organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o671-o672

Bis{2-[1-(8-hy­droxy-2-quinolylmethyl)-1H-benzimidazol-2-yl]quinolin-8-ol} toluene solvate

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering , Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China
*Correspondence e-mail: huilichen@sxu.edu.cn

(Received 9 December 2009; accepted 7 February 2010; online 20 February 2010)

Crystals of the title compound, 2C26H18N4O2·C7H8, were obtained from the reaction of 8-hydroxy­quinoline with 1,2-phenyl­enediamine in methanol and recrystallized from toluene. The compound contains three essentially planar ring systems: the benzimidazole ring (r.m.s. deviation = 0.039 Å) and two 8-hydroxy­quinoline rings (r.m.s. deviations of 0.0056 Å in both rings). The benzimidazole ring and one 8-hydroxy­quinoline ring are almost co-planar, forming a dihdral angle of 3.1 (2)°. The other 8-hydroxy­quinoline ring is almost perpendicular to the benzimidazole plane with a dihedral angle of 86.2 (2)°. Intra­molecular O—H⋯N contacts are present. The crystal structure is stabilized by inter­molecular O—H⋯N inter­actions. The complete toluene molecule is generated by crystallographic inversion symmetry; therefore its methyl group is disordered over two sites of equal occupancy.

Related literature

For the use of the reaction of o-phenyl­enediamine with excess aldehyde without an oxidant to produce a Shiff base compound containing two —N=CH— bonds, see: Chen & Martell (1987[Chen, D. & Martell, A. E. (1987). Inorg. Chem. 26, 1026-1030.]); Wang et al. (1994[Wang, H., Li, S.-L., Liu, D.-X., Cui, X.-G. & Li, X.-Y. (1994). Acta Chim. Sin. 52, 676-682.]). Similar benzimidazole derivatives have been obtained, see: Dege et al. (2006[Dege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk J. Chem. 30, 103-108.]); Yang et al. (2004[Yang, H.-W., Yue, F., Feng, S., Wang, J.-D., Liu, A.-H., Chen, H.-M. & Yu, K.-B. (2004). Chin. J. Org. Chem. 24, 792-796.]). For the preparation of benzimidazole, see: Boufatah et al. (2004[Boufatah, N., Gellis, A., Maldonado, J. & Vanelle, P. (2004). Tetrahedron, 60, 9131-9137.]); Grimmet (1997[Grimmet, M. R. (1997). Imidazole and Benzimidazole Synthesis. London: Academic Press.]); Kumar et al. (1981[Kumar, S., Kansal, V. & Bhaduri, A. (1981). Indian J. Chem. Sect. B, 20, 254-256.]); Srivastava & Venkataramair (1988[Srivastava, R. G. & Venkataramair, P. S. (1988). Synth. Commun. 18, 1537-1544.]).

[Scheme 1]

Experimental

Crystal data
  • 2C26H18N4O2·C7H8

  • Mr = 929.02

  • Triclinic, [P \overline 1]

  • a = 8.014 (7) Å

  • b = 12.669 (11) Å

  • c = 12.727 (11) Å

  • α = 112.979 (10)°

  • β = 90.881 (11)°

  • γ = 100.966 (11)°

  • V = 1162.1 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.987

  • 6333 measured reflections

  • 4077 independent reflections

  • 3049 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.156

  • S = 1.03

  • 4077 reflections

  • 329 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.29 2.745 (3) 116
O1—H1⋯N4 0.82 2.47 3.131 (3) 139
O2—H2⋯N4 0.82 2.27 2.722 (3) 116
O2—H2⋯N2i 0.82 2.55 3.145 (3) 131
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

In most cases, without oxidant, the reaction of o-phenylenediamine with excess aldehyde produces a Shiff-base compound containing two —NCH— bonds (Chen et al.,1987; Wang et al.,1994). However, in our case, the reaction of o-phenylenediamine with 3 equivalents of 8-hydroxyquinoline-2-aldehyde did not form the desired compound. Instead, the reaction produced a novel 2-substituted benzimidazole. Similar benzimidazole derivatives were also obtained by Dege and Yang (Dege et al., 2006; Yang et al., 2004). Usually, one of the general routes for synthesis of benzimidazole involves the reaction of a carboxylic acid with o-phenylenediamine in the presence of a strong acid (Grimmet et al., 1997; Boufatah et al., 2004). Another typical procedure involves heating o-phenylenediamine with an aldehyde in the presence of oxidant, such as Pb(OAc)4 (Kumar et al., 1981), BaMnO4 (Srivastava et al., 1988).

The molecular structure and a packing diagram of the title compound are illustrated in Figs 1 and 2, respectively. Selected geometric parameters are listed in Table 1.The compound contains 3 planar rings. One is the benzimidazole ring (N2, N3, C10—C16); the others are the 8-hydroxyquinoline rings. The 8-hydroxyquinoline ring [A(N1,O1,C1—C9)] attached to C10, is almost coplanar with the benzimidazole ring (with a dihedral angle of 3.1 (2)°). The other 8-hydroxyquinoline group [B(N4,O2,C18—C26)], was attached to the C17 methylene group almost perpendicular to the benzimidazole plane (with a dihedral angle of 93.8 (2)°). Two 8-hydroxyquinoline rings (A and B) form a dihedral angle of 96.5 (2)°. The C17—C18,C17—N3 and N2—C10 bond distances are 1.513 (3), 1.462 (3) and 1.327 (3) Å, which are similar to the corresponding bond lengths in 1-(thiophen-2-ylmethyl)-2-(thiophen-2-yl)-1H-benzimidazole (1.501 (3), 1.452 (3) and 1.315 (3) Å) (Dege et al., 2006). There is a strong intermolecular between O2—H2···N2(x + 1,y,z), with a H2···N2 distance of 2.55 Å (Figure 2, Table 2).

Related literature top

In most cases, without an oxidant the reaction of o-phenylenediamine with excess aldehyde produces a Shiff base compound containing two —NCH— bonds, see: Chen & Martell (1987); Wang et al. (1994). Similar benzimidazole derivatives have been obtained, see: Dege et al. (2006); Yang et al. (2004). For the preparation of benzimidazole, see: Boufatah et al. (2004); Grimmet (1997); Kumar et al. (1981); Srivastava & Venkataramair (1988);

Experimental top

A solution of 1,2-diaminobenzene (0.001 mol) in absolute methanol (20 ml) was added in small portions to a solution of 8-hydroxyquinoline-2-aldehyde (0.003 mol) in absolute methanol (30 ml). The reaction mixture was maintained at 348 K for 2 h,and was monitored by TLC. The resulting precipitation was washed with methanol, dried and recrystallized from toluene. 1H NMR(d6-DMSO):9.46(s,1H),9.33(s,1H),8.56(d,1H),8.47(d,1H),8.15(d,1H), 7.82–7.85(m,2H),7.42–7.48(m,2H),7.08–7.40(m,7H),6.73(s,2H).

Refinement top

Toluene molecule is located at a symmetrical center, so 4-H of toluene is not present. H atoms attached to C atoms were placed in geometrically idealized positions with Csp2—H = 0.93 Å and Csp3—H = 0.96 Å, and were constrained to ride on their parent atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound,with the atom-numbering scheme.Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing view of the title compound.
Bis{2-[1-(8-hydroxy-2-quinolylmethyl)-1H-benzimidazol-2-yl]quinolin- 8-ol} toluene solvate top
Crystal data top
2C26H18N4O2·C7H8Z = 1
Mr = 929.02F(000) = 486
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.014 (7) ÅCell parameters from 2466 reflections
b = 12.669 (11) Åθ = 3.0–25.9°
c = 12.727 (11) ŵ = 0.09 mm1
α = 112.979 (10)°T = 295 K
β = 90.881 (11)°Block, yellow
γ = 100.966 (11)°0.30 × 0.20 × 0.15 mm
V = 1162.1 (17) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4077 independent reflections
Radiation source: fine-focus sealed tube3049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 97
Tmin = 0.975, Tmax = 0.987k = 1514
6333 measured reflectionsl = 1215
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0768P)2 + 0.2872P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4077 reflectionsΔρmax = 0.40 e Å3
329 parametersΔρmin = 0.32 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (4)
Crystal data top
2C26H18N4O2·C7H8γ = 100.966 (11)°
Mr = 929.02V = 1162.1 (17) Å3
Triclinic, P1Z = 1
a = 8.014 (7) ÅMo Kα radiation
b = 12.669 (11) ŵ = 0.09 mm1
c = 12.727 (11) ÅT = 295 K
α = 112.979 (10)°0.30 × 0.20 × 0.15 mm
β = 90.881 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4077 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3049 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.987Rint = 0.024
6333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
4077 reflectionsΔρmin = 0.32 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5707 (3)0.12196 (18)0.05782 (17)0.0455 (5)
C20.7346 (3)0.0952 (2)0.0469 (2)0.0535 (6)
C30.7601 (3)0.0148 (2)0.1092 (2)0.0624 (6)
H30.86680.03160.10270.075*
C40.6260 (4)0.1028 (2)0.1830 (2)0.0676 (7)
H40.64530.17730.22480.081*
C50.4679 (3)0.0808 (2)0.1944 (2)0.0633 (6)
H50.38070.14020.24350.076*
C60.4366 (3)0.03220 (19)0.13169 (18)0.0509 (5)
C70.2767 (3)0.0626 (2)0.13557 (19)0.0556 (6)
H70.18330.00590.18050.067*
C80.2582 (3)0.17396 (19)0.07426 (19)0.0524 (6)
H80.15320.19420.07740.063*
C90.4018 (2)0.25868 (18)0.00545 (17)0.0434 (5)
C100.3807 (2)0.37994 (17)0.05742 (16)0.0421 (5)
C110.2623 (3)0.52959 (18)0.12008 (18)0.0462 (5)
C120.1518 (3)0.6075 (2)0.1430 (2)0.0554 (6)
H120.03940.58250.11000.066*
C130.2159 (3)0.7227 (2)0.2162 (2)0.0625 (6)
H130.14520.77630.23250.075*
C140.3845 (3)0.7607 (2)0.2665 (2)0.0652 (7)
H140.42280.83900.31600.078*
C150.4960 (3)0.6855 (2)0.2448 (2)0.0569 (6)
H150.60810.71120.27830.068*
C160.4318 (2)0.56921 (18)0.16998 (17)0.0441 (5)
C170.6860 (2)0.47670 (18)0.15656 (18)0.0437 (5)
H17A0.74970.55690.18110.052*
H17B0.73140.42930.08780.052*
C180.7154 (2)0.43377 (16)0.24939 (16)0.0411 (5)
C190.5972 (3)0.43317 (19)0.33017 (18)0.0511 (5)
H190.49350.45450.32490.061*
C200.6374 (3)0.4007 (2)0.41619 (19)0.0557 (6)
H200.56050.40040.47010.067*
C210.7938 (3)0.36783 (18)0.42466 (17)0.0481 (5)
C220.8471 (3)0.3341 (2)0.5118 (2)0.0632 (6)
H220.77760.33380.56950.076*
C231.0006 (4)0.3022 (2)0.5104 (2)0.0702 (7)
H231.03460.27990.56750.084*
C241.1081 (3)0.3024 (2)0.4245 (2)0.0680 (7)
H241.21230.28040.42520.082*
C251.0602 (3)0.3348 (2)0.3397 (2)0.0556 (6)
C260.9023 (2)0.36878 (17)0.33817 (17)0.0440 (5)
C270.6666 (8)0.9326 (7)0.5448 (6)0.109 (2)0.50
H27A0.63520.84840.51160.163*0.50
H27B0.59040.96350.51120.163*0.50
H27C0.65900.96100.62600.163*0.50
C280.8398 (8)0.9701 (3)0.5231 (4)0.1311 (17)
C290.8662 (8)0.9652 (4)0.4163 (4)0.151 (2)
H290.77530.94090.36010.181*
C301.0280 (8)0.9965 (4)0.3939 (4)0.141 (2)
H301.04930.99530.32190.169*
N10.5530 (2)0.23373 (15)0.00443 (14)0.0448 (4)
N20.2332 (2)0.41096 (15)0.05066 (15)0.0486 (5)
N30.5069 (2)0.47278 (14)0.12805 (14)0.0426 (4)
N40.8615 (2)0.40046 (14)0.25095 (14)0.0437 (4)
O10.8628 (2)0.17832 (16)0.02683 (16)0.0740 (5)
H10.82930.23940.05890.111*
O21.1662 (2)0.3371 (2)0.25782 (18)0.0811 (6)
H21.11740.35120.20930.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0529 (12)0.0487 (12)0.0422 (12)0.0166 (9)0.0120 (9)0.0232 (10)
C20.0539 (13)0.0595 (14)0.0556 (14)0.0219 (11)0.0143 (10)0.0271 (11)
C30.0682 (16)0.0667 (16)0.0672 (16)0.0343 (13)0.0272 (12)0.0325 (13)
C40.091 (2)0.0566 (15)0.0625 (16)0.0302 (14)0.0287 (14)0.0244 (12)
C50.0789 (17)0.0514 (14)0.0552 (14)0.0112 (12)0.0127 (12)0.0176 (11)
C60.0610 (14)0.0511 (13)0.0430 (12)0.0117 (10)0.0097 (10)0.0214 (10)
C70.0552 (13)0.0541 (14)0.0526 (13)0.0027 (10)0.0015 (10)0.0204 (11)
C80.0441 (12)0.0589 (14)0.0560 (13)0.0092 (10)0.0010 (10)0.0260 (11)
C90.0438 (11)0.0506 (12)0.0424 (11)0.0128 (9)0.0048 (8)0.0243 (9)
C100.0395 (11)0.0515 (12)0.0420 (11)0.0120 (9)0.0034 (8)0.0249 (9)
C110.0455 (11)0.0545 (13)0.0492 (12)0.0162 (9)0.0099 (9)0.0291 (10)
C120.0471 (12)0.0673 (15)0.0682 (15)0.0250 (11)0.0153 (10)0.0383 (13)
C130.0691 (16)0.0657 (16)0.0717 (16)0.0334 (13)0.0234 (12)0.0382 (13)
C140.0793 (17)0.0525 (14)0.0670 (16)0.0222 (12)0.0132 (13)0.0236 (12)
C150.0582 (14)0.0547 (14)0.0584 (14)0.0136 (11)0.0034 (11)0.0227 (11)
C160.0465 (11)0.0502 (12)0.0455 (12)0.0166 (9)0.0089 (9)0.0267 (10)
C170.0359 (10)0.0505 (12)0.0486 (12)0.0099 (8)0.0023 (8)0.0236 (9)
C180.0375 (10)0.0424 (11)0.0410 (11)0.0084 (8)0.0008 (8)0.0142 (9)
C190.0423 (11)0.0665 (14)0.0477 (13)0.0199 (10)0.0052 (9)0.0225 (11)
C200.0548 (13)0.0716 (15)0.0456 (13)0.0202 (11)0.0140 (10)0.0254 (11)
C210.0557 (13)0.0482 (12)0.0412 (12)0.0143 (10)0.0029 (9)0.0173 (9)
C220.0791 (17)0.0717 (16)0.0489 (14)0.0247 (13)0.0084 (12)0.0309 (12)
C230.0856 (19)0.0767 (17)0.0633 (16)0.0304 (14)0.0019 (13)0.0381 (14)
C240.0625 (15)0.0780 (17)0.0804 (18)0.0291 (13)0.0023 (13)0.0431 (14)
C250.0489 (13)0.0634 (14)0.0669 (15)0.0196 (11)0.0063 (11)0.0357 (12)
C260.0437 (11)0.0418 (11)0.0466 (12)0.0084 (9)0.0012 (9)0.0184 (9)
C270.126 (6)0.111 (6)0.093 (5)0.052 (5)0.008 (5)0.033 (4)
C280.243 (5)0.064 (2)0.083 (3)0.045 (3)0.029 (3)0.0222 (18)
C290.262 (7)0.096 (3)0.094 (3)0.027 (4)0.041 (4)0.044 (2)
C300.268 (7)0.085 (3)0.069 (3)0.036 (4)0.027 (4)0.031 (2)
N10.0448 (10)0.0504 (10)0.0444 (10)0.0156 (8)0.0062 (7)0.0220 (8)
N20.0403 (9)0.0540 (11)0.0579 (11)0.0146 (8)0.0035 (8)0.0270 (9)
N30.0383 (9)0.0491 (10)0.0464 (10)0.0136 (7)0.0035 (7)0.0237 (8)
N40.0381 (9)0.0495 (10)0.0473 (10)0.0131 (7)0.0031 (7)0.0217 (8)
O10.0539 (10)0.0736 (12)0.0870 (13)0.0276 (9)0.0027 (9)0.0180 (10)
O20.0540 (10)0.1300 (17)0.1009 (15)0.0461 (11)0.0256 (10)0.0773 (13)
Geometric parameters (Å, º) top
C1—N11.363 (3)C17—C181.513 (3)
C1—C61.415 (3)C17—H17A0.9700
C1—C21.435 (3)C17—H17B0.9700
C2—O11.354 (3)C18—N41.320 (3)
C2—C31.365 (3)C18—C191.410 (3)
C3—C41.406 (4)C19—C201.365 (3)
C3—H30.9300C19—H190.9300
C4—C51.365 (4)C20—C211.409 (3)
C4—H40.9300C20—H200.9300
C5—C61.414 (3)C21—C261.416 (3)
C5—H50.9300C21—C221.421 (3)
C6—C71.411 (3)C22—C231.365 (4)
C7—C81.358 (3)C22—H220.9300
C7—H70.9300C23—C241.403 (4)
C8—C91.418 (3)C23—H230.9300
C8—H80.9300C24—C251.369 (3)
C9—N11.325 (3)C24—H240.9300
C9—C101.474 (3)C25—O21.361 (3)
C10—N21.327 (3)C25—C261.414 (3)
C10—N31.381 (3)C26—N41.374 (3)
C11—N21.385 (3)C27—C281.4463 (15)
C11—C121.400 (3)C27—H27A0.9600
C11—C161.402 (3)C27—H27B0.9600
C12—C131.378 (4)C27—H27C0.9600
C12—H120.9300C28—C291.358 (6)
C13—C141.398 (4)C28—C30i1.365 (6)
C13—H130.9300C29—C301.351 (9)
C14—C151.381 (3)C29—H290.9300
C14—H140.9300C30—C28i1.365 (6)
C15—C161.394 (3)C30—H300.9300
C15—H150.9300O1—H10.8200
C16—N31.385 (3)O2—H20.8200
C17—N31.462 (3)
N1—C1—C6123.4 (2)C18—C17—H17B108.7
N1—C1—C2117.63 (19)H17A—C17—H17B107.6
C6—C1—C2119.0 (2)N4—C18—C19122.82 (19)
O1—C2—C3120.0 (2)N4—C18—C17115.06 (17)
O1—C2—C1120.0 (2)C19—C18—C17122.09 (18)
C3—C2—C1120.0 (2)C20—C19—C18118.8 (2)
C2—C3—C4120.4 (2)C20—C19—H19120.6
C2—C3—H3119.8C18—C19—H19120.6
C4—C3—H3119.8C19—C20—C21121.0 (2)
C5—C4—C3121.2 (2)C19—C20—H20119.5
C5—C4—H4119.4C21—C20—H20119.5
C3—C4—H4119.4C20—C21—C26115.94 (19)
C4—C5—C6120.1 (2)C20—C21—C22124.9 (2)
C4—C5—H5119.9C26—C21—C22119.2 (2)
C6—C5—H5119.9C23—C22—C21119.8 (2)
C7—C6—C5124.3 (2)C23—C22—H22120.1
C7—C6—C1116.4 (2)C21—C22—H22120.1
C5—C6—C1119.3 (2)C22—C23—C24121.2 (2)
C8—C7—C6120.6 (2)C22—C23—H23119.4
C8—C7—H7119.7C24—C23—H23119.4
C6—C7—H7119.7C25—C24—C23120.2 (2)
C7—C8—C9118.8 (2)C25—C24—H24119.9
C7—C8—H8120.6C23—C24—H24119.9
C9—C8—H8120.6O2—C25—C24120.1 (2)
N1—C9—C8123.0 (2)O2—C25—C26119.5 (2)
N1—C9—C10118.97 (18)C24—C25—C26120.3 (2)
C8—C9—C10117.98 (18)N4—C26—C25117.61 (19)
N2—C10—N3112.54 (18)N4—C26—C21123.14 (19)
N2—C10—C9122.02 (18)C25—C26—C21119.2 (2)
N3—C10—C9125.44 (17)C28—C27—H27A109.5
N2—C11—C12129.9 (2)C28—C27—H27B109.5
N2—C11—C16109.73 (17)H27A—C27—H27B109.5
C12—C11—C16120.4 (2)C28—C27—H27C109.5
C13—C12—C11117.5 (2)H27A—C27—H27C109.5
C13—C12—H12121.2H27B—C27—H27C109.5
C11—C12—H12121.2C29—C28—C30i121.6 (5)
C12—C13—C14121.5 (2)C29—C28—C27117.7 (6)
C12—C13—H13119.2C30i—C28—C27120.6 (6)
C14—C13—H13119.2C30—C29—C28118.3 (5)
C15—C14—C13121.9 (2)C30—C29—H29120.9
C15—C14—H14119.0C28—C29—H29120.9
C13—C14—H14119.0C29—C30—C28i120.1 (5)
C14—C15—C16116.6 (2)C29—C30—H30120.0
C14—C15—H15121.7C28i—C30—H30120.0
C16—C15—H15121.7C9—N1—C1117.77 (18)
N3—C16—C15132.0 (2)C10—N2—C11105.48 (17)
N3—C16—C11106.02 (18)C10—N3—C16106.21 (16)
C15—C16—C11122.00 (19)C10—N3—C17129.92 (17)
N3—C17—C18114.36 (16)C16—N3—C17123.86 (16)
N3—C17—H17A108.7C18—N4—C26118.16 (17)
C18—C17—H17A108.7C2—O1—H1109.5
N3—C17—H17B108.7C25—O2—H2109.5
N1—C1—C2—O12.7 (3)C19—C20—C21—C22179.3 (2)
C6—C1—C2—O1177.24 (19)C20—C21—C22—C23179.0 (2)
N1—C1—C2—C3178.68 (19)C26—C21—C22—C230.6 (3)
C6—C1—C2—C31.4 (3)C21—C22—C23—C240.3 (4)
O1—C2—C3—C4177.8 (2)C22—C23—C24—C250.1 (4)
C1—C2—C3—C40.8 (3)C23—C24—C25—O2178.7 (2)
C2—C3—C4—C50.0 (4)C23—C24—C25—C260.2 (4)
C3—C4—C5—C60.2 (4)O2—C25—C26—N41.5 (3)
C4—C5—C6—C7178.4 (2)C24—C25—C26—N4179.9 (2)
C4—C5—C6—C10.4 (3)O2—C25—C26—C21179.1 (2)
N1—C1—C6—C72.3 (3)C24—C25—C26—C210.6 (3)
C2—C1—C6—C7177.70 (19)C20—C21—C26—N40.6 (3)
N1—C1—C6—C5178.91 (19)C22—C21—C26—N4179.78 (19)
C2—C1—C6—C51.1 (3)C20—C21—C26—C25178.89 (19)
C5—C6—C7—C8178.7 (2)C22—C21—C26—C250.8 (3)
C1—C6—C7—C82.5 (3)C30i—C28—C29—C301.2 (8)
C6—C7—C8—C90.7 (3)C27—C28—C29—C30178.0 (5)
C7—C8—C9—N11.8 (3)C28—C29—C30—C28i1.2 (8)
C7—C8—C9—C10178.01 (19)C8—C9—N1—C12.2 (3)
N1—C9—C10—N2179.53 (18)C10—C9—N1—C1177.69 (17)
C8—C9—C10—N20.3 (3)C6—C1—N1—C90.0 (3)
N1—C9—C10—N30.2 (3)C2—C1—N1—C9180.00 (18)
C8—C9—C10—N3179.92 (18)N3—C10—N2—C110.2 (2)
N2—C11—C12—C13179.8 (2)C9—C10—N2—C11179.95 (17)
C16—C11—C12—C130.5 (3)C12—C11—N2—C10178.8 (2)
C11—C12—C13—C140.3 (3)C16—C11—N2—C100.6 (2)
C12—C13—C14—C150.6 (4)N2—C10—N3—C160.8 (2)
C13—C14—C15—C160.1 (4)C9—C10—N3—C16179.41 (18)
C14—C15—C16—N3178.5 (2)N2—C10—N3—C17178.58 (18)
C14—C15—C16—C110.8 (3)C9—C10—N3—C171.2 (3)
N2—C11—C16—N31.0 (2)C15—C16—N3—C10179.6 (2)
C12—C11—C16—N3178.36 (18)C11—C16—N3—C101.1 (2)
N2—C11—C16—C15179.55 (19)C15—C16—N3—C171.0 (3)
C12—C11—C16—C151.1 (3)C11—C16—N3—C17178.35 (17)
N3—C17—C18—N4158.92 (17)C18—C17—N3—C1081.6 (3)
N3—C17—C18—C1923.0 (3)C18—C17—N3—C1699.1 (2)
N4—C18—C19—C202.3 (3)C19—C18—N4—C262.8 (3)
C17—C18—C19—C20175.59 (19)C17—C18—N4—C26175.22 (16)
C18—C19—C20—C210.3 (3)C25—C26—N4—C18179.18 (18)
C19—C20—C21—C261.1 (3)C21—C26—N4—C181.4 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.292.745 (3)116
O1—H1···N40.822.473.131 (3)139
O2—H2···N40.822.272.722 (3)116
O2—H2···N2ii0.822.553.145 (3)131
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C26H18N4O2·C7H8
Mr929.02
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.014 (7), 12.669 (11), 12.727 (11)
α, β, γ (°)112.979 (10), 90.881 (11), 100.966 (11)
V3)1162.1 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.975, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
6333, 4077, 3049
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.156, 1.03
No. of reflections4077
No. of parameters329
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C9—C101.474 (3)C16—N31.385 (3)
C10—N21.327 (3)C17—N31.462 (3)
C10—N31.381 (3)C17—C181.513 (3)
N2—C10—N3112.54 (18)C10—N3—C17129.92 (17)
C9—N1—C1117.77 (18)C16—N3—C17123.86 (16)
C10—N2—C11105.48 (17)C18—N4—C26118.16 (17)
C10—N3—C16106.21 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.292.745 (3)115.6
O1—H1···N40.822.473.131 (3)138.6
O2—H2···N40.822.272.722 (3)115.5
O2—H2···N2i0.822.553.145 (3)130.8
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20601018) and the Province Natural Science Foundation of Shanxi Province of China (grant No. 2009021006–3).

References

First citationBoufatah, N., Gellis, A., Maldonado, J. & Vanelle, P. (2004). Tetrahedron, 60, 9131–9137.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, D. & Martell, A. E. (1987). Inorg. Chem. 26, 1026–1030.  CrossRef CAS Web of Science Google Scholar
First citationDege, N., Şekerci, M., Servi, S., Dinçer, M. & Demirbaş, Ü. (2006). Turk J. Chem. 30, 103–108.  CAS Google Scholar
First citationGrimmet, M. R. (1997). Imidazole and Benzimidazole Synthesis. London: Academic Press.  Google Scholar
First citationKumar, S., Kansal, V. & Bhaduri, A. (1981). Indian J. Chem. Sect. B, 20, 254–256.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. G. & Venkataramair, P. S. (1988). Synth. Commun. 18, 1537–1544.  CrossRef CAS Web of Science Google Scholar
First citationWang, H., Li, S.-L., Liu, D.-X., Cui, X.-G. & Li, X.-Y. (1994). Acta Chim. Sin. 52, 676–682.  CAS Google Scholar
First citationYang, H.-W., Yue, F., Feng, S., Wang, J.-D., Liu, A.-H., Chen, H.-M. & Yu, K.-B. (2004). Chin. J. Org. Chem. 24, 792–796.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o671-o672
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds