organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(p-Tolyl­sulfon­yl)-L-asparagine

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000 Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: iukhan.gcu@gmail.com, kmlo@um.edu.my

(Received 28 October 2009; accepted 1 February 2010; online 6 February 2010)

In the title compound, C11H14N2O5S, the amide O atom acts as a hydrogen-bond acceptor from a carboxyl­ate O atom and a secondary amino N atom. In addition, one of the sulfonyl O atoms and the carbonyl O atom of the carboxyl group also form hydrogen bonds with the primary amido N atom. These intermolecular hydrogen-bonding inter­actions give rise to a layer structure, with the layers parallel to the ac plane.

Related literature

For the anti­bacterial and anti­cancer activity of L-asparagines, Wagastuma et al. (1983[Wagastuma, M., Seto, M., Miayagshima, T., Kawazu, M., Yamaguchi, T. & Ohshima, S. (1983). J. Antibiot. (Tokyo), 36, 147-154.]); Murphy & Stubbins (1980[Murphy, M. J. & Stubbins, J. F. (1980). J. Pharm Sci. 69, 553-555.]). For a related compound, see Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O5S

  • Mr = 286.30

  • Orthorhombic, P 21 21 2

  • a = 8.7566 (6) Å

  • b = 22.900 (2) Å

  • c = 6.9692 (7) Å

  • V = 1397.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.37 × 0.11 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.914, Tmax = 0.983

  • 8388 measured reflections

  • 3206 independent reflections

  • 2451 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.02

  • 3206 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1338 Friedel pairs

  • Flack parameter: −0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.78 2.592 (2) 168
N1—H1⋯O5ii 0.86 2.06 2.852 (2) 154
N2—H2A⋯O3iii 0.86 2.12 2.924 (2) 155
N2—H2B⋯O2ii 0.86 2.06 2.901 (2) 166
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

L-asparagine, amino acid derivatives of amino penicillin have been synthesized and reported as active antibacterial agents (Wagastuma et al., 1983). In another study, different derivatives of asparagine have been synthesized and evaluated for their anticancer activities (Murphy & Stubbins et al., 1980). Our group also involved in the synthesis of sulfonamide derivatives of different amino acids (Arshad et al., 2009). In this sulfonamide derivative of L-asparagine (Fig. 1), the tetrahedral geometries at S1, C8 and C10 resulted in a twisted molecule in order to reduce steric hindrance. The molecules are linked together by hydrogen bonding between the amido oxygen O5 with the hydrogen atoms of the carboxylate oxygen O4 and the secondary amino nitrogen N1. In addition, one of the sulfonyl oxygen O2 and the carbonyl oxygen O3 also form hydrogen bonds with the primary amido nitrogen N2. These hydrogen bonding interactions produce a layer structure, with the layers propagated parallel to the ac plane (Fig. 2).

Related literature top

For the antibacterial and anticancer activity of L-asparagines, Wagastuma et al. (1983); Murphy & Stubbins (1980). For a related compound, see Arshad et al. (2009).

Experimental top

Asparagine (.25 g, 1.89 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was maintained at 8–9 using 1 M Na2CO3 solution. 4-Toluenesulfonyl chloride (0.361 g, 1.89 mmol) was suspended in the above solution and stirred at room temperature until all the 4-toluenesulfonyl chloride was consumed. The reaction was completed when the suspension turned to a clear solution. Upon completion of the reaction, the pH was adjusted 1–2, using 1 M HCl solution. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized from methanol to yield white crystals.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.93 to 0.98 Å; O–H 0.82 Å, N–H 0.86 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times U~eq~(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of N-(4-toluenesulfonyl)-L-asparagine showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the unit cell showing the hydrogen bonding interactions in the molecule.
N-(p-Tolylsulfonyl)-L-asparagine top
Crystal data top
C11H14N2O5SF(000) = 600
Mr = 286.30Dx = 1.361 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2600 reflections
a = 8.7566 (6) Åθ = 2.5–24°
b = 22.900 (2) ŵ = 0.25 mm1
c = 6.9692 (7) ÅT = 296 K
V = 1397.5 (2) Å3Block, white
Z = 40.37 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3206 independent reflections
Radiation source: fine-focus sealed tube2451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.914, Tmax = 0.983k = 2629
8388 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0521P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3206 reflectionsΔρmax = 0.18 e Å3
174 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1328 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C11H14N2O5SV = 1397.5 (2) Å3
Mr = 286.30Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 8.7566 (6) ŵ = 0.25 mm1
b = 22.900 (2) ÅT = 296 K
c = 6.9692 (7) Å0.37 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3206 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2451 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.983Rint = 0.029
8388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.27 e Å3
3206 reflectionsAbsolute structure: Flack (1983), 1328 Friedel pairs
174 parametersAbsolute structure parameter: 0.03 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.95716 (6)0.62903 (3)0.10823 (10)0.04939 (18)
O10.9573 (2)0.61117 (9)0.0862 (3)0.0778 (6)
O21.09832 (17)0.64258 (8)0.2020 (3)0.0636 (5)
O30.62170 (16)0.68014 (8)0.3996 (2)0.0554 (4)
O40.76473 (19)0.73119 (9)0.6017 (2)0.0629 (5)
H40.70190.72000.68080.094*
O51.08999 (14)0.79700 (8)0.1128 (2)0.0493 (4)
N10.85411 (17)0.68699 (8)0.1208 (3)0.0392 (4)
H10.79660.69600.02530.047*
N20.90525 (19)0.82712 (9)0.0810 (3)0.0522 (5)
H2A0.97030.83670.16800.063*
H2B0.80930.83230.10080.063*
C10.8685 (3)0.57415 (11)0.2442 (4)0.0490 (6)
C20.8893 (3)0.57211 (12)0.4400 (4)0.0619 (7)
H20.95110.59940.50130.074*
C30.8171 (4)0.52899 (16)0.5433 (5)0.0807 (10)
H30.83030.52770.67570.097*
C40.7259 (4)0.48771 (14)0.4570 (6)0.0796 (10)
C50.7061 (4)0.49096 (16)0.2613 (7)0.0896 (11)
H50.64420.46370.20020.107*
C60.7762 (3)0.53379 (13)0.1549 (5)0.0712 (9)
H60.76130.53550.02290.085*
C70.6559 (5)0.43887 (16)0.5732 (7)0.1317 (18)
H7A0.59550.41450.49080.198*
H7B0.59210.45510.67190.198*
H7C0.73550.41600.63090.198*
C80.8551 (2)0.72435 (9)0.2877 (3)0.0357 (5)
H80.95510.72080.34970.043*
C90.7331 (2)0.70850 (10)0.4343 (3)0.0375 (5)
C100.8332 (2)0.78799 (10)0.2275 (3)0.0416 (5)
H10A0.73190.79310.17350.050*
H10B0.84200.81310.33890.050*
C110.9521 (2)0.80490 (9)0.0805 (3)0.0362 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0400 (3)0.0489 (3)0.0592 (4)0.0011 (3)0.0150 (3)0.0021 (3)
O10.0992 (14)0.0717 (13)0.0624 (12)0.0039 (11)0.0320 (12)0.0157 (11)
O20.0324 (8)0.0578 (11)0.1005 (15)0.0023 (7)0.0067 (8)0.0111 (11)
O30.0385 (8)0.0806 (12)0.0471 (9)0.0149 (8)0.0005 (7)0.0108 (10)
O40.0571 (10)0.0946 (15)0.0369 (9)0.0274 (9)0.0162 (8)0.0073 (10)
O50.0301 (7)0.0789 (12)0.0388 (8)0.0034 (7)0.0020 (7)0.0164 (10)
N10.0368 (8)0.0467 (11)0.0342 (9)0.0025 (8)0.0010 (8)0.0005 (10)
N20.0325 (8)0.0808 (15)0.0432 (11)0.0045 (9)0.0011 (8)0.0199 (11)
C10.0413 (11)0.0409 (14)0.0646 (16)0.0019 (10)0.0084 (11)0.0013 (13)
C20.0677 (16)0.0459 (16)0.072 (2)0.0084 (13)0.0039 (13)0.0062 (14)
C30.096 (2)0.067 (2)0.079 (2)0.0022 (19)0.0075 (17)0.0203 (19)
C40.074 (2)0.046 (2)0.119 (3)0.0002 (16)0.0206 (19)0.017 (2)
C50.076 (2)0.059 (2)0.134 (3)0.0230 (16)0.006 (2)0.010 (2)
C60.0749 (18)0.0609 (19)0.078 (2)0.0156 (16)0.0060 (15)0.0088 (17)
C70.127 (3)0.074 (3)0.195 (5)0.013 (2)0.033 (4)0.059 (3)
C80.0277 (9)0.0456 (13)0.0338 (11)0.0016 (9)0.0021 (8)0.0037 (10)
C90.0315 (9)0.0479 (14)0.0332 (11)0.0011 (9)0.0000 (8)0.0078 (10)
C100.0390 (11)0.0457 (14)0.0400 (12)0.0033 (10)0.0086 (9)0.0032 (11)
C110.0339 (9)0.0393 (11)0.0353 (11)0.0010 (9)0.0012 (9)0.0021 (10)
Geometric parameters (Å, º) top
S1—O11.416 (2)C3—C41.376 (5)
S1—O21.4322 (18)C3—H30.9300
S1—N11.6074 (18)C4—C51.377 (5)
S1—C11.755 (3)C4—C71.511 (4)
O3—C91.197 (2)C5—C61.374 (5)
O4—C91.307 (2)C5—H50.9300
O4—H40.8200C6—H60.9300
O5—C111.242 (2)C7—H7A0.9600
N1—C81.444 (3)C7—H7B0.9600
N1—H10.8600C7—H7C0.9600
N2—C111.302 (3)C8—C91.522 (3)
N2—H2A0.8600C8—C101.529 (3)
N2—H2B0.8600C8—H80.9800
C1—C61.376 (4)C10—C111.511 (3)
C1—C21.378 (4)C10—H10A0.9700
C2—C31.376 (4)C10—H10B0.9700
C2—H20.9300
O1—S1—O2119.92 (11)C5—C6—C1119.8 (3)
O1—S1—N1106.93 (11)C5—C6—H6120.1
O2—S1—N1106.30 (10)C1—C6—H6120.1
O1—S1—C1108.07 (13)C4—C7—H7A109.5
O2—S1—C1106.91 (12)C4—C7—H7B109.5
N1—S1—C1108.27 (10)H7A—C7—H7B109.5
C9—O4—H4109.5C4—C7—H7C109.5
C8—N1—S1122.00 (14)H7A—C7—H7C109.5
C8—N1—H1119.0H7B—C7—H7C109.5
S1—N1—H1119.0N1—C8—C9113.27 (17)
C11—N2—H2A120.0N1—C8—C10110.06 (17)
C11—N2—H2B120.0C9—C8—C10108.87 (17)
H2A—N2—H2B120.0N1—C8—H8108.2
C6—C1—C2120.2 (3)C9—C8—H8108.2
C6—C1—S1119.8 (2)C10—C8—H8108.2
C2—C1—S1120.0 (2)O3—C9—O4124.65 (19)
C3—C2—C1118.8 (3)O3—C9—C8124.49 (19)
C3—C2—H2120.6O4—C9—C8110.84 (17)
C1—C2—H2120.6C11—C10—C8110.12 (17)
C4—C3—C2122.1 (3)C11—C10—H10A109.6
C4—C3—H3119.0C8—C10—H10A109.6
C2—C3—H3119.0C11—C10—H10B109.6
C3—C4—C5118.0 (3)C8—C10—H10B109.6
C3—C4—C7120.7 (4)H10A—C10—H10B108.2
C5—C4—C7121.3 (4)O5—C11—N2121.34 (19)
C6—C5—C4121.1 (3)O5—C11—C10120.65 (19)
C6—C5—H5119.4N2—C11—C10118.00 (17)
C4—C5—H5119.4
O1—S1—N1—C8166.24 (16)C7—C4—C5—C6176.8 (3)
O2—S1—N1—C837.03 (17)C4—C5—C6—C10.3 (5)
C1—S1—N1—C877.52 (17)C2—C1—C6—C50.7 (4)
O1—S1—C1—C619.0 (3)S1—C1—C6—C5179.7 (3)
O2—S1—C1—C6149.3 (2)S1—N1—C8—C991.79 (18)
N1—S1—C1—C696.5 (2)S1—N1—C8—C10146.07 (15)
O1—S1—C1—C2162.1 (2)N1—C8—C9—O319.7 (3)
O2—S1—C1—C231.7 (3)C10—C8—C9—O3103.1 (2)
N1—S1—C1—C282.4 (2)N1—C8—C9—O4161.76 (19)
C6—C1—C2—C30.3 (4)C10—C8—C9—O475.4 (2)
S1—C1—C2—C3179.3 (2)N1—C8—C10—C1154.8 (2)
C1—C2—C3—C40.5 (5)C9—C8—C10—C11179.54 (17)
C2—C3—C4—C51.0 (5)C8—C10—C11—O553.0 (3)
C2—C3—C4—C7176.4 (3)C8—C10—C11—N2126.1 (2)
C3—C4—C5—C60.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.782.592 (2)168
N1—H1···O5ii0.862.062.852 (2)154
N2—H2A···O3iii0.862.122.924 (2)155
N2—H2B···O2ii0.862.062.901 (2)166
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC11H14N2O5S
Mr286.30
Crystal system, space groupOrthorhombic, P21212
Temperature (K)296
a, b, c (Å)8.7566 (6), 22.900 (2), 6.9692 (7)
V3)1397.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.37 × 0.11 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.914, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8388, 3206, 2451
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.02
No. of reflections3206
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.27
Absolute structureFlack (1983), 1328 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.782.592 (2)168.2
N1—H1···O5ii0.862.062.852 (2)153.7
N2—H2A···O3iii0.862.122.924 (2)154.6
N2—H2B···O2ii0.862.062.901 (2)165.9
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+3/2, z.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan, the GC University, Lahore-Pakistan, and the University of Malaya, Malaysia for supporting this study.

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009). Acta Cryst. E65, o940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMurphy, M. J. & Stubbins, J. F. (1980). J. Pharm Sci. 69, 553–555.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagastuma, M., Seto, M., Miayagshima, T., Kawazu, M., Yamaguchi, T. & Ohshima, S. (1983). J. Antibiot. (Tokyo), 36, 147–154.  PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds