboxylate; py = pyridine) contains two Zn(II) ions, one of which is located on an inversion centre, one and a half 2,5-dimethylbenzenedicarboxylate ligands and one pyridine ligand. Each ZnO6 octahedron is sandwiched between two ZnO4N square-pyramids, forming a trinuclear zinc secondary building unit (SBU); each SBU is further linked by six 2,5-dimethylbenzenedicarboxylate ligands with six adjacent trinuclear zinc SBU's, forming a two-dimensional layer structure with a (3,6) net. One of the three zinc ions is octahedrally coordinated and the other two are square-pyramidally coordinated. The coordination modes for 2,5-dimethylbenzenedicarboxylates are bis(bidentate) or bidentate-tridentate.
of the title polymeric compound, [ZnRelated literature
For the potential applications of metal-organic frameworks formed from terephthalic acid and its derivatives, see Wang et al. (2007); Grzesiak et al. (2006); Rosi et al. (2005); Burrows et al. (2005); Liao et al. (2006); Yang et al. (2002); Eddaoudi et al. (2002). For related structures, see: Wang et al. (2008); Zhou et al. (2009).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810004848/bv2132sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004848/bv2132Isup2.hkl
A suspension of 2,5-dimethylbenzenedicarboxylic acid (H2dmbdc, 0.097 g, 0.50 mmol) in H2O (12 ml), pyridine was slowly added to the solution until pH was adjusted to 7, then Zn(NO3)2.6H2O (0.15 g, 0.50 mmol) was added. The mixture was placed in a 20 ml Teflon-lined vessel, heated to 120°C at the rate of 0.2°C/min, and kept at 120°C for 3 days, then slowly cooled down to room temperature at the rate of 0.1°C/min. Colorless platelet crystals (0.062 g, yield 40%) were separated by filtration, washed with deionized water and dried in air. Elemental Analysis: C40H34N2O12Zn3, found (calc.) C 51.52 (51.61), H 3.66 (3.69), N 2.99 (3.01). FTIR (KBr, cm-1): 3454 (m), 3031 (w), 2961 (m), 2739 (w), 1922 (w), 1820 (m),1452 (m), 1399 (s), 1347 (m), 1158 (m), 1074 (s), 918 (s), 797 (versus).
The aromatic H atoms were generated geometrically (C—H 0.93 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms. The methyl H atoms were generated geometrically (C—H 0.96 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.5 times those of the parent atoms.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn3(C10H8O4)3(C5H5N)2] | F(000) = 1896 |
Mr = 930.80 | Dx = 1.650 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2781 reflections |
a = 22.3372 (15) Å | θ = 2.2–25.0° |
b = 10.2643 (7) Å | µ = 1.97 mm−1 |
c = 16.9261 (11) Å | T = 299 K |
β = 105.140 (1)° | Block, colorless |
V = 3746.0 (4) Å3 | 0.12 × 0.08 × 0.07 mm |
Z = 4 |
Bruker SMART APEX area-detector diffractometer | 4487 independent reflections |
Radiation source: fine-focus sealed tube | 3559 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
ϕ and ω scan | θmax = 28.7°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −28→30 |
Tmin = 0.798, Tmax = 0.874 | k = −13→13 |
16107 measured reflections | l = −21→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0282P)2 + 12.5564P] where P = (Fo2 + 2Fc2)/3 |
4487 reflections | (Δ/σ)max < 0.001 |
262 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −0.63 e Å−3 |
[Zn3(C10H8O4)3(C5H5N)2] | V = 3746.0 (4) Å3 |
Mr = 930.80 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.3372 (15) Å | µ = 1.97 mm−1 |
b = 10.2643 (7) Å | T = 299 K |
c = 16.9261 (11) Å | 0.12 × 0.08 × 0.07 mm |
β = 105.140 (1)° |
Bruker SMART APEX area-detector diffractometer | 4487 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3559 reflections with I > 2σ(I) |
Tmin = 0.798, Tmax = 0.874 | Rint = 0.059 |
16107 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0282P)2 + 12.5564P] where P = (Fo2 + 2Fc2)/3 |
4487 reflections | Δρmax = 0.74 e Å−3 |
262 parameters | Δρmin = −0.63 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.40381 (2) | 0.67147 (5) | 0.55736 (3) | 0.02859 (17) | |
Zn2 | 0.2500 | 0.7500 | 0.5000 | 0.02465 (19) | |
O1 | 0.40247 (16) | 0.7797 (3) | 0.4622 (2) | 0.0379 (8) | |
O2 | 0.31369 (15) | 0.8673 (3) | 0.4686 (2) | 0.0347 (7) | |
O3 | 0.29594 (17) | 1.2435 (4) | 0.12228 (19) | 0.0425 (9) | |
O4 | 0.39737 (16) | 1.2197 (4) | 0.1478 (2) | 0.0426 (9) | |
O5 | 0.37531 (18) | 0.4905 (4) | 0.5713 (3) | 0.0557 (11) | |
O6 | 0.30025 (18) | 0.5819 (3) | 0.4821 (2) | 0.0444 (9) | |
N1 | 0.49686 (18) | 0.6283 (4) | 0.5907 (3) | 0.0397 (10) | |
C1 | 0.3588 (2) | 0.9476 (5) | 0.3687 (3) | 0.0309 (10) | |
C2 | 0.4095 (2) | 0.9664 (5) | 0.3361 (3) | 0.0368 (11) | |
C3 | 0.4018 (2) | 1.0506 (5) | 0.2701 (3) | 0.0362 (11) | |
H3A | 0.4354 | 1.0645 | 0.2483 | 0.043* | |
C4 | 0.3476 (2) | 1.1143 (4) | 0.2354 (3) | 0.0297 (9) | |
C5 | 0.2970 (2) | 1.0983 (5) | 0.2683 (3) | 0.0310 (9) | |
C6 | 0.3049 (2) | 1.0147 (5) | 0.3343 (3) | 0.0325 (10) | |
H6A | 0.2716 | 1.0031 | 0.3570 | 0.039* | |
C7 | 0.3581 (2) | 0.8590 (4) | 0.4383 (3) | 0.0297 (9) | |
C8 | 0.4722 (3) | 0.9037 (8) | 0.3691 (5) | 0.074 (2) | |
H8A | 0.5009 | 0.9382 | 0.3409 | 0.111* | |
H8B | 0.4686 | 0.8112 | 0.3608 | 0.111* | |
H8C | 0.4871 | 0.9218 | 0.4265 | 0.111* | |
C9 | 0.3457 (2) | 1.1994 (4) | 0.1631 (3) | 0.0308 (10) | |
C10 | 0.2367 (3) | 1.1692 (6) | 0.2392 (4) | 0.0521 (15) | |
H10A | 0.2090 | 1.1424 | 0.2709 | 0.078* | |
H10B | 0.2187 | 1.1493 | 0.1825 | 0.078* | |
H10C | 0.2439 | 1.2613 | 0.2454 | 0.078* | |
C11 | 0.3226 (2) | 0.4861 (5) | 0.5232 (3) | 0.0400 (12) | |
C12 | 0.2872 (2) | 0.3605 (4) | 0.5142 (3) | 0.0322 (10) | |
C13 | 0.2293 (2) | 0.3618 (4) | 0.4598 (3) | 0.0363 (11) | |
H13A | 0.2154 | 0.4392 | 0.4327 | 0.044* | |
C14 | 0.3094 (2) | 0.2458 (5) | 0.5566 (3) | 0.0381 (11) | |
C15 | 0.3713 (3) | 0.2313 (6) | 0.6163 (4) | 0.0630 (18) | |
H15A | 0.3768 | 0.1427 | 0.6351 | 0.095* | |
H15B | 0.3738 | 0.2881 | 0.6621 | 0.095* | |
H15C | 0.4033 | 0.2537 | 0.5903 | 0.095* | |
C16 | 0.5188 (3) | 0.5242 (8) | 0.6329 (6) | 0.103 (4) | |
H16A | 0.4911 | 0.4643 | 0.6447 | 0.124* | |
C17 | 0.5805 (4) | 0.5003 (10) | 0.6601 (8) | 0.134 (5) | |
H17A | 0.5944 | 0.4256 | 0.6906 | 0.161* | |
C18 | 0.6214 (3) | 0.5840 (8) | 0.6433 (6) | 0.081 (2) | |
H18A | 0.6638 | 0.5700 | 0.6634 | 0.098* | |
C19 | 0.6002 (3) | 0.6877 (7) | 0.5972 (4) | 0.0612 (17) | |
H19A | 0.6274 | 0.7453 | 0.5821 | 0.073* | |
C20 | 0.5379 (3) | 0.7074 (6) | 0.5725 (4) | 0.0536 (15) | |
H20A | 0.5234 | 0.7808 | 0.5411 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0302 (3) | 0.0257 (3) | 0.0305 (3) | −0.0001 (2) | 0.0090 (2) | 0.0002 (2) |
Zn2 | 0.0236 (4) | 0.0256 (4) | 0.0249 (3) | −0.0023 (3) | 0.0067 (3) | −0.0003 (3) |
O1 | 0.0374 (18) | 0.0410 (19) | 0.0380 (18) | 0.0055 (15) | 0.0149 (15) | 0.0153 (15) |
O2 | 0.0362 (18) | 0.0304 (17) | 0.0437 (19) | −0.0038 (14) | 0.0213 (15) | 0.0055 (14) |
O3 | 0.042 (2) | 0.060 (2) | 0.0234 (15) | 0.0153 (17) | 0.0050 (15) | 0.0087 (16) |
O4 | 0.0374 (19) | 0.053 (2) | 0.0365 (18) | −0.0024 (16) | 0.0089 (15) | 0.0189 (16) |
O5 | 0.042 (2) | 0.035 (2) | 0.087 (3) | −0.0140 (17) | 0.011 (2) | −0.007 (2) |
O6 | 0.065 (2) | 0.0217 (16) | 0.058 (2) | −0.0018 (16) | 0.038 (2) | −0.0008 (16) |
N1 | 0.028 (2) | 0.037 (2) | 0.052 (3) | 0.0043 (17) | 0.0073 (18) | 0.002 (2) |
C1 | 0.029 (2) | 0.036 (2) | 0.030 (2) | −0.0017 (18) | 0.0097 (18) | 0.0038 (19) |
C2 | 0.031 (2) | 0.040 (3) | 0.044 (3) | 0.004 (2) | 0.018 (2) | 0.009 (2) |
C3 | 0.032 (2) | 0.045 (3) | 0.036 (2) | 0.002 (2) | 0.016 (2) | 0.009 (2) |
C4 | 0.030 (2) | 0.031 (2) | 0.026 (2) | −0.0008 (18) | 0.0042 (18) | 0.0016 (18) |
C5 | 0.027 (2) | 0.033 (2) | 0.031 (2) | −0.0005 (18) | 0.0057 (18) | 0.0025 (19) |
C6 | 0.029 (2) | 0.035 (2) | 0.037 (2) | 0.0010 (19) | 0.0134 (19) | 0.004 (2) |
C7 | 0.031 (2) | 0.026 (2) | 0.033 (2) | −0.0048 (18) | 0.0113 (19) | 0.0013 (18) |
C8 | 0.041 (3) | 0.100 (5) | 0.092 (5) | 0.031 (4) | 0.037 (3) | 0.060 (5) |
C9 | 0.036 (3) | 0.028 (2) | 0.027 (2) | −0.0017 (19) | 0.0062 (19) | −0.0019 (18) |
C10 | 0.036 (3) | 0.070 (4) | 0.051 (3) | 0.013 (3) | 0.014 (2) | 0.020 (3) |
C11 | 0.045 (3) | 0.027 (2) | 0.055 (3) | −0.005 (2) | 0.027 (3) | −0.011 (2) |
C12 | 0.032 (2) | 0.021 (2) | 0.049 (3) | −0.0012 (17) | 0.019 (2) | −0.0027 (19) |
C13 | 0.034 (2) | 0.023 (2) | 0.053 (3) | 0.0055 (18) | 0.012 (2) | 0.007 (2) |
C14 | 0.033 (2) | 0.031 (2) | 0.050 (3) | 0.0039 (19) | 0.009 (2) | 0.002 (2) |
C15 | 0.042 (3) | 0.049 (4) | 0.084 (5) | 0.002 (3) | −0.008 (3) | 0.014 (3) |
C16 | 0.047 (4) | 0.083 (6) | 0.166 (9) | 0.003 (4) | 0.006 (5) | 0.071 (6) |
C17 | 0.045 (4) | 0.109 (7) | 0.231 (13) | 0.015 (5) | 0.006 (6) | 0.098 (9) |
C18 | 0.037 (3) | 0.081 (5) | 0.121 (7) | 0.012 (4) | 0.010 (4) | −0.002 (5) |
C19 | 0.038 (3) | 0.078 (5) | 0.069 (4) | −0.011 (3) | 0.015 (3) | −0.014 (4) |
C20 | 0.043 (3) | 0.059 (4) | 0.059 (4) | −0.006 (3) | 0.014 (3) | 0.007 (3) |
Zn1—O4i | 1.931 (3) | C4—C9 | 1.496 (6) |
Zn1—O1 | 1.950 (3) | C5—C6 | 1.384 (6) |
Zn1—O5 | 1.998 (4) | C5—C10 | 1.495 (7) |
Zn1—N1 | 2.055 (4) | C6—H6A | 0.9300 |
Zn1—C11 | 2.588 (5) | C8—H8A | 0.9600 |
Zn2—O2 | 2.037 (3) | C8—H8B | 0.9600 |
Zn2—O2ii | 2.037 (3) | C8—H8C | 0.9600 |
Zn2—O3iii | 2.057 (3) | C10—H10A | 0.9600 |
Zn2—O3i | 2.057 (3) | C10—H10B | 0.9600 |
Zn2—O6 | 2.123 (3) | C10—H10C | 0.9600 |
Zn2—O6ii | 2.123 (3) | C11—C12 | 1.500 (6) |
O1—C7 | 1.265 (6) | C12—C13 | 1.378 (7) |
O2—C7 | 1.233 (5) | C12—C14 | 1.401 (7) |
O3—C9 | 1.231 (6) | C13—C14vi | 1.385 (7) |
O3—Zn2iv | 2.057 (3) | C13—H13A | 0.9300 |
O4—C9 | 1.264 (6) | C14—C13vi | 1.385 (7) |
O4—Zn1v | 1.931 (3) | C14—C15 | 1.492 (7) |
O5—C11 | 1.245 (6) | C15—H15A | 0.9600 |
O6—C11 | 1.233 (6) | C15—H15B | 0.9600 |
N1—C16 | 1.308 (8) | C15—H15C | 0.9600 |
N1—C20 | 1.320 (7) | C16—C17 | 1.356 (10) |
C1—C6 | 1.378 (6) | C16—H16A | 0.9300 |
C1—C2 | 1.395 (6) | C17—C18 | 1.337 (11) |
C1—C7 | 1.492 (6) | C17—H17A | 0.9300 |
C2—C3 | 1.387 (7) | C18—C19 | 1.332 (10) |
C2—C8 | 1.511 (7) | C18—H18A | 0.9300 |
C3—C4 | 1.367 (6) | C19—C20 | 1.359 (8) |
C3—H3A | 0.9300 | C19—H19A | 0.9300 |
C4—C5 | 1.393 (6) | C20—H20A | 0.9300 |
O4i—Zn1—O1 | 109.70 (17) | O2—C7—C1 | 117.6 (4) |
O4i—Zn1—O5 | 110.64 (18) | O1—C7—C1 | 118.4 (4) |
O1—Zn1—O5 | 133.67 (17) | C2—C8—H8A | 109.5 |
O4i—Zn1—N1 | 100.73 (17) | C2—C8—H8B | 109.5 |
O1—Zn1—N1 | 98.40 (16) | H8A—C8—H8B | 109.5 |
O5—Zn1—N1 | 95.60 (17) | C2—C8—H8C | 109.5 |
O4i—Zn1—C11 | 114.20 (16) | H8A—C8—H8C | 109.5 |
O1—Zn1—C11 | 112.05 (17) | H8B—C8—H8C | 109.5 |
O5—Zn1—C11 | 27.91 (16) | O3—C9—O4 | 124.3 (4) |
N1—Zn1—C11 | 120.16 (17) | O3—C9—C4 | 120.2 (4) |
O2—Zn2—O2ii | 180.00 (18) | O4—C9—C4 | 115.5 (4) |
O2—Zn2—O3iii | 87.46 (14) | C5—C10—H10A | 109.5 |
O2ii—Zn2—O3iii | 92.54 (14) | C5—C10—H10B | 109.5 |
O2—Zn2—O3i | 92.54 (14) | H10A—C10—H10B | 109.5 |
O2ii—Zn2—O3i | 87.46 (14) | C5—C10—H10C | 109.5 |
O3iii—Zn2—O3i | 180.000 (1) | H10A—C10—H10C | 109.5 |
O2—Zn2—O6 | 90.67 (13) | H10B—C10—H10C | 109.5 |
O2ii—Zn2—O6 | 89.33 (13) | O6—C11—O5 | 121.0 (5) |
O3iii—Zn2—O6 | 88.47 (15) | O6—C11—C12 | 120.2 (5) |
O3i—Zn2—O6 | 91.53 (15) | O5—C11—C12 | 118.8 (5) |
O2—Zn2—O6ii | 89.33 (13) | O6—C11—Zn1 | 72.3 (3) |
O2ii—Zn2—O6ii | 90.67 (13) | O5—C11—Zn1 | 48.7 (2) |
O3iii—Zn2—O6ii | 91.53 (15) | C12—C11—Zn1 | 167.2 (4) |
O3i—Zn2—O6ii | 88.47 (15) | C13—C12—C14 | 119.8 (4) |
O6—Zn2—O6ii | 180.0 (2) | C13—C12—C11 | 116.0 (4) |
C7—O1—Zn1 | 118.2 (3) | C14—C12—C11 | 124.3 (5) |
C7—O2—Zn2 | 139.4 (3) | C12—C13—C14vi | 123.7 (4) |
C9—O3—Zn2iv | 135.7 (3) | C12—C13—H13A | 118.2 |
C9—O4—Zn1v | 121.2 (3) | C14vi—C13—H13A | 118.2 |
C11—O5—Zn1 | 103.4 (3) | C13vi—C14—C12 | 116.6 (5) |
C11—O6—Zn2 | 136.0 (3) | C13vi—C14—C15 | 118.4 (5) |
C16—N1—C20 | 116.5 (5) | C12—C14—C15 | 125.0 (5) |
C16—N1—Zn1 | 122.3 (4) | C14—C15—H15A | 109.5 |
C20—N1—Zn1 | 121.2 (4) | C14—C15—H15B | 109.5 |
C6—C1—C2 | 118.3 (4) | H15A—C15—H15B | 109.5 |
C6—C1—C7 | 116.7 (4) | C14—C15—H15C | 109.5 |
C2—C1—C7 | 125.1 (4) | H15A—C15—H15C | 109.5 |
C3—C2—C1 | 117.6 (4) | H15B—C15—H15C | 109.5 |
C3—C2—C8 | 118.1 (4) | N1—C16—C17 | 122.5 (7) |
C1—C2—C8 | 124.4 (4) | N1—C16—H16A | 118.8 |
C4—C3—C2 | 123.6 (4) | C17—C16—H16A | 118.8 |
C4—C3—H3A | 118.2 | C18—C17—C16 | 120.0 (8) |
C2—C3—H3A | 118.2 | C18—C17—H17A | 120.0 |
C3—C4—C5 | 119.5 (4) | C16—C17—H17A | 120.0 |
C3—C4—C9 | 117.6 (4) | C19—C18—C17 | 118.8 (7) |
C5—C4—C9 | 122.9 (4) | C19—C18—H18A | 120.6 |
C6—C5—C4 | 116.7 (4) | C17—C18—H18A | 120.6 |
C6—C5—C10 | 118.8 (4) | C18—C19—C20 | 118.5 (7) |
C4—C5—C10 | 124.5 (4) | C18—C19—H19A | 120.7 |
C1—C6—C5 | 124.3 (4) | C20—C19—H19A | 120.7 |
C1—C6—H6A | 117.8 | N1—C20—C19 | 123.7 (6) |
C5—C6—H6A | 117.8 | N1—C20—H20A | 118.2 |
O2—C7—O1 | 124.0 (4) | C19—C20—H20A | 118.2 |
Symmetry codes: (i) x, −y+2, z+1/2; (ii) −x+1/2, −y+3/2, −z+1; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x, −y+2, z−1/2; (vi) −x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn3(C10H8O4)3(C5H5N)2] |
Mr | 930.80 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 299 |
a, b, c (Å) | 22.3372 (15), 10.2643 (7), 16.9261 (11) |
β (°) | 105.140 (1) |
V (Å3) | 3746.0 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.97 |
Crystal size (mm) | 0.12 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.798, 0.874 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16107, 4487, 3559 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.677 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.156, 1.08 |
No. of reflections | 4487 |
No. of parameters | 262 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0282P)2 + 12.5564P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.74, −0.63 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
Acknowledgements
We are grateful for financial support by the National Natural Science Foundation of China (grant No. 20471049) and Xiamen University.
References
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Burrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. (2005). CrystEngComm. 7, 548–550. Web of Science CSD CrossRef CAS Google Scholar
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeff, M. & Yaghi, O. M. (2002). Science , 295, 469–472. Web of Science CSD CrossRef PubMed CAS Google Scholar
Grzesiak, A. L., Uribe, F. J., Ockwig, N. W., Yaghi, O. M., Bi, W. & Matzger, A. J. (2006). Angew. Chem. Int. Ed. 45, 2553–2556. Web of Science CSD CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138 Oak Ridge National Laboratory. Google Scholar
Liao, J. H., Lee, T. J. & Su, C. T. (2006). Inorg. Chem. Commun. 9, 201–204. Web of Science CSD CrossRef CAS Google Scholar
Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, F. K., Song, X. X., Yang, S. Y., Huang, R. B. & Zheng, L. S. (2007). Inorg. Chem. Commun. 10, 1198–1201. Web of Science CSD CrossRef CAS Google Scholar
Wang, F. K., Yang, S. Y., Huang, R. B., Zheng, L. S. & Batten, S. R. (2008). CrystEngComm, 11, 1211–1215. Web of Science CSD CrossRef Google Scholar
Yang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater. 14, 3229–3231. Web of Science CSD CrossRef CAS Google Scholar
Zhou, D. S., Wang, F. K., Yang, S. Y., Xie, Z. X. & Huang, R. B. (2009). CrystEngComm, 10, 2548–2554. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Terephthalic acid and its derivatives have been used to construct metal-organic frameworks. Some of these compounds display interesting structures and have potential applications (Wang et al., 2007; Grzesiak et al., 2006; Rosi et al., 2005; Burrows et al., 2005; Liao et al., 2006; Yang et al., 2002; Eddaoudi et al.,2002; Zhou et al., 2009). In this paper we report a coordination polymer [Zn3(dmbdc)3(py)2]n, 1 (dmbdc=2,5-dimethylbenzenedicarboxylate; py=pyridine) synthesized by hydrothermal reaction.
The structure of 1 contains trinuclear zinc SBU's (SBU = Secondary Building Unit) (Fig. 1), in which each ZnO6 octahedron sandwiched between two ZnO4N square-pyramids. The three Zn ions exhibit two different coordination geometries: Zn1 coordinates to four oxygen atoms from three carboxylates in the plane and a nitrogen atom from py (py = pyridine) at the apex giving a distorted square-pyramidal geometry; Zn2 atom is coordinated by six oxygen atoms from six dmbdc anions (dmbdc=2,5-dimethylbenzenedicarboxylate) to constitute a slightly distorted octahedral environment. Coordination polymers with similar but different trinuclear zinc SBU's have been reported in recent years (Wang et al., 2008). There are two coordination modes for the dmbdc in the structure of 1, one is bis(bidentate), and the other one adopts bidentate and tridentate for each of its carboxyl groups. However, each trinuclear zinc SBU is further linked by six dmbdc ligands to six adjacent trinuclear zinc SBU's to form a two-dimensional sheet with a (3,6) net parallel to bc plane (Fig. 2). The two-dimensional sheets are further packed in an ABAB··· mode along b axis (Fig. 3). Coordinated pyridine molecules lie in the both sides of trinuclear zinc SBU's respectively.