organic compounds
N-(p-Tolylsulfonyl)-L-asparagine
aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000 Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: iukhan.gcu@gmail.com, kmlo@um.edu.my
In the title compound, C11H14N2O5S, the amide O atom acts as a hydrogen-bond acceptor from a carboxylate O atom and a secondary amino N atom. In addition, one of the sulfonyl O atoms and the carbonyl O atom of the carboxyl group also form hydrogen bonds with the primary amido N atom. These intermolecular hydrogen-bonding interactions give rise to a layer structure, with the layers parallel to the ac plane.
Related literature
For the antibacterial and anticancer activity of L-asparagines, Wagastuma et al. (1983); Murphy & Stubbins (1980). For a related compound, see Arshad et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810004034/bv2133sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810004034/bv2133Isup2.hkl
Asparagine (.25 g, 1.89 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was maintained at 8–9 using 1 M Na2CO3 solution. 4-Toluenesulfonyl chloride (0.361 g, 1.89 mmol) was suspended in the above solution and stirred at room temperature until all the 4-toluenesulfonyl chloride was consumed. The reaction was completed when the suspension turned to a clear solution. Upon completion of the reaction, the pH was adjusted 1–2, using 1 M HCl solution. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized from methanol to yield white crystals.
Hydrogen atoms were placed at calculated positions (C–H 0.93 to 0.98 Å; O–H 0.82 Å, N–H 0.86 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times U~eq~(C).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).C11H14N2O5S | F(000) = 600 |
Mr = 286.30 | Dx = 1.361 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 2600 reflections |
a = 8.7566 (6) Å | θ = 2.5–24° |
b = 22.900 (2) Å | µ = 0.25 mm−1 |
c = 6.9692 (7) Å | T = 296 K |
V = 1397.5 (2) Å3 | Block, white |
Z = 4 | 0.37 × 0.11 × 0.07 mm |
Bruker APEXII CCD area-detector diffractometer | 3206 independent reflections |
Radiation source: fine-focus sealed tube | 2451 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.914, Tmax = 0.983 | k = −26→29 |
8388 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0521P)2 + ] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3206 reflections | Δρmax = 0.18 e Å−3 |
174 parameters | Δρmin = −0.27 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1328 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (8) |
C11H14N2O5S | V = 1397.5 (2) Å3 |
Mr = 286.30 | Z = 4 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 8.7566 (6) Å | µ = 0.25 mm−1 |
b = 22.900 (2) Å | T = 296 K |
c = 6.9692 (7) Å | 0.37 × 0.11 × 0.07 mm |
Bruker APEXII CCD area-detector diffractometer | 3206 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2451 reflections with I > 2σ(I) |
Tmin = 0.914, Tmax = 0.983 | Rint = 0.029 |
8388 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.099 | Δρmax = 0.18 e Å−3 |
S = 1.02 | Δρmin = −0.27 e Å−3 |
3206 reflections | Absolute structure: Flack (1983), 1328 Friedel pairs |
174 parameters | Absolute structure parameter: −0.03 (8) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.95716 (6) | 0.62903 (3) | 0.10823 (10) | 0.04939 (18) | |
O1 | 0.9573 (2) | 0.61117 (9) | −0.0862 (3) | 0.0778 (6) | |
O2 | 1.09832 (17) | 0.64258 (8) | 0.2020 (3) | 0.0636 (5) | |
O3 | 0.62170 (16) | 0.68014 (8) | 0.3996 (2) | 0.0554 (4) | |
O4 | 0.76473 (19) | 0.73119 (9) | 0.6017 (2) | 0.0629 (5) | |
H4 | 0.7019 | 0.7200 | 0.6808 | 0.094* | |
O5 | 1.08999 (14) | 0.79700 (8) | 0.1128 (2) | 0.0493 (4) | |
N1 | 0.85411 (17) | 0.68699 (8) | 0.1208 (3) | 0.0392 (4) | |
H1 | 0.7966 | 0.6960 | 0.0253 | 0.047* | |
N2 | 0.90525 (19) | 0.82712 (9) | −0.0810 (3) | 0.0522 (5) | |
H2A | 0.9703 | 0.8367 | −0.1680 | 0.063* | |
H2B | 0.8093 | 0.8323 | −0.1008 | 0.063* | |
C1 | 0.8685 (3) | 0.57415 (11) | 0.2442 (4) | 0.0490 (6) | |
C2 | 0.8893 (3) | 0.57211 (12) | 0.4400 (4) | 0.0619 (7) | |
H2 | 0.9511 | 0.5994 | 0.5013 | 0.074* | |
C3 | 0.8171 (4) | 0.52899 (16) | 0.5433 (5) | 0.0807 (10) | |
H3 | 0.8303 | 0.5277 | 0.6757 | 0.097* | |
C4 | 0.7259 (4) | 0.48771 (14) | 0.4570 (6) | 0.0796 (10) | |
C5 | 0.7061 (4) | 0.49096 (16) | 0.2613 (7) | 0.0896 (11) | |
H5 | 0.6442 | 0.4637 | 0.2002 | 0.107* | |
C6 | 0.7762 (3) | 0.53379 (13) | 0.1549 (5) | 0.0712 (9) | |
H6 | 0.7613 | 0.5355 | 0.0229 | 0.085* | |
C7 | 0.6559 (5) | 0.43887 (16) | 0.5732 (7) | 0.1317 (18) | |
H7A | 0.5955 | 0.4145 | 0.4908 | 0.198* | |
H7B | 0.5921 | 0.4551 | 0.6719 | 0.198* | |
H7C | 0.7355 | 0.4160 | 0.6309 | 0.198* | |
C8 | 0.8551 (2) | 0.72435 (9) | 0.2877 (3) | 0.0357 (5) | |
H8 | 0.9551 | 0.7208 | 0.3497 | 0.043* | |
C9 | 0.7331 (2) | 0.70850 (10) | 0.4343 (3) | 0.0375 (5) | |
C10 | 0.8332 (2) | 0.78799 (10) | 0.2275 (3) | 0.0416 (5) | |
H10A | 0.7319 | 0.7931 | 0.1735 | 0.050* | |
H10B | 0.8420 | 0.8131 | 0.3389 | 0.050* | |
C11 | 0.9521 (2) | 0.80490 (9) | 0.0805 (3) | 0.0362 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0400 (3) | 0.0489 (3) | 0.0592 (4) | 0.0011 (3) | 0.0150 (3) | −0.0021 (3) |
O1 | 0.0992 (14) | 0.0717 (13) | 0.0624 (12) | 0.0039 (11) | 0.0320 (12) | −0.0157 (11) |
O2 | 0.0324 (8) | 0.0578 (11) | 0.1005 (15) | 0.0023 (7) | 0.0067 (8) | 0.0111 (11) |
O3 | 0.0385 (8) | 0.0806 (12) | 0.0471 (9) | −0.0149 (8) | 0.0005 (7) | 0.0108 (10) |
O4 | 0.0571 (10) | 0.0946 (15) | 0.0369 (9) | −0.0274 (9) | 0.0162 (8) | −0.0073 (10) |
O5 | 0.0301 (7) | 0.0789 (12) | 0.0388 (8) | −0.0034 (7) | −0.0020 (7) | 0.0164 (10) |
N1 | 0.0368 (8) | 0.0467 (11) | 0.0342 (9) | 0.0025 (8) | 0.0010 (8) | 0.0005 (10) |
N2 | 0.0325 (8) | 0.0808 (15) | 0.0432 (11) | 0.0045 (9) | 0.0011 (8) | 0.0199 (11) |
C1 | 0.0413 (11) | 0.0409 (14) | 0.0646 (16) | 0.0019 (10) | 0.0084 (11) | −0.0013 (13) |
C2 | 0.0677 (16) | 0.0459 (16) | 0.072 (2) | −0.0084 (13) | −0.0039 (13) | 0.0062 (14) |
C3 | 0.096 (2) | 0.067 (2) | 0.079 (2) | −0.0022 (19) | 0.0075 (17) | 0.0203 (19) |
C4 | 0.074 (2) | 0.046 (2) | 0.119 (3) | −0.0002 (16) | 0.0206 (19) | 0.017 (2) |
C5 | 0.076 (2) | 0.059 (2) | 0.134 (3) | −0.0230 (16) | 0.006 (2) | −0.010 (2) |
C6 | 0.0749 (18) | 0.0609 (19) | 0.078 (2) | −0.0156 (16) | 0.0060 (15) | −0.0088 (17) |
C7 | 0.127 (3) | 0.074 (3) | 0.195 (5) | −0.013 (2) | 0.033 (4) | 0.059 (3) |
C8 | 0.0277 (9) | 0.0456 (13) | 0.0338 (11) | −0.0016 (9) | 0.0021 (8) | 0.0037 (10) |
C9 | 0.0315 (9) | 0.0479 (14) | 0.0332 (11) | 0.0011 (9) | 0.0000 (8) | 0.0078 (10) |
C10 | 0.0390 (11) | 0.0457 (14) | 0.0400 (12) | 0.0033 (10) | 0.0086 (9) | 0.0032 (11) |
C11 | 0.0339 (9) | 0.0393 (11) | 0.0353 (11) | −0.0010 (9) | 0.0012 (9) | 0.0021 (10) |
S1—O1 | 1.416 (2) | C3—C4 | 1.376 (5) |
S1—O2 | 1.4322 (18) | C3—H3 | 0.9300 |
S1—N1 | 1.6074 (18) | C4—C5 | 1.377 (5) |
S1—C1 | 1.755 (3) | C4—C7 | 1.511 (4) |
O3—C9 | 1.197 (2) | C5—C6 | 1.374 (5) |
O4—C9 | 1.307 (2) | C5—H5 | 0.9300 |
O4—H4 | 0.8200 | C6—H6 | 0.9300 |
O5—C11 | 1.242 (2) | C7—H7A | 0.9600 |
N1—C8 | 1.444 (3) | C7—H7B | 0.9600 |
N1—H1 | 0.8600 | C7—H7C | 0.9600 |
N2—C11 | 1.302 (3) | C8—C9 | 1.522 (3) |
N2—H2A | 0.8600 | C8—C10 | 1.529 (3) |
N2—H2B | 0.8600 | C8—H8 | 0.9800 |
C1—C6 | 1.376 (4) | C10—C11 | 1.511 (3) |
C1—C2 | 1.378 (4) | C10—H10A | 0.9700 |
C2—C3 | 1.376 (4) | C10—H10B | 0.9700 |
C2—H2 | 0.9300 | ||
O1—S1—O2 | 119.92 (11) | C5—C6—C1 | 119.8 (3) |
O1—S1—N1 | 106.93 (11) | C5—C6—H6 | 120.1 |
O2—S1—N1 | 106.30 (10) | C1—C6—H6 | 120.1 |
O1—S1—C1 | 108.07 (13) | C4—C7—H7A | 109.5 |
O2—S1—C1 | 106.91 (12) | C4—C7—H7B | 109.5 |
N1—S1—C1 | 108.27 (10) | H7A—C7—H7B | 109.5 |
C9—O4—H4 | 109.5 | C4—C7—H7C | 109.5 |
C8—N1—S1 | 122.00 (14) | H7A—C7—H7C | 109.5 |
C8—N1—H1 | 119.0 | H7B—C7—H7C | 109.5 |
S1—N1—H1 | 119.0 | N1—C8—C9 | 113.27 (17) |
C11—N2—H2A | 120.0 | N1—C8—C10 | 110.06 (17) |
C11—N2—H2B | 120.0 | C9—C8—C10 | 108.87 (17) |
H2A—N2—H2B | 120.0 | N1—C8—H8 | 108.2 |
C6—C1—C2 | 120.2 (3) | C9—C8—H8 | 108.2 |
C6—C1—S1 | 119.8 (2) | C10—C8—H8 | 108.2 |
C2—C1—S1 | 120.0 (2) | O3—C9—O4 | 124.65 (19) |
C3—C2—C1 | 118.8 (3) | O3—C9—C8 | 124.49 (19) |
C3—C2—H2 | 120.6 | O4—C9—C8 | 110.84 (17) |
C1—C2—H2 | 120.6 | C11—C10—C8 | 110.12 (17) |
C4—C3—C2 | 122.1 (3) | C11—C10—H10A | 109.6 |
C4—C3—H3 | 119.0 | C8—C10—H10A | 109.6 |
C2—C3—H3 | 119.0 | C11—C10—H10B | 109.6 |
C3—C4—C5 | 118.0 (3) | C8—C10—H10B | 109.6 |
C3—C4—C7 | 120.7 (4) | H10A—C10—H10B | 108.2 |
C5—C4—C7 | 121.3 (4) | O5—C11—N2 | 121.34 (19) |
C6—C5—C4 | 121.1 (3) | O5—C11—C10 | 120.65 (19) |
C6—C5—H5 | 119.4 | N2—C11—C10 | 118.00 (17) |
C4—C5—H5 | 119.4 | ||
O1—S1—N1—C8 | −166.24 (16) | C7—C4—C5—C6 | −176.8 (3) |
O2—S1—N1—C8 | −37.03 (17) | C4—C5—C6—C1 | 0.3 (5) |
C1—S1—N1—C8 | 77.52 (17) | C2—C1—C6—C5 | −0.7 (4) |
O1—S1—C1—C6 | −19.0 (3) | S1—C1—C6—C5 | −179.7 (3) |
O2—S1—C1—C6 | −149.3 (2) | S1—N1—C8—C9 | −91.79 (18) |
N1—S1—C1—C6 | 96.5 (2) | S1—N1—C8—C10 | 146.07 (15) |
O1—S1—C1—C2 | 162.1 (2) | N1—C8—C9—O3 | −19.7 (3) |
O2—S1—C1—C2 | 31.7 (3) | C10—C8—C9—O3 | 103.1 (2) |
N1—S1—C1—C2 | −82.4 (2) | N1—C8—C9—O4 | 161.76 (19) |
C6—C1—C2—C3 | 0.3 (4) | C10—C8—C9—O4 | −75.4 (2) |
S1—C1—C2—C3 | 179.3 (2) | N1—C8—C10—C11 | −54.8 (2) |
C1—C2—C3—C4 | 0.5 (5) | C9—C8—C10—C11 | −179.54 (17) |
C2—C3—C4—C5 | −1.0 (5) | C8—C10—C11—O5 | −53.0 (3) |
C2—C3—C4—C7 | 176.4 (3) | C8—C10—C11—N2 | 126.1 (2) |
C3—C4—C5—C6 | 0.6 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O5i | 0.82 | 1.78 | 2.592 (2) | 168 |
N1—H1···O5ii | 0.86 | 2.06 | 2.852 (2) | 154 |
N2—H2A···O3iii | 0.86 | 2.12 | 2.924 (2) | 155 |
N2—H2B···O2ii | 0.86 | 2.06 | 2.901 (2) | 166 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z; (iii) x+1/2, −y+3/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C11H14N2O5S |
Mr | 286.30 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 296 |
a, b, c (Å) | 8.7566 (6), 22.900 (2), 6.9692 (7) |
V (Å3) | 1397.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.37 × 0.11 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.914, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8388, 3206, 2451 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.099, 1.02 |
No. of reflections | 3206 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.27 |
Absolute structure | Flack (1983), 1328 Friedel pairs |
Absolute structure parameter | −0.03 (8) |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O5i | 0.82 | 1.78 | 2.592 (2) | 168.2 |
N1—H1···O5ii | 0.86 | 2.06 | 2.852 (2) | 153.7 |
N2—H2A···O3iii | 0.86 | 2.12 | 2.924 (2) | 154.6 |
N2—H2B···O2ii | 0.86 | 2.06 | 2.901 (2) | 165.9 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z; (iii) x+1/2, −y+3/2, −z. |
Acknowledgements
We thank the Higher Education Commission of Pakistan, the GC University, Lahore-Pakistan, and the University of Malaya, Malaysia for supporting this study.
References
Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940. Web of Science CSD CrossRef IUCr Journals Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Murphy, M. J. & Stubbins, J. F. (1980). J. Pharm Sci. 69, 553–555. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wagastuma, M., Seto, M., Miayagshima, T., Kawazu, M., Yamaguchi, T. & Ohshima, S. (1983). J. Antibiot. (Tokyo), 36, 147–154. PubMed Web of Science Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
L-asparagine, amino acid derivatives of amino penicillin have been synthesized and reported as active antibacterial agents (Wagastuma et al., 1983). In another study, different derivatives of asparagine have been synthesized and evaluated for their anticancer activities (Murphy & Stubbins et al., 1980). Our group also involved in the synthesis of sulfonamide derivatives of different amino acids (Arshad et al., 2009). In this sulfonamide derivative of L-asparagine (Fig. 1), the tetrahedral geometries at S1, C8 and C10 resulted in a twisted molecule in order to reduce steric hindrance. The molecules are linked together by hydrogen bonding between the amido oxygen O5 with the hydrogen atoms of the carboxylate oxygen O4 and the secondary amino nitrogen N1. In addition, one of the sulfonyl oxygen O2 and the carbonyl oxygen O3 also form hydrogen bonds with the primary amido nitrogen N2. These hydrogen bonding interactions produce a layer structure, with the layers propagated parallel to the ac plane (Fig. 2).