organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(2-Meth­oxy­anilino)-1-phenyl­but-2-en-1-one

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
*Correspondence e-mail: zlp609@qq.com

(Received 2 December 2009; accepted 4 February 2010; online 10 February 2010)

In the title compound, C17H17NO2, the dihedral angle between the two benzene rings is 55.2 (2)°. The meth­oxy group is slightly twisted away from the aniline ring [dihedral angle = 10.3 (2)°]. An intra­molecular N—H⋯O inter­action is present. In the crystal, the mol­ecules are linked into a three-dimensional supra­molecular network through two sets of C—H⋯π inter­actions.

Related literature

For the use of β-enamino ketones as inter­mediates for the synthesis of natural therapeutic and biologically active analogues, see:Azzaro et al. (1981[Azzaro, M., Geribaldi, S. & Videau, B. (1981). Synthesis, pp. 880-881.]); Dannhardt et al. (1998[Dannhardt, G., Bauer, A. & Nowe, U. (1998). J. Prakt. Chem. 340, 256-263.]); Boger et al. (1989[Boger, D. L., Ishizaki, T., Wysocki, J. R. J., Munk, S. A., Kitos, P. A. & Untornwat, O. (1989). J. Am. Chem. Soc. 111, 6461-6463.]); Wang et al. (1982[Wang, Y. F., Izawa, T., Kobayashi, S. & Ohno, M. (1982). J. Am. Chem. Soc. 104, 6465-6466.]). For the synthesis of β-enamino ketones, see: Greenhill et al. (1977[Greenhill, J. V. (1977). Chem. Soc. Rev. 6, 277-294.]); Elassar & El-Khair (2003[Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.]); Zhang et al. (2006[Zhang, Z. H., Yin, L. & Wang, Y. M. (2006). Adv. Synth. Catal. 348, 184-190.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO2

  • Mr = 267.32

  • Tetragonal, P 42 /n

  • a = 19.125 (2) Å

  • c = 7.9993 (19) Å

  • V = 2925.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.992

  • 15499 measured reflections

  • 3001 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.02

  • 3001 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring. C13 is the nearest aromatic atom to H16.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.91 2.639 (2) 139
C3—H3⋯Cg1i 0.93 2.79 3.725 (2) 153
C16—H16⋯π(C13)ii 0.93 2.78 3.688 (4) 167
Symmetry codes: (i) [-y+{\script{3\over 2}}, x, -z-{\script{1\over 2}}]; (ii) [-y+1, x+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Enamino ketones have attracted much interest because they are versatile intermediates for the synthesis of natural therapeutic and biologically active analogues including taxo anticonvulsivant (Azzaro et al., 1981), anti-inflammatory (Dannhardt et al., 1998) and antitumor agents (Boger et al., 1989) as well as quinolone antibacterials (Wang et al., 1982) It is therefore not surprising that many synthetic methods have been developed for the preparation of these compounds (Greenhill et al.,1977; Elassar et al., 2003). In our developing new environmental friendly methodologies (Zhang et al., 2006) for the preparation of β-enamino ketones, we synthesized the title compound (I) (Fig.1), the synthesis and crystal structure of which are reported here.

In the title compound, the ring C1—C6 forms dihedral angles of 10.3 (2)° and 124.8 (2)°, respectively, with the C7—O1—C2 methoxy group and the C12—C17. The bond lengths C10—C11 [1.417 (3) Å] and N1—C9 [1.349 (2) Å] are slightly shorter than corresponding C11—C12 [1.497 (3) Å], and N1—C1[1.404 (2) Å], indicating a weak electron delocalization.

In the crystal, each four centrosymmetry related molecules are linked by C3—H1—Cg1 interactions into a four-leaves windmill (Fig.2), which are further linked into a three-dimensional supramolecular network by C16—H16—Cg2 interactions(Fig.3). The C—H···π distance is 2.79Å for C3—H1—Cg1 (Cg1: C1/C2—C3), with an angle of 152.8 (2)° and 2.78%A for C16—H16—Cg13 with an angle of 166.5 (3)°.

Related literature top

For the use of β-enamino ketones as intermediates for the synthesis of natural therapeutic and biologically active analogues, see:Azzaro et al. (1981); Dannhardt et al. (1998); Boger et al. (1989); Wang et al. (1982). For synthetic methods for the preparation of β-enamino ketones, see: Greenhill et al. (1977); Elassar et al. (2003); Zhang et al. (2006).

Experimental top

A mixture of the 1-phenylbutane-1,3-dione (5 mmol), 2-methoxybenzenamine (5 mmol) and InBr3 (0.05 mmol) was stirred at room temperature for 1 h. After completion of the reaction, the reaction mixture was diluted with H2O (10 ml) and extracted with EtOAc (210 ml). The combined organic layers were dried, concentrated, purified by column chromatography on SiO2 with ethyl acetate-cyclohexane (2: 8). A pale yellow solid was obtained, with a yield of 83%. mp 92–93οC; IR (neat):ν 3006, 1608, 1477, 1461, 1373, 1284,1119,1024, 748 cm-1; 1H NMR(CDCl3, 300 MHz): δ 2.14(s, 3H), 3.90(s, 3H), 5.91(s, 1H), 6.92–6.97(d, 2H,Ar—H), 7.17–7.22(m, 2H,Ar—H), 7.41–7.45(m, 3H,Ph), 7.91–7.94 (m, 2H, Ph), 12.87 (br s, 1H, NH). 13C NMR(CDCl3, 75 MHz): δ 20.4, 55.8, 94.4,111.4, 120.4, 125.3, 126.6, 127.1,128.1, 130.7,140.2,153.0, 162.3, 188.5. ESI-MS: 268(M+1)+ Anal. Calcd for C17H17NO2: C,76.38; H,6.41;N,5.24. Found:C,76.56; H,6.28; N,5.35.

Single crystals suitable for X-ray diffraction study were obtained from ethyl acetate-cyclohexane by slow evaporation at room temperature.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and Uiso(H) = 1.5Ueq(CH3)or 1.2Ueq(C,N). Each methyl group was allowed to rotate freely about its C—C bond.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The intermolecular C—H···π interactions between aromatic rings of adjacent molecules.
[Figure 3] Fig. 3. The molecular packing of the title compound, showing the C—H···π three-dimensional supramolecular network.
(Z)-3-(2-Methoxyanilino)-1-phenylbut-2-en-1-one top
Crystal data top
C17H17NO2Dx = 1.214 Mg m3
Mr = 267.32Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 2401 reflections
Hall symbol: -P 4bcθ = 2.8–21.2°
a = 19.125 (2) ŵ = 0.08 mm1
c = 7.9993 (19) ÅT = 294 K
V = 2925.9 (8) Å3Block, colorless
Z = 80.20 × 0.12 × 0.10 mm
F(000) = 1136
Data collection top
Bruker SMART CCD area-detector
diffractometer
3001 independent reflections
Radiation source: fine-focus sealed tube1457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2223
Tmin = 0.984, Tmax = 0.992k = 2312
15499 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.433P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3001 reflectionsΔρmax = 0.13 e Å3
184 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0090 (9)
Crystal data top
C17H17NO2Z = 8
Mr = 267.32Mo Kα radiation
Tetragonal, P42/nµ = 0.08 mm1
a = 19.125 (2) ÅT = 294 K
c = 7.9993 (19) Å0.20 × 0.12 × 0.10 mm
V = 2925.9 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3001 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1457 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.992Rint = 0.067
15499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
3001 reflectionsΔρmin = 0.12 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66062 (7)0.61242 (9)0.03020 (19)0.0750 (5)
O20.50749 (8)0.65620 (8)0.22101 (19)0.0700 (5)
N10.53344 (8)0.60548 (8)0.0795 (2)0.0544 (5)
H10.54440.63040.00610.065*
C10.58654 (11)0.59997 (10)0.1999 (3)0.0518 (5)
C20.65502 (11)0.60408 (11)0.1391 (3)0.0571 (6)
C30.71061 (12)0.60098 (13)0.2475 (3)0.0709 (7)
H30.75600.60320.20640.085*
C40.69923 (13)0.59461 (13)0.4180 (3)0.0743 (7)
H40.73700.59170.49080.089*
C50.63235 (13)0.59259 (12)0.4793 (3)0.0676 (7)
H50.62470.58890.59380.081*
C60.57633 (12)0.59603 (11)0.3709 (3)0.0595 (6)
H60.53110.59570.41330.071*
C70.72721 (13)0.62799 (16)0.0979 (3)0.0985 (9)
H7A0.75700.58780.08800.148*
H7B0.72230.64030.21370.148*
H7C0.74750.66640.03790.148*
C80.44084 (11)0.53573 (11)0.2157 (3)0.0621 (6)
H8A0.42700.56600.30560.093*
H8B0.40120.50920.17860.093*
H8C0.47670.50440.25390.093*
C90.46824 (11)0.57866 (10)0.0740 (2)0.0493 (5)
C100.42736 (10)0.59017 (10)0.0650 (3)0.0532 (5)
H100.38250.57150.06470.064*
C110.44829 (11)0.62827 (10)0.2084 (3)0.0535 (5)
C120.39786 (11)0.63783 (11)0.3497 (3)0.0548 (6)
C130.34395 (11)0.59189 (12)0.3815 (3)0.0654 (6)
H130.33870.55240.31490.078*
C140.29750 (13)0.60378 (16)0.5113 (3)0.0844 (8)
H140.26150.57220.53200.101*
C150.30459 (18)0.66161 (19)0.6081 (4)0.0987 (10)
H150.27290.67020.69380.118*
C160.35791 (18)0.70697 (16)0.5801 (4)0.1039 (10)
H160.36280.74620.64780.125*
C170.40504 (14)0.69538 (13)0.4520 (3)0.0807 (8)
H170.44170.72650.43480.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0502 (10)0.1141 (14)0.0606 (10)0.0126 (9)0.0072 (8)0.0100 (9)
O20.0586 (10)0.0757 (11)0.0757 (10)0.0146 (8)0.0001 (8)0.0133 (9)
N10.0480 (11)0.0562 (11)0.0591 (11)0.0065 (9)0.0022 (9)0.0057 (9)
C10.0480 (13)0.0461 (13)0.0612 (15)0.0023 (10)0.0015 (12)0.0043 (11)
C20.0490 (14)0.0637 (15)0.0586 (14)0.0054 (11)0.0027 (11)0.0112 (12)
C30.0492 (14)0.0939 (19)0.0696 (17)0.0019 (12)0.0022 (12)0.0153 (14)
C40.0645 (17)0.0842 (18)0.0741 (18)0.0017 (13)0.0158 (14)0.0066 (14)
C50.0785 (18)0.0670 (16)0.0573 (14)0.0099 (13)0.0032 (14)0.0044 (12)
C60.0564 (14)0.0610 (15)0.0612 (15)0.0058 (11)0.0046 (12)0.0036 (12)
C70.0568 (16)0.162 (3)0.0763 (18)0.0205 (17)0.0157 (14)0.0046 (18)
C80.0584 (14)0.0648 (14)0.0633 (14)0.0089 (11)0.0098 (12)0.0006 (12)
C90.0480 (12)0.0414 (12)0.0585 (13)0.0022 (10)0.0109 (11)0.0047 (10)
C100.0415 (12)0.0545 (13)0.0637 (14)0.0003 (10)0.0038 (11)0.0005 (12)
C110.0484 (13)0.0459 (12)0.0662 (14)0.0020 (11)0.0060 (11)0.0041 (11)
C120.0530 (14)0.0537 (14)0.0577 (13)0.0089 (11)0.0037 (11)0.0026 (11)
C130.0589 (15)0.0682 (16)0.0690 (15)0.0030 (12)0.0007 (13)0.0041 (13)
C140.0638 (17)0.104 (2)0.0851 (18)0.0042 (16)0.0144 (15)0.0109 (18)
C150.102 (2)0.106 (3)0.088 (2)0.027 (2)0.0247 (19)0.001 (2)
C160.132 (3)0.086 (2)0.094 (2)0.007 (2)0.028 (2)0.0225 (18)
C170.090 (2)0.0689 (17)0.0837 (18)0.0053 (14)0.0130 (16)0.0124 (15)
Geometric parameters (Å, º) top
O1—C21.368 (2)C8—C91.494 (3)
O1—C71.415 (2)C8—H8A0.9600
O2—C111.256 (2)C8—H8B0.9600
N1—C91.349 (2)C8—H8C0.9600
N1—C11.404 (2)C9—C101.377 (3)
N1—H10.8600C10—C111.417 (3)
C1—C61.384 (3)C10—H100.9300
C1—C21.399 (3)C11—C121.497 (3)
C2—C31.373 (3)C12—C171.378 (3)
C3—C41.387 (3)C12—C131.378 (3)
C3—H30.9300C13—C141.385 (3)
C4—C51.370 (3)C13—H130.9300
C4—H40.9300C14—C151.357 (4)
C5—C61.380 (3)C14—H140.9300
C5—H50.9300C15—C161.357 (4)
C6—H60.9300C15—H150.9300
C7—H7A0.9600C16—C171.383 (3)
C7—H7B0.9600C16—H160.9300
C7—H7C0.9600C17—H170.9300
C2—O1—C7118.28 (17)C9—C8—H8C109.5
C9—N1—C1131.48 (18)H8A—C8—H8C109.5
C9—N1—H1114.3H8B—C8—H8C109.5
C1—N1—H1114.3N1—C9—C10119.35 (19)
C6—C1—C2118.6 (2)N1—C9—C8120.57 (19)
C6—C1—N1125.47 (19)C10—C9—C8120.07 (18)
C2—C1—N1115.77 (19)C9—C10—C11125.15 (19)
O1—C2—C3124.7 (2)C9—C10—H10117.4
O1—C2—C1115.07 (19)C11—C10—H10117.4
C3—C2—C1120.2 (2)O2—C11—C10122.6 (2)
C2—C3—C4120.2 (2)O2—C11—C12117.9 (2)
C2—C3—H3119.9C10—C11—C12119.50 (19)
C4—C3—H3119.9C17—C12—C13118.3 (2)
C5—C4—C3120.1 (2)C17—C12—C11118.8 (2)
C5—C4—H4120.0C13—C12—C11122.9 (2)
C3—C4—H4120.0C12—C13—C14120.9 (2)
C4—C5—C6119.9 (2)C12—C13—H13119.6
C4—C5—H5120.1C14—C13—H13119.6
C6—C5—H5120.1C15—C14—C13119.8 (3)
C5—C6—C1121.0 (2)C15—C14—H14120.1
C5—C6—H6119.5C13—C14—H14120.1
C1—C6—H6119.5C14—C15—C16120.1 (3)
O1—C7—H7A109.5C14—C15—H15119.9
O1—C7—H7B109.5C16—C15—H15119.9
H7A—C7—H7B109.5C15—C16—C17120.6 (3)
O1—C7—H7C109.5C15—C16—H16119.7
H7A—C7—H7C109.5C17—C16—H16119.7
H7B—C7—H7C109.5C12—C17—C16120.2 (3)
C9—C8—H8A109.5C12—C17—H17119.9
C9—C8—H8B109.5C16—C17—H17119.9
H8A—C8—H8B109.5
C9—N1—C1—C634.4 (3)N1—C9—C10—C110.7 (3)
C9—N1—C1—C2150.6 (2)C8—C9—C10—C11178.21 (18)
C7—O1—C2—C38.6 (3)C9—C10—C11—O20.7 (3)
C7—O1—C2—C1170.2 (2)C9—C10—C11—C12178.91 (18)
C6—C1—C2—O1175.91 (19)O2—C11—C12—C1724.9 (3)
N1—C1—C2—O10.5 (3)C10—C11—C12—C17153.5 (2)
C6—C1—C2—C33.0 (3)O2—C11—C12—C13155.7 (2)
N1—C1—C2—C3178.40 (19)C10—C11—C12—C1325.9 (3)
O1—C2—C3—C4178.0 (2)C17—C12—C13—C141.0 (3)
C1—C2—C3—C40.8 (4)C11—C12—C13—C14178.4 (2)
C2—C3—C4—C51.1 (4)C12—C13—C14—C150.5 (4)
C3—C4—C5—C60.8 (4)C13—C14—C15—C161.4 (4)
C4—C5—C6—C11.4 (3)C14—C15—C16—C170.8 (5)
C2—C1—C6—C53.3 (3)C13—C12—C17—C161.6 (4)
N1—C1—C6—C5178.25 (19)C11—C12—C17—C16177.8 (2)
C1—N1—C9—C10177.28 (19)C15—C16—C17—C120.8 (4)
C1—N1—C9—C81.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring. C13 is the nearest aromatic atom to H16.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.912.639 (2)139
C3—H3···Cg1i0.932.793.725 (2)153
C16—H16···π(C13)ii0.932.783.688 (4)167
Symmetry codes: (i) y+3/2, x, z1/2; (ii) y+1, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H17NO2
Mr267.32
Crystal system, space groupTetragonal, P42/n
Temperature (K)294
a, c (Å)19.125 (2), 7.9993 (19)
V3)2925.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15499, 3001, 1457
Rint0.067
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.02
No. of reflections3001
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring. C13 is the nearest aromatic atom to H16.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.912.639 (2)139.4
C3—H3···Cg1i0.932.793.725 (2)153
C16—H16···π(C13)ii0.932.783.688 (4)167
Symmetry codes: (i) y+3/2, x, z1/2; (ii) y+1, x+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Self-Determined Research Program of Jiangnan University.

References

First citationAzzaro, M., Geribaldi, S. & Videau, B. (1981). Synthesis, pp. 880–881.  CrossRef Web of Science Google Scholar
First citationBoger, D. L., Ishizaki, T., Wysocki, J. R. J., Munk, S. A., Kitos, P. A. & Untornwat, O. (1989). J. Am. Chem. Soc. 111, 6461–6463.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDannhardt, G., Bauer, A. & Nowe, U. (1998). J. Prakt. Chem. 340, 256–263.  Web of Science CrossRef CAS Google Scholar
First citationElassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.  Web of Science CrossRef CAS Google Scholar
First citationGreenhill, J. V. (1977). Chem. Soc. Rev. 6, 277–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. F., Izawa, T., Kobayashi, S. & Ohno, M. (1982). J. Am. Chem. Soc. 104, 6465–6466.  CrossRef CAS Web of Science Google Scholar
First citationZhang, Z. H., Yin, L. & Wang, Y. M. (2006). Adv. Synth. Catal. 348, 184–190.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds